Cardiovascular Protective Properties of GLP-1 Receptor Agonists: More than Just Diabetic and Weight Loss Drugs
Abstract
:1. Introduction
2. Pharmacology
2.1. GLP-1 Physiology
2.2. Pharmacodynamics of GLP-1 Receptor Agonists
2.2.1. Insulin Secretion
2.2.2. Weight Loss and Appetite Suppression
2.2.3. Other Extra-Pancreatic Sites of GLP-1R Expression
2.3. Pharmacokinetics of GLP-1 Receptor Agonists
3. Cardiovascular Benefits of GLP-1 RAs
3.1. Cardiovascular Outcome Trials Data
3.1.1. Composite Adverse Cardiovascular Endpoints
3.1.2. Specific Endpoints of Interest
Ischaemic Heart Disease
Stroke
Heart Failure
Peripheral Artery Disease
3.2. Observational Cardiovascular Data and Real-World Experience
4. Does Risk Factor Modulation Explain the Cardiovascular Benefit of GLP-1 RAs?
4.1. Glycaemic Control
4.2. Weight Loss
4.3. Blood Pressure
4.4. Lipids
5. Evidence of GLP-1 RAs’ Direct Impact on Atherosclerotic Plaques
6. Putative Anti-Atherosclerotic Mechanisms
6.1. Correcting Vascular Dysfunction
6.2. Targeting Diabetic Dyslipidaemia
6.3. Dampening Inflammation
6.4. Reduction in Endoplasmic Reticulum Stress
6.5. Regulating Adiponectin and Other Adipokines
6.6. Modification of Epicardial Adipose Tissue
6.7. Remodeling Plaque towards Stability
6.8. Inhibition of Platelet Aggregation and Thrombosis
7. Future Directions
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Libby, P. The Changing Landscape of Atherosclerosis. Nature 2021, 592, 524–533. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Wolf, D.; Ley, K. Immunity and Inflammation in Atherosclerosis. Circ. Res. 2019, 124, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef]
- Lobstein, T.; Brinsden, H.; Neveux, M. World Obesity Atlas 2022; World Obesity Federation: London, UK, 2022. [Google Scholar]
- Bertoluci, M.C.; Rocha, V.Z. Cardiovascular Risk Assessment in Patients with Diabetes. Diabetol. Metab. Syndr. 2017, 9, 25. [Google Scholar] [CrossRef]
- The GBD 2015 Obesity Collaborators. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Hwang, T.; Franklin, J.; Kesselheim, A. Effect of US Food and Drug Administration’s Cardiovascular Safety Guidance on Diabetes Drug Development. Clin. Pharmacol. Ther. 2017, 102, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Sattar, N.; Lee, M.M.Y.; Kristensen, S.L.; Branch, K.R.H.; Del Prato, S.; Khurmi, N.S.; Lam, C.S.P.; Lopes, R.D.; McMurray, J.J.V.; Pratley, R.E.; et al. Cardiovascular, Mortality, and Kidney Outcomes with GLP-1 Receptor Agonists in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomised Trials. Lancet Diabetes Endocrinol. 2021, 9, 653–662. [Google Scholar] [CrossRef]
- Honigberg, M.C.; Chang, L.-S.; McGuire, D.K.; Plutzky, J.; Aroda, V.R.; Vaduganathan, M. Use of Glucagon-Like Peptide-1 Receptor Agonists in Patients with Type 2 Diabetes and Cardiovascular Disease: A Review. JAMA Cardiol. 2020, 5, 1182. [Google Scholar] [CrossRef]
- Mcintyre, N.; Holdsworth, C.D.; Turner, D.S. New Interpretation of Oral Glucose Tolerance. Lancet 1964, 284, 20–21. [Google Scholar] [CrossRef]
- Elrick, H.; Stimmler, L.; Hlad, C.J.; Arai, Y. Plasma Insulin Response to Oral and Intravenous Glucose Administration1. J. Clin. Endocrinol. Metab. 1964, 24, 1076–1082. [Google Scholar] [CrossRef]
- Nauck, M.A.; Meier, J.J. The Incretin Effect in Healthy Individuals and Those with Type 2 Diabetes: Physiology, Pathophysiology, and Response to Therapeutic Interventions. Lancet Diabetes Endocrinol. 2016, 4, 525–536. [Google Scholar] [CrossRef] [PubMed]
- Kreymann, B.; Ghatei, M.A.; Williams, G.; Bloom, S.R. Glucagon-Like Peptide-1 7–36: A Physiological Incretin in Man. Lancet 1987, 330, 1300–1304. [Google Scholar] [CrossRef] [PubMed]
- Dupre, J.; Ross, S.A.; Watson, D.; Brown, J.C. Stimulation of Insulin Secretion by Gastric Inhibitory Polypeptide in Man. J. Clin. Endocrinol. Metab. 1973, 37, 826–828. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.A.; Meier, J.J. Incretin Hormones: Their Role in Health and Disease. Diabetes Obes. Metab. 2018, 20, 5–21. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.D.; Finan, B.; Bloom, S.R.; D’Alessio, D.; Drucker, D.J.; Flatt, P.R.; Fritsche, A.; Gribble, F.; Grill, H.J.; Habener, J.F.; et al. Glucagon-like Peptide 1 (GLP-1). Mol. Metab. 2019, 30, 72–130. [Google Scholar] [CrossRef] [PubMed]
- Wishart, J.M.; Horowitz, M.; Morris, H.A.; Jones, K.L.; Nauck, M.A. Relation between Gastric Emptying of Glucose and Plasma Concentrations of Glucagon-like Peptide-1. Peptides 1998, 19, 1049–1053. [Google Scholar] [CrossRef]
- Nauck, M.A.; Heimesaat, M.M.; Behle, K.; Holst, J.J.; Nauck, M.S.; Ritzel, R.; Hüfner, M.; Schmiegel, W.H. Effects of Glucagon-Like Peptide 1 on Counterregulatory Hormone Responses, Cognitive Functions, and Insulin Secretion during Hyperinsulinemic, Stepped Hypoglycemic Clamp Experiments in Healthy Volunteers. J. Clin. Endocrinol. Metab. 2002, 87, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Leech, C.A.; Chepurny, O.G.; Holz, G.G. Epac2-Dependent Rap1 Activation and the Control of Islet Insulin Secretion by Glucagon-Like Peptide-1. In Vitamins & Hormones; Elsevier: Amsterdam, The Netherlands, 2010; Volume 84, pp. 279–302. ISBN 978-0-12-381517-0. [Google Scholar]
- Pang, B.; Kim, S.; Li, D.; Ma, Z.; Sun, B.; Zhang, X.; Wu, Z.; Chen, L. Glucagon-like Peptide-1 Potentiates Glucose-stimulated Insulin Secretion via the Transient Receptor Potential Melastatin 2 Channel. Exp. Ther. Med. 2017, 14, 5219–5227. [Google Scholar] [CrossRef]
- Jones, B.; McGlone, E.R.; Fang, Z.; Pickford, P.; Corrêa, I.R.; Oishi, A.; Jockers, R.; Inoue, A.; Kumar, S.; Görlitz, F.; et al. Genetic and Biased Agonist-Mediated Reductions in β-Arrestin Recruitment Prolong cAMP Signaling at Glucagon Family Receptors. J. Biol. Chem. 2021, 296, 100133. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Jiang, X.; Yang, L.; Lei, L.; Cai, D.; Zhang, H.; Chen, H. GLP-1 Ameliorates the Proliferation Activity of INS-1 Cells Inhibited by Intermittent High Glucose Concentrations through the Regulation of Cyclins. Mol. Med. Rep. 2014, 10, 683–688. [Google Scholar] [CrossRef]
- Miao, X.-Y.; Gu, Z.-Y.; Liu, P.; Hu, Y.; Li, L.; Gong, Y.-P.; Shu, H.; Liu, Y.; Li, C.-L. The Human Glucagon-like Peptide-1 Analogue Liraglutide Regulates Pancreatic Beta-Cell Proliferation and Apoptosis via an AMPK/mTOR/P70S6K Signaling Pathway. Peptides 2013, 39, 71–79. [Google Scholar] [CrossRef]
- Li, Y.; Cao, X.; Li, L.; Brubaker, P.L.; Edlund, H.; Drucker, D.J. β-Cell Pdx1 Expression Is Essential for the Glucoregulatory, Proliferative, and Cytoprotective Actions of Glucagon-Like Peptide-1. Diabetes 2005, 54, 482–491. [Google Scholar] [CrossRef]
- Dai, C.; Hang, Y.; Shostak, A.; Poffenberger, G.; Hart, N.; Prasad, N.; Phillips, N.; Levy, S.E.; Greiner, D.L.; Shultz, L.D.; et al. Age-Dependent Human β Cell Proliferation Induced by Glucagon-like Peptide 1 and Calcineurin Signaling. J. Clin. Investig. 2017, 127, 3835–3844. [Google Scholar] [CrossRef]
- Cornu, M.; Modi, H.; Kawamori, D.; Kulkarni, R.N.; Joffraud, M.; Thorens, B. Glucagon-like Peptide-1 Increases β-Cell Glucose Competence and Proliferation by Translational Induction of Insulin-like Growth Factor-1 Receptor Expression. J. Biol. Chem. 2010, 285, 10538–10545. [Google Scholar] [CrossRef]
- Mayendraraj, A.; Rosenkilde, M.M.; Gasbjerg, L.S. GLP-1 and GIP Receptor Signaling in Beta Cells – A Review of Receptor Interactions and Co-Stimulation. Peptides 2022, 151, 170749. [Google Scholar] [CrossRef]
- Trümper, J.; Ross, D.; Jahr, H.; Brendel, M.D.; Göke, R.; Hörsch, D. The Rap–B-Raf Signalling Pathway Is Activated by Glucose and Glucagon-like Peptide-1 in Human Islet Cells. Diabetologia 2005, 48, 1534–1540. [Google Scholar] [CrossRef]
- Yusta, B.; Baggio, L.L.; Estall, J.L.; Koehler, J.A.; Holland, D.P.; Li, H.; Pipeleers, D.; Ling, Z.; Drucker, D.J. GLP-1 Receptor Activation Improves β Cell Function and Survival Following Induction of Endoplasmic Reticulum Stress. Cell Metab. 2006, 4, 391–406. [Google Scholar] [CrossRef]
- Park, S.; Dong, X.; Fisher, T.L.; Dunn, S.; Omer, A.K.; Weir, G.; White, M.F. Exendin-4 Uses Irs2 Signaling to Mediate Pancreatic β Cell Growth and Function. J. Biol. Chem. 2006, 281, 1159–1168. [Google Scholar] [CrossRef]
- Carlessi, R.; Chen, Y.; Rowlands, J.; Cruzat, V.F.; Keane, K.N.; Egan, L.; Mamotte, C.; Stokes, R.; Gunton, J.E.; de Bittencourt, P.I.H.; et al. GLP-1 Receptor Signalling Promotes β-Cell Glucose Metabolism via mTOR-Dependent HIF-1α Activation. Sci. Rep. 2017, 7, 2661. [Google Scholar] [CrossRef]
- Aldawsari, M.; Almadani, F.A.; Almuhammadi, N.; Algabsani, S.; Alamro, Y.; Aldhwayan, M. The Efficacy of GLP-1 Analogues on Appetite Parameters, Gastric Emptying, Food Preference and Taste Among Adults with Obesity: Systematic Review of Randomized Controlled Trials. Diabetes Metab. Syndr. Obes. 2023, 16, 575–595. [Google Scholar] [CrossRef] [PubMed]
- Singh, I.; Wang, L.; Xia, B.; Liu, J.; Tahiri, A.; El Ouaamari, A.; Wheeler, M.B.; Pang, Z.P. Activation of Arcuate Nucleus Glucagon-like Peptide-1 Receptor-Expressing Neurons Suppresses Food Intake. Cell Biosci. 2022, 12, 178. [Google Scholar] [CrossRef] [PubMed]
- Secher, A.; Jelsing, J.; Baquero, A.F.; Hecksher-Sørensen, J.; Cowley, M.A.; Dalbøge, L.S.; Hansen, G.; Grove, K.L.; Pyke, C.; Raun, K.; et al. The Arcuate Nucleus Mediates GLP-1 Receptor Agonist Liraglutide-Dependent Weight Loss. J. Clin. Investig. 2014, 124, 4473–4488. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.-P.; Acosta, A.A.; Ghidewon, M.Y.; McKnight, A.D.; Almeida, M.S.; Nyema, N.T.; Hanchak, N.D.; Patel, N.; Gbenou, Y.S.K.; Adriaenssens, A.E.; et al. Dissociable Hindbrain GLP1R Circuits for Satiety and Aversion. Nature 2024, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Plamboeck, A.; Veedfald, S.; Deacon, C.F.; Hartmann, B.; Wettergren, A.; Svendsen, L.B.; Meisner, S.; Hovendal, C.; Vilsbøll, T.; Knop, F.K.; et al. The Effect of Exogenous GLP-1 on Food Intake Is Lost in Male Truncally Vagotomized Subjects with Pyloroplasty. Am. J. Physiol. Gastrointest. Liver Physiol. 2013, 304, G1117–G1127. [Google Scholar] [CrossRef] [PubMed]
- Van Bloemendaal, L.; IJzerman, R.G.; Ten Kulve, J.S.; Barkhof, F.; Konrad, R.J.; Drent, M.L.; Veltman, D.J.; Diamant, M. GLP-1 Receptor Activation Modulates Appetite- and Reward-Related Brain Areas in Humans. Diabetes 2014, 63, 4186–4196. [Google Scholar] [CrossRef] [PubMed]
- Drucker, D.J. Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metab. 2018, 27, 740–756. [Google Scholar] [CrossRef]
- Drucker, D.J. The Cardiovascular Biology of Glucagon-like Peptide-1. Cell Metab. 2016, 24, 15–30. [Google Scholar] [CrossRef]
- Helmstädter, J.; Keppeler, K.; Küster, L.; Münzel, T.; Daiber, A.; Steven, S. Glucagon-like Peptide-1 (GLP-1) Receptor Agonists and Their Cardiovascular Benefits—The Role of the GLP-1 Receptor. Br. J. Pharmacol. 2022, 179, 659–676. [Google Scholar] [CrossRef]
- Nauck, M.A.; Meier, J.J. Management of Endocrine Disease: Are All GLP-1 Agonists Equal in the Treatment of Type 2 Diabetes? Eur. J. Endocrinol. 2019, 181, R211–R234. [Google Scholar] [CrossRef]
- Tahrani, A.A.; Barnett, A.H.; Bailey, C.J. Pharmacology and Therapeutic Implications of Current Drugs for Type 2 Diabetes Mellitus. Nat. Rev. Endocrinol. 2016, 12, 566–592. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.; Kang, J.; Kwon, S.C.; Trautmann, M.E.; Hompesch, M.; Stewart, J.; Sorli, C.H. Pharmacokinetic and Dose-finding Studies on Efpeglenatide in Patients with Type 2 Diabetes. Diabetes Obes. Metab. 2020, 22, 1292–1301. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Kang, W.; Li, W.; Chen, S.; Gao, Y. Oral Delivery of Protein and Peptide Drugs: From Non-Specific Formulation Approaches to Intestinal Cell Targeting Strategies. Theranostics 2022, 12, 1419–1439. [Google Scholar] [CrossRef] [PubMed]
- Maideen, N.M.P. Pharmacologically Relevant Drug Interactions of Glucagon-like Peptide-1 Receptor Agonists. J. Analytical Pharm. Res. 2019, 8, 51–53. [Google Scholar] [CrossRef]
- Filippatos, T.D.; Panagiotopoulou, T.V.; Elisaf, M.S. Adverse Effects of GLP-1 Receptor Agonists. Rev. Diabet. Stud. 2014, 11, 202–230. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.E.; Falkentoft, A.C.; Jensen, J.; Zahir, D.; Parveen, S.; Alhakak, A.; Andersson, C.; Petrie, M.C.; Sattar, N.; McMurray, J.J.V.; et al. Discontinuation and Reinitiation of SGLT-2 Inhibitors and GLP-1R Agonists in Patients with Type 2 Diabetes: A Nationwide Study from 2013 to 2021. Lancet Reg. Health Eur. 2023, 29, 100617. [Google Scholar] [CrossRef] [PubMed]
- Drab, S.R. Glucagon-Like Peptide-1 Receptor Agonists for Type 2 Diabetes: A Clinical Update of Safety and Efficacy. Curr. Diabetes Rev. 2016, 12, 403–413. [Google Scholar] [CrossRef]
- Marso, S.P.; Bain, S.C.; Consoli, A.; Eliaschewitz, F.G.; Jódar, E.; Leiter, L.A.; Lingvay, I.; Rosenstock, J.; Seufert, J.; Warren, M.L.; et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 1834–1844. [Google Scholar] [CrossRef]
- Xia, L.; Shen, T.; Dong, W.; Su, F.; Wang, J.; Wang, Q.; Niu, S.; Fang, Y. Comparative Efficacy and Safety of 8 GLP-1RAs in Patients with Type 2 Diabetes: A Network Meta-Analysis. Diabetes Res. Clin. Pract. 2021, 177, 108904. [Google Scholar] [CrossRef]
- Huthmacher, J.A.; Meier, J.J.; Nauck, M.A. Efficacy and Safety of Short- and Long-Acting Glucagon-Like Peptide 1 Receptor Agonists on a Background of Basal Insulin in Type 2 Diabetes: A Meta-Analysis. Diabetes Care 2020, 43, 2303–2312. [Google Scholar] [CrossRef]
- Pfeffer, M.A.; Claggett, B.; Diaz, R.; Dickstein, K.; Gerstein, H.C.; Køber, L.V.; Lawson, F.C.; Ping, L.; Wei, X.; Lewis, E.F.; et al. Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome. N. Engl. J. Med. 2015, 373, 2247–2257. [Google Scholar] [CrossRef]
- Marso, S.P.; Daniels, G.H.; Brown-Frandsen, K.; Kristensen, P.; Mann, J.F.E.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Ravn, L.S.; et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 311–322. [Google Scholar] [CrossRef]
- Holman, R.R.; Bethel, M.A.; Mentz, R.J.; Thompson, V.P.; Lokhnygina, Y.; Buse, J.B.; Chan, J.C.; Choi, J.; Gustavson, S.M.; Iqbal, N.; et al. Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 1228–1239. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, A.F.; Green, J.B.; Janmohamed, S.; D’Agostino, R.B.; Granger, C.B.; Jones, N.P.; Leiter, L.A.; Rosenberg, A.E.; Sigmon, K.N.; Somerville, M.C.; et al. Albiglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes and Cardiovascular Disease (Harmony Outcomes): A Double-Blind, Randomised Placebo-Controlled Trial. Lancet 2018, 392, 1519–1529. [Google Scholar] [CrossRef]
- Gerstein, H.C.; Colhoun, H.M.; Dagenais, G.R.; Diaz, R.; Lakshmanan, M.; Pais, P.; Probstfield, J.; Riesmeyer, J.S.; Riddle, M.C.; Rydén, L.; et al. Dulaglutide and Cardiovascular Outcomes in Type 2 Diabetes (REWIND): A Double-Blind, Randomised Placebo-Controlled Trial. Lancet 2019, 394, 121–130. [Google Scholar] [CrossRef]
- Husain, M.; Birkenfeld, A.L.; Donsmark, M.; Dungan, K.; Eliaschewitz, F.G.; Franco, D.R.; Jeppesen, O.K.; Lingvay, I.; Mosenzon, O.; Pedersen, S.D.; et al. Oral Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2019, 381, 841–851. [Google Scholar] [CrossRef]
- Gerstein, H.C.; Sattar, N.; Rosenstock, J.; Ramasundarahettige, C.; Pratley, R.; Lopes, R.D.; Lam, C.S.P.; Khurmi, N.S.; Heenan, L.; Del Prato, S.; et al. Cardiovascular and Renal Outcomes with Efpeglenatide in Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 896–907. [Google Scholar] [CrossRef]
- Mannucci, E.; Silverii, G.A. Cardiovascular Prevention with Glucose-lowering Drugs in Type 2 Diabetes: An Evidence-based Approach to the Categories of Primary and Secondary Prevention. Diabetes Obes. Metab. 2023, 25, 3435–3443. [Google Scholar] [CrossRef]
- Tsapas, A.; Avgerinos, I.; Karagiannis, T.; Malandris, K.; Manolopoulos, A.; Andreadis, P.; Liakos, A.; Matthews, D.R.; Bekiari, E. Comparative Effectiveness of Glucose-Lowering Drugs for Type 2 Diabetes: A Systematic Review and Network Meta-Analysis. Ann. Intern. Med. 2020, 173, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Butalia, S.; Leung, A.A.; Ghali, W.A.; Rabi, D.M. Aspirin Effect on the Incidence of Major Adverse Cardiovascular Events in Patients with Diabetes Mellitus: A Systematic Review and Meta-Analysis. Cardiovasc. Diabetol. 2011, 10, 25. [Google Scholar] [CrossRef]
- Cholesterol Treatment Trialists’ (Ctt) Collaborators. The Effects of Lowering LDL Cholesterol with Statin Therapy in People at Low Risk of Vascular Disease: Meta-Analysis of Individual Data from 27 Randomised Trials. Lancet 2012, 380, 581–590. [Google Scholar] [CrossRef]
- The Heart Outcomes Prevention Evaluation Study Investigators. Effects of an Angiotensin-Converting–Enzyme Inhibitor, Ramipril, on Cardiovascular Events in High-Risk Patients. N. Engl. J. Med. 2000, 342, 145–153. [Google Scholar] [CrossRef]
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef]
- Tardif, J.-C.; Kouz, S.; Waters, D.D.; Bertrand, O.F.; Diaz, R.; Maggioni, A.P.; Pinto, F.J.; Ibrahim, R.; Gamra, H.; Kiwan, G.S.; et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N. Engl. J. Med. 2019, 381, 2497–2505. [Google Scholar] [CrossRef]
- Kalkman, D.N.; Aquino, M.; Claessen, B.E.; Baber, U.; Guedeney, P.; Sorrentino, S.; Vogel, B.; de Winter, R.J.; Sweeny, J.; Kovacic, J.C.; et al. Residual Inflammatory Risk and the Impact on Clinical Outcomes in Patients after Percutaneous Coronary Interventions. Eur. Heart J. 2018, 39, 4101–4108. [Google Scholar] [CrossRef]
- Wei, J.; Yang, B.; Wang, R.; Ye, H.; Wang, Y.; Wang, L.; Zhang, X. Risk of Stroke and Retinopathy during GLP-1 Receptor Agonist Cardiovascular Outcome Trials: An Eight RCTs Meta-Analysis. Front. Endocrinol. 2022, 13, 1007980. [Google Scholar] [CrossRef]
- Malhotra, K.; Katsanos, A.H.; Lambadiari, V.; Goyal, N.; Palaiodimou, L.; Kosmidou, M.; Krogias, C.; Alexandrov, A.V.; Tsivgoulis, G. GLP-1 Receptor Agonists in Diabetes for Stroke Prevention: A Systematic Review and Meta-Analysis. J. Neurol. 2020, 267, 2117–2122. [Google Scholar] [CrossRef]
- Benn, M.; Emanuelsson, F.; Tybjærg-Hansen, A.; Nordestgaard, B.G. Impact of High Glucose Levels and Glucose Lowering on Risk of Ischaemic Stroke: A Mendelian Randomisation Study and Meta-Analysis. Diabetologia 2021, 64, 1492–1503. [Google Scholar] [CrossRef]
- Zelniker, T.A.; Wiviott, S.D.; Raz, I.; Im, K.; Goodrich, E.L.; Furtado, R.H.M.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; et al. Comparison of the Effects of Glucagon-Like Peptide Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors for Prevention of Major Adverse Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus: Systematic Review and Meta-Analysis of Cardiovascular Outcomes Trials. Circulation 2019, 139, 2022–2031. [Google Scholar] [CrossRef]
- Kosiborod, M.N.; Abildstrøm, S.Z.; Borlaug, B.A.; Butler, J.; Rasmussen, S.; Davies, M.; Hovingh, G.K.; Kitzman, D.W.; Lindegaard, M.L.; Møller, D.V.; et al. Semaglutide in Patients with Heart Failure with Preserved Ejection Fraction and Obesity. N. Engl. J. Med. 2023, 389, 1069–1084. [Google Scholar] [CrossRef]
- Verma, S.; Al-Omran, M.; Leiter, L.A.; Mazer, C.D.; Rasmussen, S.; Saevereid, H.A.; Sejersten Ripa, M.; Bonaca, M.P. Cardiovascular Efficacy of Liraglutide and Semaglutide in Individuals with Diabetes and Peripheral Artery Disease. Diabetes Obes. Metab. 2022, 24, 1288–1299. [Google Scholar] [CrossRef]
- Piechocki, M.; Przewłocki, T.; Pieniążek, P.; Trystuła, M.; Podolec, J.; Kabłak-Ziembicka, A. A Non-Coronary, Peripheral Arterial Atherosclerotic Disease (Carotid, Renal, Lower Limb) in Elderly Patients—A Review PART II—Pharmacological Approach for Management of Elderly Patients with Peripheral Atherosclerotic Lesions Outside Coronary Territory. J. Clin. Med. 2024, 13, 1508. [Google Scholar] [CrossRef]
- Baviera, M.; Genovese, S.; Lepore, V.; Colacioppo, P.; Robusto, F.; Tettamanti, M.; D’Ettorre, A.; Avanzini, F.; Fortino, I.; Nicolucci, A.; et al. Lower Risk of Death and Cardiovascular Events in Patients with Diabetes Initiating Glucagon-like Peptide-1 Receptor Agonists or Sodium-glucose Cotransporter-2 Inhibitors: A Real-world Study in Two Italian Cohorts. Diabetes Obes. Metab. 2021, 23, 1484–1495. [Google Scholar] [CrossRef]
- Schäfer, Z.; Mathisen, A.; Thomsen, T.R.; Rossing, P.; Kirketerp-Møller, K. Glucagon-like Peptide-1 Treatment Reduces the Risk of Diabetes-Type 2 Related Amputations: A Cohort Study in Denmark. Diabetes Res. Clin. Pract. 2023, 202, 110799. [Google Scholar] [CrossRef]
- Liarakos, A.L.; Tentolouris, A.; Kokkinos, A.; Eleftheriadou, I.; Tentolouris, N. Impact of Glucagon-like Peptide 1 Receptor Agonists on Peripheral Arterial Disease in People with Diabetes Mellitus: A Narrative Review. J. Diabetes Complicat. 2023, 37, 108390. [Google Scholar] [CrossRef]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; De Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef]
- Scheen, A.J. Lower Limb Amputations: Protection with GLP-1 Receptor Agonists Rather than Increased Risk with SGLT2 Inhibitors? Diabetes Metab. 2022, 48, 101325. [Google Scholar] [CrossRef]
- Svanström, H.; Ueda, P.; Melbye, M.; Eliasson, B.; Svensson, A.-M.; Franzén, S.; Gudbjörnsdottir, S.; Hveem, K.; Jonasson, C.; Pasternak, B. Use of Liraglutide and Risk of Major Cardiovascular Events: A Register-Based Cohort Study in Denmark and Sweden. Lancet Diabetes Endocrinol. 2019, 7, 106–114. [Google Scholar] [CrossRef]
- Trevisan, M.; Fu, E.L.; Szummer, K.; Norhammar, A.; Lundman, P.; Wanner, C.; Sjölander, A.; Jernberg, T.; Carrero, J.J. Glucagon-like Peptide-1 Receptor Agonists and the Risk of Cardiovascular Events in Diabetes Patients Surviving an Acute Myocardial Infarction. Eur. Heart J. Cardiovasc. Pharmacother. 2021, 7, 104–111. [Google Scholar] [CrossRef]
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; et al. 2019 ESC Guidelines on Diabetes, Pre-Diabetes, and Cardiovascular Diseases Developed in Collaboration with the EASD. Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef]
- Buse, J.B.; Wexler, D.J.; Tsapas, A.; Rossing, P.; Mingrone, G.; Mathieu, C.; D’Alessio, D.A.; Davies, M.J. 2019 Update to: Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2020, 43, 487–493. [Google Scholar] [CrossRef]
- Butkowski, E.G.; Jelinek, H.F. Hyperglycaemia, Oxidative Stress and Inflammatory Markers. Redox Rep. 2017, 22, 257–264. [Google Scholar] [CrossRef]
- Patel, A.; MacMahon, S.; Chalmers, J.; Neal, B.; Billot, L.; Woodward, M.; Marre, M.; Cooper, M.; Glasziou, P.; Grobbee, D.; et al. Intensive Blood Glucose Control and Vascular Outcomes in Patients with Type 2 Diabetes. N. Engl. J. Med. 2008, 358, 2560–2572. [Google Scholar] [CrossRef] [PubMed]
- Buse, J.B.; Bain, S.C.; Mann, J.F.E.; Nauck, M.A.; Nissen, S.E.; Pocock, S.; Poulter, N.R.; Pratley, R.E.; Linder, M.; Monk Fries, T.; et al. Cardiovascular Risk Reduction with Liraglutide: An Exploratory Mediation Analysis of the LEADER Trial. Diabetes Care 2020, 43, 1546–1552. [Google Scholar] [CrossRef]
- Colhoun, H.M.; Hasenour, C.; Riddle, M.C.; Branch, K.; Konig, M.; Atisso, C.; Lakshmanan, M.; Mody, R.; Gerstein, H.C. Exploring Potential Mediators of the Cardiovascular Benefit of Dulaglutide in REWIND. Diabetes 2020, 69, 194. [Google Scholar] [CrossRef]
- Giugliano, D.; Bellastella, G.; Longo, M.; Scappaticcio, L.; Maiorino, M.I.; Chiodini, P.; Esposito, K. Relationship between Improvement of Glycaemic Control and Reduction of Major Cardiovascular Events in 15 Cardiovascular Outcome Trials: A Meta-analysis with Meta-regression. Diabetes Obes. Metab. 2020, 22, 1397–1405. [Google Scholar] [CrossRef]
- Wing, R.R.; Lang, W.; Wadden, T.A.; Safford, M.; Knowler, W.C.; Bertoni, A.G.; Hill, J.O.; Brancati, F.L.; Peters, A.; Wagenknecht, L.; et al. Benefits of Modest Weight Loss in Improving Cardiovascular Risk Factors in Overweight and Obese Individuals with Type 2 Diabetes. Diabetes Care 2011, 34, 1481–1486. [Google Scholar] [CrossRef]
- Fuster, J.J.; Ouchi, N.; Gokce, N.; Walsh, K. Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease. Circ. Res. 2016, 118, 1786–1807. [Google Scholar] [CrossRef]
- Lincoff, A.M.; Brown-Frandsen, K.; Colhoun, H.M.; Deanfield, J.; Emerson, S.S.; Esbjerg, S.; Hardt-Lindberg, S.; Hovingh, G.K.; Kahn, S.E.; Kushner, R.F.; et al. Semaglutide and Cardiovascular Outcomes in Obesity without Diabetes. N. Engl. J. Med. 2023, 389, 2221–2232. [Google Scholar] [CrossRef]
- Kwan, A.C.; May, H.T.; Cater, G.; Sibley, C.T.; Rosen, B.D.; Lima, J.A.C.; Rodriguez, K.; Lappe, D.L.; Muhlestein, J.B.; Anderson, J.L.; et al. Coronary Artery Plaque Volume and Obesity in Patients with Diabetes: The Factor-64 Study. Radiology 2014, 272, 690–699. [Google Scholar] [CrossRef]
- Khera, R.; Murad, M.H.; Chandar, A.K.; Dulai, P.S.; Wang, Z.; Prokop, L.J.; Loomba, R.; Camilleri, M.; Singh, S. Association of Pharmacological Treatments for Obesity with Weight Loss and Adverse Events: A Systematic Review and Meta-Analysis. JAMA 2016, 315, 2424–2434. [Google Scholar] [CrossRef] [PubMed]
- Wilding, J.P.H.; Batterham, R.L.; Calanna, S.; Davies, M.; Van Gaal, L.F.; Lingvay, I.; McGowan, B.M.; Rosenstock, J.; Tran, M.T.D.; Wadden, T.A.; et al. Once-Weekly Semaglutide in Adults with Overweight or Obesity. N. Engl. J. Med. 2021, 384, 989–1002. [Google Scholar] [CrossRef] [PubMed]
- Ghusn, W.; De la Rosa, A.; Sacoto, D.; Cifuentes, L.; Campos, A.; Feris, F.; Hurtado, M.D.; Acosta, A. Weight Loss Outcomes Associated with Semaglutide Treatment for Patients with Overweight or Obesity. JAMA Netw. Open 2022, 5, e2231982. [Google Scholar] [CrossRef] [PubMed]
- The Look AHEAD Research Group. Cardiovascular Effects of Intensive Lifestyle Intervention in Type 2 Diabetes. N. Engl. J. Med. 2013, 369, 145–154. [Google Scholar] [CrossRef] [PubMed]
- The Look AHEAD Research Group. Association of the Magnitude of Weight Loss and Changes in Physical Fitness with Long-Term Cardiovascular Disease Outcomes in Overweight or Obese People with Type 2 Diabetes: A Post-Hoc Analysis of the Look AHEAD Randomised Clinical Trial. Lancet Diabetes Endocrinol. 2016, 4, 913–921. [Google Scholar] [CrossRef]
- Sjöström, C.D.; Lystig, T.; Lindroos, A.K. Impact of Weight Change, Secular Trends and Ageing on Cardiovascular Risk Factors: 10-Year Experiences from the SOS Study. Int. J. Obes. 2011, 35, 1413–1420. [Google Scholar] [CrossRef] [PubMed]
- Sarma, S.; Palcu, P. Weight Loss between Glucagon-like Peptide-1 Receptor Agonists and Bariatric Surgery in Adults with Obesity: A Systematic Review and Meta-analysis. Obesity 2022, 30, 2111–2121. [Google Scholar] [CrossRef] [PubMed]
- Stenberg, E.; Näslund, E. Major Adverse Cardiovascular Events among Patients with Type-2 Diabetes, a Nationwide Cohort Study Comparing Primary Metabolic and Bariatric Surgery to GLP-1 Receptor Agonist Treatment. Int. J. Obes. 2023, 47, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Dicker, D.; Sagy, Y.W.; Ramot, N.; Battat, E.; Greenland, P.; Arbel, R.; Lavie, G.; Reges, O. Bariatric Metabolic Surgery vs Glucagon-Like Peptide-1 Receptor Agonists and Mortality. JAMA Netw. Open 2024, 7, e2415392. [Google Scholar] [CrossRef]
- Ryan, D.H.; Lingvay, I.; Deanfield, J.; Kahn, S.E.; Barros, E.; Burguera, B.; Colhoun, H.M.; Cercato, C.; Dicker, D.; Horn, D.B.; et al. Long-Term Weight Loss Effects of Semaglutide in Obesity without Diabetes in the SELECT Trial. Nat. Med. 2024, 30, 2049–2057. [Google Scholar] [CrossRef] [PubMed]
- Katout, M.; Zhu, H.; Rutsky, J.; Shah, P.; Brook, R.D.; Zhong, J.; Rajagopalan, S. Effect of GLP-1 Mimetics on Blood Pressure and Relationship to Weight Loss and Glycemia Lowering: Results of a Systematic Meta-Analysis and Meta-Regression. Am. J. Hypertens. 2014, 27, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Anholm, C.; Kumarathurai, P.; Pedersen, L.R.; Samkani, A.; Walzem, R.L.; Nielsen, O.W.; Kristiansen, O.P.; Fenger, M.; Madsbad, S.; Sajadieh, A.; et al. Liraglutide in Combination with Metformin May Improve the Atherogenic Lipid Profile and Decrease C-Reactive Protein Level in Statin Treated Obese Patients with Coronary Artery Disease and Newly Diagnosed Type 2 Diabetes: A Randomized Trial. Atherosclerosis 2019, 288, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Matikainen, N.; Söderlund, S.; Björnson, E.; Pietiläinen, K.; Hakkarainen, A.; Lundbom, N.; Taskinen, M.-R.; Borén, J. Liraglutide Treatment Improves Postprandial Lipid Metabolism and Cardiometabolic Risk Factors in Humans with Adequately Controlled Type 2 Diabetes: A Single-Centre Randomized Controlled Study. Diabetes Obes. Metab. 2019, 21, 84–94. [Google Scholar] [CrossRef]
- Zobel, E.H.; Wretlind, A.; Ripa, R.S.; Rotbain Curovic, V.; von Scholten, B.J.; Suvitaival, T.; Hansen, T.W.; Kjær, A.; Legido-Quigley, C.; Rossing, P. Ceramides and Phospholipids Are Downregulated with Liraglutide Treatment: Results from the LiraFlame Randomized Controlled Trial. BMJ Open Diabetes Res. Care 2021, 9, e002395. [Google Scholar] [CrossRef]
- Sun, F.; Wu, S.; Wang, J.; Guo, S.; Chai, S.; Yang, Z.; Li, L.; Zhang, Y.; Ji, L.; Zhan, S. Effect of Glucagon-like Peptide-1 Receptor Agonists on Lipid Profiles Among Type 2 Diabetes: A Systematic Review and Network Meta-Analysis. Clin. Ther. 2015, 37, 225–241. [Google Scholar] [CrossRef]
- Rakipovski, G.; Rolin, B.; Nøhr, J.; Klewe, I.; Frederiksen, K.S.; Augustin, R.; Hecksher-Sørensen, J.; Ingvorsen, C.; Polex-Wolf, J.; Knudsen, L.B. The GLP-1 Analogs Liraglutide and Semaglutide Reduce Atherosclerosis in ApoE−/− and LDLr−/− Mice by a Mechanism That Includes Inflammatory Pathways. JACC Basic Transl. Sci. 2018, 3, 844–857. [Google Scholar] [CrossRef] [PubMed]
- Sanada, J.; Obata, A.; Obata, Y.; Fushimi, Y.; Shimoda, M.; Kohara, K.; Nakanishi, S.; Mune, T.; Kaku, K.; Kaneto, H. Dulaglutide Exerts Beneficial Anti Atherosclerotic Effects in ApoE Knockout Mice with Diabetes: The Earlier, the Better. Sci. Rep. 2021, 11, 1425. [Google Scholar] [CrossRef]
- Sudo, M.; Li, Y.; Hiro, T.; Takayama, T.; Mitsumata, M.; Shiomi, M.; Sugitani, M.; Matsumoto, T.; Hao, H.; Hirayama, A. Inhibition of Plaque Progression and Promotion of Plaque Stability by Glucagon-like Peptide-1 Receptor Agonist: Serial in Vivo Findings from iMap-IVUS in Watanabe Heritable Hyperlipidemic Rabbits. Atherosclerosis 2017, 265, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Ying, Y.-L.; Chen, Y.-C.; Jandeleit-Dahm, K.; Peter, K. GLP-1 Receptor Agonists: An Example of the Challenge for Animal Models to Predict Plaque Instability/Rupture and Cardiovascular Outcomes. Atherosclerosis 2017, 265, 250–252. [Google Scholar] [CrossRef]
- Piotrowski, K.; Becker, M.; Zugwurst, J.; Biller-Friedmann, I.; Spoettl, G.; Greif, M.; Leber, A.W.; Becker, A.; Laubender, R.P.; Lebherz, C.; et al. Circulating Concentrations of GLP-1 Are Associated with Coronary Atherosclerosis in Humans. Cardiovasc. Diabetol. 2013, 12, 117. [Google Scholar] [CrossRef]
- Hamal, S.; Cherukuri, L.; Shaikh, K.; Kinninger, A.; Doshi, J.; Birudaraju, D.; Budoff, M.J. Effect of Semaglutide on Coronary Atherosclerosis Progression in Patients with Type II Diabetes: Rationale and Design of the Semaglutide Treatment on Coronary Progression Trial. Coron. Artery Dis. 2020, 31, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Janić, M.; Rizzo, M.; Cosentino, F.; Pantea Stoian, A.; Lunder, M.; Šabović, M.; Janež, A. Effect of Oral Semaglutide on Cardiovascular Parameters and Their Mechanisms in Patients with Type 2 Diabetes: Rationale and Design of the Semaglutide Anti-Atherosclerotic Mechanisms of Action Study (SAMAS). Diabetes Ther. 2022, 13, 795–810. [Google Scholar] [CrossRef] [PubMed]
- Ban, K.; Noyan-Ashraf, M.H.; Hoefer, J.; Bolz, S.-S.; Drucker, D.J.; Husain, M. Cardioprotective and Vasodilatory Actions of Glucagon-Like Peptide 1 Receptor Are Mediated Through Both Glucagon-Like Peptide 1 Receptor–Dependent and –Independent Pathways. Circulation 2008, 117, 2340–2350. [Google Scholar] [CrossRef] [PubMed]
- Aetesam-ur-Rahman, M.; Giblett, J.P.; Khialani, B.; Kyranis, S.; Clarke, S.J.; Zhao, T.X.; Braganza, D.M.; Clarke, S.C.; West, N.E.J.; Bennett, M.R.; et al. GLP-1 Vasodilatation in Humans with Coronary Artery Disease Is Not Adenosine Mediated. BMC Cardiovasc. Disord. 2021, 21, 223. [Google Scholar] [CrossRef] [PubMed]
- Sukumaran, V.; Tsuchimochi, H.; Sonobe, T.; Waddingham, M.T.; Shirai, M.; Pearson, J.T. Liraglutide Treatment Improves the Coronary Microcirculation in Insulin Resistant Zucker Obese Rats on a High Salt Diet. Cardiovasc. Diabetol. 2020, 19, 24. [Google Scholar] [CrossRef] [PubMed]
- Jojima, T.; Uchida, K.; Akimoto, K.; Tomotsune, T.; Yanagi, K.; Iijima, T.; Suzuki, K.; Kasai, K.; Aso, Y. Liraglutide, a GLP-1 Receptor Agonist, Inhibits Vascular Smooth Muscle Cell Proliferation by Enhancing AMP-Activated Protein Kinase and Cell Cycle Regulation, and Delays Atherosclerosis in ApoE Deficient Mice. Atherosclerosis 2017, 261, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, M.; Zhou, T.; Shen, Q.; Qin, X. Exendin-4 Promotes the Vascular Smooth Muscle Cell Re-Differentiation through AMPK/SIRT1/FOXO3a Signaling Pathways. Atherosclerosis 2018, 276, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Koska, J.; Sands, M.; Burciu, C.; D’Souza, K.M.; Raravikar, K.; Liu, J.; Truran, S.; Franco, D.A.; Schwartz, E.A.; Schwenke, D.C.; et al. Exenatide Protects Against Glucose- and Lipid-Induced Endothelial Dysfunction: Evidence for Direct Vasodilation Effect of GLP-1 Receptor Agonists in Humans. Diabetes 2015, 64, 2624–2635. [Google Scholar] [CrossRef]
- Li, P.; Tang, Z.; Wang, L.; Feng, B. Glucagon-like Peptide-1 Analogue Liraglutide Ameliorates Atherogenesis via Inhibiting Advanced Glycation End Product-Induced Receptor for Advanced Glycosylation End Product Expression in Apolipoprotein-E Deficient Mice. Mol. Med. Rep. 2017, 16, 3421–3426. [Google Scholar] [CrossRef]
- Ray, K.K.; Ference, B.A.; Séverin, T.; Blom, D.; Nicholls, S.J.; Shiba, M.H.; Almahmeed, W.; Alonso, R.; Daccord, M.; Ezhov, M.; et al. World Heart Federation Cholesterol Roadmap 2022. Glob. Heart 2022, 17, 75. [Google Scholar] [CrossRef]
- El Bekay, R.; Coín-Aragüez, L.; Fernández-García, D.; Oliva-Olivera, W.; Bernal-López, R.; Clemente-Postigo, M.; Delgado-Lista, J.; Diaz-Ruiz, A.; Guzman-Ruiz, R.; Vázquez-Martínez, R.; et al. Effects of Glucagon-like Peptide-1 on the Differentiation and Metabolism of Human Adipocytes. Br. J. Pharmacol. 2016, 173, 1820–1834. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.-W.; Yang, J.-Y.; Ma, X.; Chen, Z.-P.; Hu, Y.-R.; Zhao, J.-Y.; Li, S.-F.; Qiu, Y.-R.; Lu, J.-B.; Wang, Y.-C.; et al. A lincRNA-DYNLRB2-2/GPR119/GLP-1R/ABCA1-Dependent Signal Transduction Pathway Is Essential for the Regulation of Cholesterol Homeostasis. J. Lipid Res. 2014, 55, 681–697. [Google Scholar] [CrossRef] [PubMed]
- Tashiro, Y.; Sato, K.; Watanabe, T.; Nohtomi, K.; Terasaki, M.; Nagashima, M.; Hirano, T. A Glucagon-like Peptide-1 Analog Liraglutide Suppresses Macrophage Foam Cell Formation and Atherosclerosis. Peptides 2014, 54, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, M.; Marfella, R.; Esposito, A.; Rizzo, M.R.; Angellotti, E.; Mauro, C.; Siniscalchi, M.; Chirico, F.; Caiazzo, P.; Furbatto, F.; et al. Incretin Treatment and Atherosclerotic Plaque Stability: Role of Adiponectin/APPL1 Signaling Pathway. J. Diabetes Complicat. 2017, 31, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.; Joharapurkar, A.; Kshirsagar, S.; Sutariya, B.; Patel, M.; Pandey, D.; Patel, H.; Ranvir, R.; Kadam, S.; Patel, D.; et al. Coagonist of GLP-1 and Glucagon Decreases Liver Inflammation and Atherosclerosis in Dyslipidemic Condition. Chem. Biol. Interact. 2018, 282, 13–21. [Google Scholar] [CrossRef]
- Yabut, J.M.; Drucker, D.J. Glucagon-like Peptide-1 Receptor-Based Therapeutics for Metabolic Liver Disease. Endocr. Rev. 2023, 44, 14–32. [Google Scholar] [CrossRef]
- Nguyen, M.; Fernando, S.; Schwarz, N.; Tan, J.; Bursill, C.; Psaltis, P. Inflammation as a Therapeutic Target in Atherosclerosis. J. Clin. Med. 2019, 8, 1109. [Google Scholar] [CrossRef]
- Scisciola, L.; Rizzo, M.R.; Cataldo, V.; Fontanella, R.A.; Balestrieri, M.L.; D’Onofrio, N.; Marfella, R.; Paolisso, G.; Barbieri, M. Incretin Drugs Effect on Epigenetic Machinery: New Potential Therapeutic Implications in Preventing Vascular Diabetic Complications. FASEB J. 2020, 34, 16489–16503. [Google Scholar] [CrossRef]
- Krasner, N.M.; Ido, Y.; Ruderman, N.B.; Cacicedo, J.M. Glucagon-Like Peptide-1 (GLP-1) Analog Liraglutide Inhibits Endothelial Cell Inflammation through a Calcium and AMPK Dependent Mechanism. PLoS ONE 2014, 9, e97554. [Google Scholar] [CrossRef]
- Yue, W.; Li, Y.; Ou, D.; Yang, Q. The GLP-1 Receptor Agonist Liraglutide Protects against Oxidized LDL-Induced Endothelial Inflammation and Dysfunction via KLF2. IUBMB Life 2019, 71, 1347–1354. [Google Scholar] [CrossRef]
- Wei, H.; Bu, R.; Yang, Q.; Jia, J.; Li, T.; Wang, Q.; Chen, Y. Exendin-4 Protects against Hyperglycemia-Induced Cardiomyocyte Pyroptosis via the AMPK-TXNIP Pathway. J. Diabetes Res. 2019, 2019, 8905917. [Google Scholar] [CrossRef] [PubMed]
- Vinué, Á.; Navarro, J.; Herrero-Cervera, A.; García-Cubas, M.; Andrés-Blasco, I.; Martínez-Hervás, S.; Real, J.T.; Ascaso, J.F.; González-Navarro, H. The GLP-1 Analogue Lixisenatide Decreases Atherosclerosis in Insulin-Resistant Mice by Modulating Macrophage Phenotype. Diabetologia 2017, 60, 1801–1812. [Google Scholar] [CrossRef] [PubMed]
- Bruen, R.; Curley, S.; Kajani, S.; Crean, D.; O’Reilly, M.E.; Lucitt, M.B.; Godson, C.G.; McGillicuddy, F.C.; Belton, O. Liraglutide Dictates Macrophage Phenotype in Apolipoprotein E Null Mice during Early Atherosclerosis. Cardiovasc. Diabetol. 2017, 16, 143. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ying, F.; Tian, X.; Lei, Z.; Li, X.; Lo, C.-Y.; Li, J.; Jiang, L.; Yao, X. TRPM2 Promotes Atherosclerotic Progression in a Mouse Model of Atherosclerosis. Cells 2022, 11, 1423. [Google Scholar] [CrossRef] [PubMed]
- Zong, P.; Feng, J.; Yue, Z.; Yu, A.S.; Vacher, J.; Jellison, E.R.; Miller, B.; Mori, Y.; Yue, L. TRPM2 Deficiency in Mice Protects against Atherosclerosis by Inhibiting TRPM2–CD36 Inflammatory Axis in Macrophages. Nat. Cardiovasc. Res. 2022, 1, 344–360. [Google Scholar] [CrossRef] [PubMed]
- Zong, P.; Feng, J.; Yue, Z.; Li, Y.; Wu, G.; Sun, B.; He, Y.; Miller, B.; Yu, A.S.; Su, Z.; et al. Functional Coupling of TRPM2 and Extrasynaptic NMDARs Exacerbates Excitotoxicity in Ischemic Brain Injury. Neuron 2022, 110, 1944–1958. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.K.; Binderup, T.; Grandjean, C.E.; Bentsen, S.; Ripa, R.S.; Kjaer, A. Semaglutide Reduces Vascular Inflammation Investigated by PET in a Rabbit Model of Advanced Atherosclerosis. Atherosclerosis 2022, 352, 88–95. [Google Scholar] [CrossRef]
- Ripa, R.S.; Zobel, E.H.; von Scholten, B.J.; Jensen, J.K.; Binderup, T.; Diaz, L.J.; Curovic, V.R.; Hansen, T.W.; Rossing, P.; Kjaer, A. Effect of Liraglutide on Arterial Inflammation Assessed as [18F]FDG Uptake in Patients With Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Trial. Circ. Cardiovasc. Imaging 2021, 14, e012174. [Google Scholar] [CrossRef]
- Ni, L.; Yang, L.; Lin, Y. Recent Progress of Endoplasmic Reticulum Stress in the Mechanism of Atherosclerosis. Front. Cardiovasc. Med. 2024, 11, 1413441. [Google Scholar] [CrossRef]
- Bretón-Romero, R.; Weisbrod, R.M.; Feng, B.; Holbrook, M.; Ko, D.; Stathos, M.M.; Zhang, J.; Fetterman, J.L.; Hamburg, N.M. Liraglutide Treatment Reduces Endothelial Endoplasmic Reticulum Stress and Insulin Resistance in Patients with Diabetes Mellitus. J. Am. Heart Assoc. 2018, 7, e009379. [Google Scholar] [CrossRef] [PubMed]
- Kapadia, P.; Bikkina, P.; Landicho, M.A.; Parekh, S.; Haas, M.J.; Mooradian, A.D. Effect of Anti-Hyperglycemic Drugs on Endoplasmic Reticulum (ER) Stress in Human Coronary Artery Endothelial Cells. Eur. J. Pharmacol. 2021, 907, 174249. [Google Scholar] [CrossRef]
- Erdogdu, Ö.; Eriksson, L.; Xu, H.; Sjöholm, Å.; Zhang, Q.; Nyström, T. Exendin-4 Protects Endothelial Cells from Lipoapoptosis by PKA, PI3K, eNOS, P38 MAPK, and JNK Pathways. J. Mol. Endocrinol. 2013, 50, 229–241. [Google Scholar] [CrossRef]
- Balestrieri, M.L.; Rizzo, M.R.; Barbieri, M.; Paolisso, P.; D’Onofrio, N.; Giovane, A.; Siniscalchi, M.; Minicucci, F.; Sardu, C.; D’Andrea, D.; et al. Sirtuin 6 Expression and Inflammatory Activity in Diabetic Atherosclerotic Plaques: Effects of Incretin Treatment. Diabetes 2015, 64, 1395–1406. [Google Scholar] [CrossRef]
- Zhao, S.; Kusminski, C.M.; Scherer, P.E. Adiponectin, Leptin and Cardiovascular Disorders. Circ. Res. 2021, 128, 136–149. [Google Scholar] [CrossRef]
- Wang, A.; Li, T.; An, P.; Yan, W.; Zheng, H.; Wang, B.; Mu, Y. Exendin-4 Upregulates Adiponectin Level in Adipocytes via Sirt1/Foxo-1 Signaling Pathway. PLoS ONE 2017, 12, e0169469. [Google Scholar] [CrossRef]
- Simental-Mendía, L.E.; Sánchez-García, A.; Linden-Torres, E.; Simental-Mendía, M. Impact of Glucagon-like Peptide-1 Receptor Agonists on Adiponectin Concentrations: A Meta-analysis of Randomized Controlled Trials. Br. J. Clin. Pharmacol. 2021, 87, 4140–4149. [Google Scholar] [CrossRef]
- McAninch, E.A.; Fonseca, T.L.; Poggioli, R.; Panos, A.L.; Salerno, T.A.; Deng, Y.; Li, Y.; Bianco, A.C.; Iacobellis, G. Epicardial Adipose Tissue Has a Unique Transcriptome Modified in Severe Coronary Artery Disease: Epicardial Fat Transcriptome in CAD. Obesity 2015, 23, 1267–1278. [Google Scholar] [CrossRef]
- Iacobellis, G.; Camarena, V.; Sant, D.; Wang, G. Human Epicardial Fat Expresses Glucagon-Like Peptide 1 and 2 Receptors Genes. Horm. Metab. Res. 2017, 49, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Iacobellis, G.; Villasante Fricke, A.C. Effects of Semaglutide Versus Dulaglutide on Epicardial Fat Thickness in Subjects with Type 2 Diabetes and Obesity. J. Endocr. Soc. 2020, 4, bvz042. [Google Scholar] [CrossRef] [PubMed]
- Berg, G.; Barchuk, M.; Lobo, M.; Nogueira, J.P. Effect of Glucagon-like Peptide-1 (GLP-1) Analogues on Epicardial Adipose Tissue: A Meta-Analysis. Diabetes Metab. Syndr. 2022, 16, 102562. [Google Scholar] [CrossRef] [PubMed]
- McKenney, M.L.; Schultz, K.A.; Boyd, J.H.; Byrd, J.P.; Alloosh, M.; Teague, S.D.; Arce-Esquivel, A.A.; Fain, J.N.; Laughlin, M.H.; Sacks, H.S.; et al. Epicardial Adipose Excision Slows the Progression of Porcine Coronary Atherosclerosis. J. Cardiothorac. Surg. 2014, 9, 2. [Google Scholar] [CrossRef]
- Gaba, P.; Gersh, B.J.; Muller, J.; Narula, J.; Stone, G.W. Evolving Concepts of the Vulnerable Atherosclerotic Plaque and the Vulnerable Patient: Implications for Patient Care and Future Research. Nat. Rev. Cardiol. 2023, 20, 181–196. [Google Scholar] [CrossRef]
- Yang, G.; Lei, Y.; Inoue, A.; Piao, L.; Hu, L.; Jiang, H.; Sasaki, T.; Wu, H.; Xu, W.; Yu, C.; et al. Exenatide Mitigated Diet-Induced Vascular Aging and Atherosclerotic Plaque Growth in ApoE-Deficient Mice under Chronic Stress. Atherosclerosis 2017, 264, 1–10. [Google Scholar] [CrossRef]
- Garczorz, W.; Gallego-Colon, E.; Kosowska, A.; Kłych-Ratuszny, A.; Woźniak, M.; Marcol, W.; Niesner, K.J.; Francuz, T. Exenatide Exhibits Anti-Inflammatory Properties and Modulates Endothelial Response to Tumor Necrosis Factor α-Mediated Activation. Cardiovasc. Ther. 2018, 36, e12317. [Google Scholar] [CrossRef]
- Guo, L.; Akahori, H.; Harari, E.; Smith, S.L.; Polavarapu, R.; Karmali, V.; Otsuka, F.; Gannon, R.L.; Braumann, R.E.; Dickinson, M.H.; et al. CD163+ Macrophages Promote Angiogenesis and Vascular Permeability Accompanied by Inflammation in Atherosclerosis. J. Clin. Investig. 2018, 128, 1106–1124. [Google Scholar] [CrossRef]
- Cameron-Vendrig, A.; Reheman, A.; Siraj, M.A.; Xu, X.R.; Wang, Y.; Lei, X.; Afroze, T.; Shikatani, E.; El-Mounayri, O.; Noyan, H.; et al. Glucagon-Like Peptide 1 Receptor Activation Attenuates Platelet Aggregation and Thrombosis. Diabetes 2016, 65, 1714–1723. [Google Scholar] [CrossRef]
- Cahill, K.N.; Amin, T.; Boutaud, O.; Printz, R.; Newcomb, D.C.; Foer, D.; Hodson, D.J.; Broichhagen, J.; Beckman, J.A.; Yu, C.; et al. Glucagon-Like Peptide-1 Receptor Regulates Thromboxane-Induced Human Platelet Activation. JACC Basic. Transl. Sci. 2022, 7, 713–715. [Google Scholar] [CrossRef]
- Barale, C.; Buracco, S.; Cavalot, F.; Frascaroli, C.; Guerrasio, A.; Russo, I. Glucagon-like Peptide 1-Related Peptides Increase Nitric Oxide Effects to Reduce Platelet Activation. Thromb. Haemost. 2017, 117, 1115–1128. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, R.; Jia, Y.; Chen, M.; Shuai, Z. Effects of Exenatide on Coagulation and Platelet Aggregation in Patients with Type 2 Diabetes. Drug Des. Dev. Ther. 2021, 15, 3027–3040. [Google Scholar] [CrossRef]
- Fadini, G.P.; Frison, V.; Simioni, N.; Lapolla, A.; Gatti, A.; Bossi, A.C.; Del Buono, A.; Fornengo, P.; Gottardo, L.; Laudato, M.; et al. Changes in the Prescription of Glucose-Lowering Medications in Patients with Type 2 Diabetes Mellitus After a Cardiovascular Event: A Call to Action From the DATAFILE Study. J. Am. Heart Assoc. 2019, 8, e012244. [Google Scholar] [CrossRef]
- Volaco, A.; Cavalcanti, A.M.; Filho, R.P.; Precoma, D.B. Socioeconomic Status: The Missing Link Between Obesity and Diabetes Mellitus? Curr. Diabetes Rev. 2018, 14, 321–326. [Google Scholar] [CrossRef]
- Wilding, J.P.H.; Batterham, R.L.; Davies, M.; Van Gaal, L.F.; Kandler, K.; Konakli, K.; Lingvay, I.; McGowan, B.M.; Oral, T.K.; Rosenstock, J.; et al. Weight Regain and Cardiometabolic Effects after Withdrawal of Semaglutide: The STEP 1 Trial Extension. Diabetes Obes. Metab. 2022, 24, 1553–1564. [Google Scholar] [CrossRef]
- Castellana, M.; Cignarelli, A.; Brescia, F.; Perrini, S.; Natalicchio, A.; Laviola, L.; Giorgino, F. Efficacy and Safety of GLP-1 Receptor Agonists as Add-on to SGLT2 Inhibitors in Type 2 Diabetes Mellitus: A Meta-Analysis. Sci. Rep. 2019, 9, 19351. [Google Scholar] [CrossRef]
- Chodorge, M.; Celeste, A.J.; Grimsby, J.; Konkar, A.; Davidsson, P.; Fairman, D.; Jenkinson, L.; Naylor, J.; White, N.; Seaman, J.C.; et al. Engineering of a GLP-1 Analogue Peptide/Anti-PCSK9 Antibody Fusion for Type 2 Diabetes Treatment. Sci. Rep. 2018, 8, 17545. [Google Scholar] [CrossRef]
- Perkovic, V.; Tuttle, K.R.; Rossing, P.; Mahaffey, K.W.; Mann, J.F.E.; Bakris, G.; Baeres, F.M.M.; Idorn, T.; Bosch-Traberg, H.; Lausvig, N.L.; et al. Effects of Semaglutide on Chronic Kidney Disease in Patients with Type 2 Diabetes. N. Engl. J. Med. 2024, 391, 109–121. [Google Scholar] [CrossRef]
- Frías, J.P.; Davies, M.J.; Rosenstock, J.; Pérez Manghi, F.C.; Fernández Landó, L.; Bergman, B.K.; Liu, B.; Cui, X.; Brown, K. Tirzepatide versus Semaglutide Once Weekly in Patients with Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 503–515. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Aronne, L.J.; Ahmad, N.N.; Wharton, S.; Connery, L.; Alves, B.; Kiyosue, A.; Zhang, S.; Liu, B.; Bunck, M.C.; et al. Tirzepatide Once Weekly for the Treatment of Obesity. N. Engl. J. Med. 2022, 387, 205–216. [Google Scholar] [CrossRef]
- Sattar, N.; McGuire, D.K.; Pavo, I.; Weerakkody, G.J.; Nishiyama, H.; Wiese, R.J.; Zoungas, S. Tirzepatide Cardiovascular Event Risk Assessment: A Pre-Specified Meta-Analysis. Nat. Med. 2022, 28, 591–598. [Google Scholar] [CrossRef]
- Rosenstock, J.; Frias, J.; Jastreboff, A.M.; Du, Y.; Lou, J.; Gurbuz, S.; Thomas, M.K.; Hartman, M.L.; Haupt, A.; Milicevic, Z.; et al. Retatrutide, a GIP, GLP-1 and Glucagon Receptor Agonist, for People with Type 2 Diabetes: A Randomised, Double-Blind, Placebo and Active-Controlled, Parallel-Group, Phase 2 Trial Conducted in the USA. Lancet 2023, 402, 529–544. [Google Scholar] [CrossRef]
- Wharton, S.; Blevins, T.; Connery, L.; Rosenstock, J.; Raha, S.; Liu, R.; Ma, X.; Mather, K.J.; Haupt, A.; Robins, D.; et al. Daily Oral GLP-1 Receptor Agonist Orforglipron for Adults with Obesity. N. Engl. J. Med. 2023, 389, 877–888. [Google Scholar] [CrossRef]
- Frias, J.P.; Hsia, S.; Eyde, S.; Liu, R.; Ma, X.; Konig, M.; Kazda, C.; Mather, K.J.; Haupt, A.; Pratt, E.; et al. Efficacy and Safety of Oral Orforglipron in Patients with Type 2 Diabetes: A Multicentre, Randomised, Dose-Response, Phase 2 Study. Lancet 2023, 402, 472–483. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, E.V.P.; Matute, E.M.; Sosa Guzmán, D.M.; Khasawneh, F.T. The Polypill: A New Alternative in the Prevention and Treatment of Cardiovascular Disease. J. Clin. Med. 2024, 13, 3179. [Google Scholar] [CrossRef] [PubMed]
- Castellano, J.M.; Pocock, S.J.; Bhatt, D.L.; Quesada, A.J.; Owen, R.; Fernandez-Ortiz, A.; Sanchez, P.L.; Marin Ortuño, F.; Vazquez Rodriguez, J.M.; Domingo-Fernández, A.; et al. Polypill Strategy in Secondary Cardiovascular Prevention. N. Engl. J. Med. 2022, 387, 967–977. [Google Scholar] [CrossRef] [PubMed]
Agent Name | Brand Name | Molecular Structure | Molecular Weight (g/mol) | Administration | Dosing | Half-Life (t1/2) | Tmax |
---|---|---|---|---|---|---|---|
Exenatide | Byetta® | Modelled on exendin-4 from lizard Heloderma suspectum 39 a.a. peptide amide | 4186.6 | S/C twice daily. 1 h before meals, >6 h apart Uptitration recommended | 5 µg 10 µg | 3–4 h | 2 h |
Exenatide Extended-Release | Bydureon Bcise® | Modelled on exendin-4 39 a.a. synthetic peptide, suspension of microspheres in a MCT vehicle | 4186.6 | S/C once weekly Independent of meals | 2 mg | 3–4 h § | 6 w |
Lixisenatide † | Adlyxinc® | Modelled on exendin-4 44 a.a., amidated at the C-terminal a.a. Contains poly-lysine tail | 4858.6 | S/C once daily 1 h before first meal of day Uptitration recommended | 10 µg 20 µg | 2–4 h | 1–2 h |
Liraglutide | Victoza® | Modelled on mammalian GLP-1 Substitution of arginine for lysine at position 34. Attachment of a C-16 fatty acid (palmitic acid) at position 26 | 3751.3 | S/C once daily Independent of meals Uptitration recommended | 0.6 mg 1.2 mg 1.8 mg | 10–15 h | 9–12 h |
Semaglutide (S/C) | Ozempic® | Modelled on mammalian GLP-1 Albumin binding, with a hydrophilic spacer and a C18 fatty di-acid | 4113.6 | S/C once weekly Independent of meals Uptitration recommended | 0.5 mg 1 mg 2 mg | 1 w | 1–3 d |
Semaglutide (Oral) | Rybelsus® | Modelled on mammalian GLP-1 Albumin binding, with a hydrophilic spacer and a C18 fatty di-acid SNAC for enhanced stomach absorption | 4113.6 | Oral once daily >30 min before first meal of day Uptitration recommended | 7 mg 14 mg | 1 w | 1 h |
Dulaglutide | Trulicity® | Modelled on mammalian GLP-1. Fusion of 2 disulfide-linked GLP-1 chains to the Fc region of human IgG4 | 59,669.8 | S/C once weekly Independent of meals | 0.75 mg 1.5 mg | 4 d | 12–72 h |
Albiglutide | Tanzeum® | Modelled on mammalian GLP-1 2 chains of GLP-1 bound to albumin | 72,070.4 | S/C once weekly Independent of meals Uptitration recommended | 30 mg 50 mg | 6–7 d | 3–5 d |
Efpeglenatide †† | FDA approval pending | Exendin-based Conjugation of exendin chain to IgG4 Fc fragment | NA | S/C once weekly Dosing time/regime not yet standardised | 4 mg 6 mg | 135–180 h | 72–144 h |
Trial | ELIXA | LEADER | SUSTAIN-6 | EXSCEL | Harmony Outcomes | REWIND | PIONEER 6 | AMPLITUDE-O |
---|---|---|---|---|---|---|---|---|
Reference | Pfeffer et al. (2015) [53] | Marso et al. (2016) [54] | Marso et al. (2016) [50] | Holman et al. (2017) [55] | Hernandez et al. (2018) [56] | Gerstein et al. (2019) [57] | Husain et al. (2019) [58] | Gerstein et al. (2021) [59] |
Agent Name | Lixisenatide | Liraglutide | Semaglutide (S/C) | Exenatide | Albiglutide | Dulaglutide | Semaglutide (Oral) | Efpeglenatide |
Active Intervention | Daily S/C lixisenatide (10–20 μg) | Daily S/C liraglutide (1.8 mg) | Weekly semaglutide S/C (0.5 or 1.0 mg) | Weekly S/C ER exenatide (2 mg) | Weekly S/C albiglutide (30–50 mg) | Weekly S/C dulaglutide (1.5 mg) | Daily oral semaglutide (14 mg) | Weekly S/C efpeglenatide (4 or 6 mg) |
Participant Number | 6068 | 9340 | 3297 | 14,752 | 9463 | 9901 | 3183 | 4076 |
Patient Cohort Characteristics | T2DM + ACS in last 180 d Age ≥ 30 | T2DM + high CV risk (age ≥ 50 with prior CAD, stroke, PVD, HF, CKD; or age ≥ 60 with CV RFs) | T2DM + high CV risk (prior CAD, stroke, PVD, HF, CKD; or age ≥ 60 with CV RFs) | T2DM +/− prior CVD (70% had prior CVD) | T2DM + age ≥ 40 + prior CVD, stroke, PAD | T2DM + age ≥ 50 + CVD or CV RFs | High CV risk (with established CVD or CKD; or age ≥ 60 with CV RFs) | T2DM + age ≥ 18 + CVD; or T2DM + age ≥ 50 + CV RFs + CKD |
Median Follow-Up | 2.1 years | 3.8 years | 2 years | 3.2 years | 1.5 years | 5.4 years | 1.3 years | 1.8 years |
Changes in HbA1c | −0.27% | −0.40% | −1.1% (0.5 mg) −1.4% (1.0 mg) | −0.7% | −0.63% (8 m) −0.52% (16 m) | −0.61% | −0.7% | −1.24% |
Definition of Primary Endpoint | CV death, MI, stroke or hospitalisation for unstable angina | First occurrence CV death, nonfatal MI or stroke | First occurrence CV death, nonfatal MI or stroke | First occurrence CV death, nonfatal MI or stroke | First occurrence CV death, nonfatal MI or stroke | First occurrence CV death, nonfatal MI or stroke | First occurrence CV death, nonfatal MI or stroke | First occurrence death from CV or undetermined causes, nonfatal MI or stroke |
MACE Result (HR) | 1.02 (95% CI [0.89, 1.17], p = 0.81) | 0.87 (95% CI [0.78, 0.97], p = 0.01) | 0.74 (95% CI [0.58, 0.95], p = 0.02) | 0.91 (95% CI [0.83, 1.00], p = 0.06) | 0.78 (95% CI [0.68–0.90], p = 0.0006) | 0.88 (95% CI [0.79–0.99], p = 0.026) | 0.79 (95% CI [0.57, 1.11], p = 0.001) | 0.73 (95% CI [0.58–0.92], p = 0.007) |
All-Cause Death (HR) | 0.94 (95% CI [0.78–1.13]) | 0.85 (95% CI [0.74–0.97]) | 1.05 (95% CI [0.74–1.50]) | 0.86 (95% CI [0.77–0.97]) | 0.95 (95% CI [0.79–1.16]) | 0.90 (95% CI [0.80–1.01]) | 0.51 (95% CI [0.31–0.84]) | 0.78 (95% CI [0.58–1.06]) |
Cardiovascular Death (HR) | 0.98 (95% CI [0.78–1.22]) | 0.78 (95% CI [0.66–0.93]) | 0.98 (95% CI [0.65–1.48]) | 0.88 (95% CI [0.76–1.02]) | 0.93 (95% CI [0.73–1.19]) | 0.91 (95% CI [0.78–1.06]) | 0.49 (95% CI [0.27–0.92]) | 0.72 (95% CI [0.50–1.03]) |
Nonfatal Myocardial Infarction (HR) | 1.03 (95% CI [0.87–1.22]) * | 0.88 (95% CI [0.75–1.03]) | 0.74 (95% CI [0.51–1.08]) | 0.97 (95% CI [0.85–1.10]) * | 0.75 (95% CI [0.61–0.90]) * | 0.96 (95% CI [0.79–1.16]) | 1.18 (95% CI [0.73–1.90]) | 0.78 (95% CI [0.55–1.10]) |
Nonfatal Stroke (HR) | 1.12 (95% CI [0.79–1.58]) ** | 0.89 (95% CI [0.72–1.11]) | 0.61 (95% CI [0.38–0.99]) | 0.85 (95% CI [0.70–1.03]) ** | 0.86 (95% CI [0.66–1.14]) ** | 0.76 (95% CI [0.61–0.95]) | 0.74 (95% CI [0.35–1.57]) | 0.80 (95% CI [0.48–1.31]) |
Hospitalisation for Heart Failure (HR) | 0.96 (95% CI [0.75–1.23]) | 0.87 (95% CI [0.73–1.05]) | 1.11 (95% CI [0.77–1.61]) | 0.94 (95% CI [0.78–1.13]) | 0.85 (95% CI [0.70–1.04]) *** | 0.93 (95% CI [0.77–1.12]) | 0.86 (95% CI [0.49–1.55]) | 0.61 (95% CI [0.38–0.98]) |
Effect on Heart Rate | +0.4 bpm | +3.0 bpm | +2.1 bpm (0.5 mg) +2.4 bpm (1.0 mg) | +2.51 bpm | +1.3 bpm | +1.87 bpm | +4 bpm | +3.9 bpm |
Effect on Weight from Baseline | −0.6 kg | −2.3 kg | −3.6 kg (0.5 mg) −4.9 kg (1.0 mg) | −1.27kg | −0.66 kg (8 m) −0.83 kg (16 m) | −1.46 kg | −4.2kg | −2.6 kg |
Effect on Systolic Blood Pressure | −0.8 mmHg | −1.2 mmHg | −3.4 mmHg (0.5 mg) −5.4 mmHg (1.0 mg) | −1.57 mmHg | −0.65 mmHg (8 m) −0.67 mmHg (16 m) | −1.70 mmHg | −2.6 mmHg | −1.5 mmHg |
Overall Effect on CVD | No benefit | MACE benefit + reduced all-cause and CV mortality | MACE benefit + reduced stroke | No MACE benefit but reduced all-cause mortality | MACE benefit + reduced MI | MACE benefit + reduced stroke | No MACE benefit but reduced all-cause and CV mortality | MACE benefit + reduced HF hospitalisation |
Trial Name | ClinicalTrials.gov ID | Purpose | Phase | Trial Status | Estimated Completion | Expected Sample Size | Inclusion Criteria | Active Intervention | Primary Outcome Measures |
---|---|---|---|---|---|---|---|---|---|
LEADPACE | NCT04146155 | Liraglutide in diabetic patients with PAD | Phase 4 | Unknown | December 2021 | 200 | Age > 40; T2DM; HbA1c: 7.5–14%; PAD | Liraglutide | Initial and absolute claudication distance and assessment of limb ischaemia |
STARDUST | NCT04881110 | Liraglutide on peripheral arterial perfusion | Phase 4 | Unknown | June 2022 | 50 | T2DM; HbA1c 6.5–8%; PAD | Liraglutide | Transcutaneous oxygen pressure (mmHg) on anterior and posterior tibial arteries |
STOP | NCT03985384 | Semaglutide on coronary plaque progression and composition using serial CTCA | Phase 4 | Completed, awaiting publication | December 2022 | 140 | Age ≥ 40; T2DM; HbA1c ≥ 7.0%; prior ASCVD or ≥1 CV RF | Semaglutide S/C | Change in noncalcified plaque volume on CTCA |
SAMAS | NCT05147896 | Anti-atherosclerotic mechanisms of oral semaglutide | Phase 4 | Active, recruiting | December 2023 | 100 | T2DM; HbA1c ≤ 8.5% BMI ≥ 30 | Semaglutide oral | cIMT; endothelial function; arterial stiffness |
Effects of Liraglutide on Epicardial Fat Pro-Inflammatory Genes in Type 2 Diabetes and Coronary Artery Disease | NCT03260881 | Liraglutide on the inflammatory environment of EAT | Phase 4 | Active, recruiting | December 2023 | 40 | T2DM; HbA1c ≤ 9%; BMI ≥ 27 and/or WC ≥ 102 cm (men) or 88 cm (women); stable CAD requiring CABG | Liraglutide for minimum of 4–12 w prior to CABG | EAT inflammation as measured by mRNA and protein expression of tumour necrosis factor (TNF)-alpha and interleukin (IL)-6 from blood sample |
STRIDE | NCT04560998 | Semaglutide on walking distance in PAD + T2DM | Phase 3 | Active, not recruiting | July 2024 | 800 | T2DM; PAD | Semaglutide S/C | Change in maximum walking distance |
SOUL | NCT03914326 | Oral semaglutide in T2DM with ASCVD and/or CKD | Phase 3 | Active, not recruiting | July 2024 | 9642 | Age ≥ 50; T2DM; HbA1c 6.5–10.0%; CAD, CeVD, PAD or CKD | Semaglutide oral | Time to first CV death, nonfatal MI or stroke |
SURPASS-CVOT | NCT04255433 | Tirzepatide vs. dulaglutide in T2DM and high CV risk | Phase 3 | Active, not recruiting | October 2024 | 13,299 | T2DM; HbA1c 7.0–10.5%; ASCVD; BMI ≥ 25 | Tirzepatide S/C | Time to first CV death, MI or stroke |
SURMOUNT-MMO | NCT05556512 | Tirzepatide vs. placebo in nondiabetic overweight/obesity with high ASCVD risk | Phase 3 | Active, recruiting | October 2027 | 15,000 | Age ≥ 40; BMI ≥ 27; prior ASCVD or high CV risk | Tirzepatide S/C | Time to first all-cause death, nonfatal MI, nonfatal stroke, coronary revascularisation or heart failure events |
TRIUMPH-3 | NCT05882045 | Retatrutide vs. placebo in obesity with prior CVD | Phase 3 | Active, recruiting | February 2026 | 1800 | BMI ≥ 35.0; prior MI, stroke or PAD | Retatrutide S/C | Percent change from baseline in body weight |
ACHIEVE-4 | NCT05803421 | Orforglipron vs. insulin glargine in T2DM and overweight/obesity and high CV risk | Phase 3 | Active, recruiting | December 2025 | 2620 | T2DM; HbA1c 7.0–10.5%; BMI ≥ 25; high CV risk | Orforglipron oral | Time to first CV death, MI, stroke or hospitalisation for unstable angina |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, R.; Nguyen, M.T.; Allahwala, M.A.; Psaltis, J.P.; Marathe, C.S.; Marathe, J.A.; Psaltis, P.J. Cardiovascular Protective Properties of GLP-1 Receptor Agonists: More than Just Diabetic and Weight Loss Drugs. J. Clin. Med. 2024, 13, 4674. https://doi.org/10.3390/jcm13164674
Le R, Nguyen MT, Allahwala MA, Psaltis JP, Marathe CS, Marathe JA, Psaltis PJ. Cardiovascular Protective Properties of GLP-1 Receptor Agonists: More than Just Diabetic and Weight Loss Drugs. Journal of Clinical Medicine. 2024; 13(16):4674. https://doi.org/10.3390/jcm13164674
Chicago/Turabian StyleLe, Richard, Mau T. Nguyen, Momina A. Allahwala, James P. Psaltis, Chinmay S. Marathe, Jessica A. Marathe, and Peter J. Psaltis. 2024. "Cardiovascular Protective Properties of GLP-1 Receptor Agonists: More than Just Diabetic and Weight Loss Drugs" Journal of Clinical Medicine 13, no. 16: 4674. https://doi.org/10.3390/jcm13164674
APA StyleLe, R., Nguyen, M. T., Allahwala, M. A., Psaltis, J. P., Marathe, C. S., Marathe, J. A., & Psaltis, P. J. (2024). Cardiovascular Protective Properties of GLP-1 Receptor Agonists: More than Just Diabetic and Weight Loss Drugs. Journal of Clinical Medicine, 13(16), 4674. https://doi.org/10.3390/jcm13164674