Single-Base Substitution Causing Dual-Exon Skipping Event in PKD2 Gene: Unusual Molecular Finding from Exome Sequencing in a Patient with Autosomal Dominant Polycystic Kidney Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient
2.2. Molecular Analysis and In Silico Prediction
2.3. cDNA Analysis
3. Results
3.1. Molecular Analysis and In Silico Prediction
3.2. cDNA Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lanktree, M.B.; Haghighi, A.; Guiard, E.; Iliuta, I.A.; Song, X.; Harris, P.C.; Paterson, A.D.; Pei, Y. Prevalence estimates of polycystic kidney and liver disease by population sequencing. J. Am. Soc. Nephrol. 2018, 29, 2593–2600. [Google Scholar] [CrossRef]
- Willey, C.J.; Blais, J.D.; Hall, A.K.; Krasa, H.B.; Makin, A.J.; Czerwiec, F.S. Prevalence of autosomal dominant polycystic kidney disease in the European Union. Nephrol. Dial. Transplant. 2017, 32, 1356–1363. [Google Scholar] [CrossRef] [PubMed]
- Elhassan, E.A.; O’Kelly, P.; Collins, K.E.; Teltsh, O.; Ciurli, F.; Murray, S.L.; Kennedy, C.; Madden, S.F.; Benson, K.A.; Cavalleri, G.L.; et al. Familial Variability of Disease Severity in Adult Patients With ADPKD. Kidney Int. Rep. 2023, 9, 649–660. [Google Scholar] [CrossRef]
- Cornec-Le Gall, E.; Alam, A.; Perrone, R.D. Autosomal dominant polycystic kidney disease. Lancet 2019, 393, 919–935. [Google Scholar] [CrossRef]
- Ferraro, P.M.; Bargagli, M.; Faller, N.; Anderegg, M.A.; Huynh-Do, U.; Vogt, B.; Gambaro, G.; Fuster, D.G. The role of urinary supersaturations for lithogenic salts in the progression of autosomal dominant polycystic kidney disease. J. Nephrol. 2023, 36, 1011–1018. [Google Scholar] [CrossRef] [PubMed]
- Bargagli, M.; Ferraro, P.M.; Dhayat, N.; Anderegg, M.; Fuster, D. Effect of Tolvaptan Treatment on Acid-Base Homeostasis in ADPKD Patients. Kidney Int. Rep. 2021, 6, 1749. [Google Scholar] [CrossRef]
- Bargagli, M.; Vetsch, A.; Anderegg, M.A.; Dhayat, N.A.; Huynh-Do, U.; Faller, N.; Vogt, B.; Ferraro, P.M.; Fuster, D.G. Tolvaptan treatment is associated with altered mineral metabolism parameters and increased bone mineral density in ADPKD patients. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc. 2023, 38, 1645–1654. [Google Scholar] [CrossRef] [PubMed]
- Cornec-Le Gall, E.; Torres, V.E.; Harris, P.C. Genetic complexity of autosomal dominant polycystic kidney and liver diseases. J. Am. Soc. Nephrol. 2018, 29, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Veldhuisen, B.; Saris, J.J.; de Haij, S.; Hayashi, T.; Reynolds, D.M.; Mochizuki, T.; Elles, R.; Fossdal, R.; Bogdanova, N.; van Dijk, M.A.; et al. A spectrum of mutations in the second gene for autosomal dominant polycystic kidney disease (PKD2). Am. J. Hum. Genet. 1997, 61, 547–555. [Google Scholar] [CrossRef]
- Besse, W.; Dong, K.; Choi, J.; Punia, S.; Fedeles, S.V.; Choi, M.; Gallagher, A.R.; Huang, E.B.; Gulati, A.; Knight, J.; et al. Isolated polycystic liver disease genes define effectors of polycystin-1 function. J. Clin. Investig. 2017, 127, 1772–1785. [Google Scholar] [CrossRef]
- Cornec-Le Gall, E.; Olson, R.J.; Besse, W.; Heyer, C.M.; Gainullin, V.G.; Smith, J.M.; Audrézet, M.P.; Hopp, K.; Porath, B.; Shi, B.; et al. Monoallelic mutations to DNAJB11 cause atypical Autosomal-Dominant polycystic kidney disease. Am. J. Hum. Genet. 2018, 102, 832–844. [Google Scholar] [CrossRef]
- Porath, B.; Gainullin, V.G.; Cornec-Le Gall, E.; Dillinger, E.K.; Heyer, C.M.; Hopp, K.; Edwards, M.E.; Madsen, C.D.; Mauritz, S.R.; Banks, C.J.; et al. Mutations in GANAB, encoding the glucosidase IIα subunit, cause Autosomal-Dominant polycystic kidney and liver disease. Am. J. Hum. Genet. 2016, 98, 1193–1207. [Google Scholar] [CrossRef]
- The European Polycystic Kidney Disease Consortium. The polycystic kidney disease 1 gene encodes a 14 kb transcript and lies within a duplicated region on chromosome 16. The European Polycystic Kidney Disease Consortium. Cell 1994, 78, 725. [Google Scholar]
- Hughes, J.; Ward, C.J.; Peral, B.; Aspinwall, R.; Clark, K.; San Millán, J.L.; Gamble, V.; Harris, P.C. The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat. Genet. 1995, 10, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Mochizuki, T.; Wu, G.; Hayashi, T.; Xenophontos, S.L.; Veldhuisen, B.; Saris, J.J.; Reynolds, D.M.; Cai, Y.; Gabow, P.A.; Pierides, A.; et al. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 1996, 272, 1339–1342. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Di Giovanni, V.; He, N.; Wang, K.; Ingram, A.; Rosenblum, N.D.; Pei, Y. Systems biology of autosomal dominant polycystic kidney disease (ADPKD): Computational identification of gene expression pathways and integrated regulatory networks. Hum. Mol. Genet. 2009, 18, 2328–2343. [Google Scholar] [CrossRef] [PubMed]
- Hopp, K.; Ward, C.J.; Hommerding, C.J.; Nasr, S.H.; Tuan, H.F.; Gainullin, V.G.; Rossetti, S.; Torres, V.E.; Harris, P.C. Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity. J. Clin. Investig. 2012, 122, 4257–4273. [Google Scholar] [CrossRef] [PubMed]
- Leeuwen, I.S.L.V.; Dauwerse, J.G.; Baelde, H.J.; Leonhard, W.N.; van de Wal, A.; Ward, C.J.; Verbeek, S.; DeRuiter, M.C.; Breuning, M.H.; de Heer, E.; et al. Lowering of PKD1 expression is sufficient to cause polycystic kidney disease. Hum. Mol. Genet. 2004, 13, 3069–3077. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Baux, D.; Van Goethem, C.; Ardouin, O.; Guignard, T.; Bergougnoux, A.; Koenig, M.; Roux, A.F. Correction: MobiDetails: Online DNA variants interpretation. Eur. J. Hum. Genet. 2021, 29, 361, Erratum in Eur. J. Hum. Genet. 2021, 29, 356–360. [Google Scholar] [CrossRef]
- Yauy, K.; Baux, D.; Pegeot, H.; Van Goethem, C.; Mathieu, C.; Guignard, T.; Juntas Morales, R.; Lacourt, D.; Krahn, M.; Lehtokari, V.-L.; et al. MoBiDiC Prioritization Algorithm, a Free, Accessible, and Efficient Pipeline for Single-Nucleotide Variant Annotation and Prioritization for Next-Generation Sequencing Routine Molecular Diagnosis. J. Mol. Diagn. 2018, 20, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Yeo, G.; Burge, C.B. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J. Comput. Biol. 2004, 11, 377–394. [Google Scholar] [CrossRef] [PubMed]
- Jian, X.; Boerwinkle, E.; Liu, X. In silico prediction of splice-altering single nucleotide variants in the human genome. Nucleic Acids Res. 2014, 42, 13534–13544. [Google Scholar] [CrossRef]
- De Sainte Agathe, J.M.; Filser, M.; Isidor, B.; Besnard, T.; Gueguen, P.; Perrin, A.; Van Goethem, C.; Verebi, C.; Masingue, M.; Rendu, J.; et al. SpliceAI-visual: A free online tool to improve SpliceAI splicing variant interpretation. Hum. Genom. 2023, 17, 7. [Google Scholar] [CrossRef]
- Audrézet, M.P.; Cornec-Le Gall, E.; Chen, J.M.; Redon, S.; Quéré, I.; Creff, J.; Bénech, C.; Maestri, S.; Le Meur, Y.; Férec, C. Autosomal dominant polycystic kidney disease: Comprehensive mutation analysis of PKD1 and PKD2 in 700 unrelated patients. Hum. Mutat. 2012, 33, 1239–1250. [Google Scholar] [CrossRef]
- Bonnal, S.C.; López-Oreja, I.; Valcárcel, J. Roles and mechanisms of alternative splicing in cancer—Implications for care. Nat. Rev. Clin. Oncol. 2020, 17, 457–474. [Google Scholar] [CrossRef] [PubMed]
- Yeo, G.; Hoon, S.; Venkatesh, B.; Burge, C.B. Variation in sequence and organization of splicing regulatory elements in vertebrate genes. Proc. Natl. Acad. Sci. USA 2004, 101, 15700–15705. [Google Scholar] [CrossRef]
- Berget, S.M. Exon recognition in vertebrate splicing. J. Biol. Chem. 1995, 270, 2411–2414. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Fukao, T.; Zhang, G.; Sakurai, S.; Ruiter, J.P.; Wanders, R.J.; Kondo, N. Single-base substitution at the last nucleotide of exon 6 (c.671G>A), resulting in the skipping of exon 6, and exons 6 and 7 in human succinyl-CoA:3-ketoacid CoA transferase (SCOT) gene. Mol. Genet. Metab. 2007, 90, 291–297. [Google Scholar] [CrossRef]
- Schneider, S.; Wildhardt, G.; Ludwig, R.; Royer-Pokora, B. Exon skipping due to a mutation in a donor splice site in the WT-1 gene is associated with Wilms’ tumor and severe genital malformations. Hum. Genet. 1993, 91, 599–604. [Google Scholar] [CrossRef]
- Hayashida, Y.; Mitsubuchi, H.; Indo, Y.; Ohta, K.; Endo, F.; Wada, Y.; Matsuda, I. Deficiency of the E1b subunit in the branched-chain a-keto acid dehydrogenase complex due to a single base substitution of the intron 5, resulting in two alternatively spliced mRNAs in a patient with maple syrup urine disease. Biochim. Biophys. Acta 1994, 1225, 317–325. [Google Scholar] [CrossRef]
- Haire, R.N.; Ohta, Y.; Strong, S.J.; Litman, R.T.; Liu, Y.; Prchal, J.T.; Cooper, M.D.; Litman, G.W. Unusual patterns of exon skipping in Bruton tyrosine kinase are associated with mutations involving the intron 17 3′ splice site. Am. J. Hum. Genet. 1997, 60, 798–807. [Google Scholar] [PubMed]
- Fang, L.J.; Simard, M.J.; Vidaud, D.; Assouline, B.; Lemieux, B.; Vidaud, M.; Chabot, B.; Thirion, J.P. A novel mutation in the neurofibromatosis type 1 (NF1) gene promotes skipping of two exons by preventing exon definition. J. Mol. Biol. 2001, 307, 1261–1270. [Google Scholar] [CrossRef]
- Takahara, K.; Schwarze, U.; Imamura, Y.; Hoffman, G.G.; Toriello, H.; Smith, L.T.; Byers, P.H.; Greenspan, D.S. Order of intron removal influences multiple splice outcomes, including a two-exon skip, in a COL5A1 acceptor-site mutation that results in abnormal Pro-a1(V) N-Propeptides and Ehlers-Danlos Syndrome Type I. Am. J. Hum. Genet. 2002, 71, 451–465. [Google Scholar] [CrossRef]
- Shen, P.S.; Yang, X.; DeCaen, P.G.; Liu, X.; Bulkley, D.; Clapham, D.E.; Cao, E. The Structure of the Polycystic Kidney Disease Channel PKD2 in Lipid Nanodiscs. Cell 2016, 167, 763–773.e11. [Google Scholar] [CrossRef]
- Hackmann, K.; Markoff, A.; Qian, F.; Bogdanova, N.; Germino, G.G.; Pennekamp, P.; Dworniczak, B.; Horst, J.; Gerkem, V. A splice form of polycystin-2, lacking exon 7, does not interact with polycystin-1. Hum. Mol. Genet. 2005, 14, 3249–3262. [Google Scholar] [CrossRef]
- Hateboer, N.; Veldhuisen, B.; Peters, D.; Breuning, M.H.; San-Millán, J.L.; Bogdanova, N.; Coto, E.; van Dijk, M.A.; Afzal, A.R.; Jaffery, S.; et al. Location of mutations within the PKD2 gene influences clinical outcome. Kidney Int. 2000, 57, 1444–1451. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Shi, X.; Xin, Q.; Liu, Z.; Pan, F.; Qiao, D.; Chen, M.; Zhang, Y.; Guo, W.; Li, C.; et al. Identified eleven exon variants in PKD1 and PKD2 genes that altered RNA splicing by minigene assay. BMC Genom. 2023, 24, 407. [Google Scholar] [CrossRef] [PubMed]
- Magistroni, R.; He, N.; Wang, K.; Andrew, R.; Johnson, A.; Gabow, P.; Dicks, E.; Parfrey, P.; Torra, R.; San-Millan, J.L.; et al. Genotype-renal function correlation in type 2 autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. JASN 2003, 14, 1164–1174. [Google Scholar] [CrossRef]
- Rossetti, S.; Consugar, M.B.; Chapman, A.B.; Torres, V.E.; Guay-Woodford, L.M.; Grantham, J.J.; Bennett, W.M.; Meyers, C.M.; Walker, D.L.; Bae, K.; et al. Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. J. Am. Soc. Nephrol. JASN 2007, 18, 2143–2160. [Google Scholar] [CrossRef]
- Chung, W.; Kim, H.; Hwang, Y.H.; Kim, S.Y.; Ko, A.R.; Ro, H.; Lee, K.B.; Lee, J.S.; Oh, K.H.; Ahn, C. PKD2 gene mutation analysis in Korean autosomal dominant polycystic kidney disease patients using two-dimensional gene scanning. Clin. Genet. 2006, 70, 502–508. [Google Scholar] [CrossRef]
- Yu, C.; Yang, Y.; Zou, L.; Hu, Z.; Li, J.; Liu, Y.; Ma, Y.; Ma, M.; Su, D.; Zhang, S. Identification of novel mutations in Chinese Hans with autosomal dominant polycystic kidney disease. BMC Med. Genet. 2011, 12, 164. [Google Scholar] [CrossRef]
- Torra, R.; Badenas, C.; Pérez-Oller, L.; Luis, J.; Millán, S.; Nicolau, C.; Oppenheimer, F.; Milà, M.; Darnell, A. Increased prevalence of polycystic kidney disease type 2 among elderly polycystic patients. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2000, 36, 728–734. [Google Scholar] [CrossRef]
- Zhang, S.; Mei, C.; Zhang, D.; Dai, B.; Tang, B.; Sun, T.; Zhao, H.; Zhou, Y.; Li, L.; Wu, Y. Mutation Analysis of Autosomal Dominant Polycystic Kidney Disease Genes in Han Chinese. Nephron Exp. Nephrol. 2005, 100, e63–e76. [Google Scholar] [CrossRef]
- Tan, Y.C.; Blumenfeld, J.; Michaeel, A.; Donahue, S.; Balina, M.; Parker, T.; Levine, D.; Rennert, H. Aberrant PKD2 splicing due to a presumed novel missense mutation in autosomal-dominant polycystic kidney disease. Clin. Genet. 2011, 80, 287–292. [Google Scholar] [CrossRef]
- Garcia-Gonzalez, M.A.; Jones, J.G.; Allen, S.K.; Palatucci, C.M.; Batish, S.D.; Seltzer, W.K.; Lan, Z.; Allen, E.; Qian, F.; Lens, X.M.; et al. Evaluating the clinical utility of a molecular genetic test for polycystic kidney disease. Mol. Genet. Metab. 2007, 92, 160–167. [Google Scholar] [CrossRef]
- Hoefele, J.; Mayer, K.; Scholz, M.; Klein, H.G. Novel PKD1 and PKD2 mutations in autosomal dominant polycystic kidney disease (ADPKD). Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc. 2011, 26, 2181–2188. [Google Scholar] [CrossRef]
- Irazabal, M.V.; Huston, J.; Kubly, V.; Rossetti, S.; Sundsbak, J.L.; Hogan, M.C.; Harris, P.C.; Brown, R.D.; Torres, V.E. Extended follow-up of unruptured intracranial aneurysms detected by presymptomatic screening in patients with autosomal dominant polycystic kidney disease. Clin. J. Am. Soc. Nephrol. CJASN 2011, 6, 1274–1285. [Google Scholar] [CrossRef]
Region | cDNA Reference Sequence * | Reference | Mutational Database and Annotation |
---|---|---|---|
IVS1 | c.595+2T>C | [40] | ClinVar (ID1068903—P) |
c.595+1G>A | [39] | ClinVar (ID1072849—P) | |
c.595+1G>C | [25] | ClinVar (ID811939—P) | |
c.596-12_599del | [9] | ClinVar (ID2506174—P) | |
c.596-3A>G | [25] | N/A | |
c.596-3_596-2insTGS | N/A | LOVD (ID0000886426—LP) | |
c.596-1G>T | N/A | ClinVar (ID586315—P) | |
IVS2 | c.709+1G>A | [9] | ClinVar (ID92797—P) |
c.709+1G>T | N/A | ClinVar (ID972824—P) | |
c.710-2A>G | [9] | ClinVar (ID1285124—P) | |
c.710-1G>A | N/A | ClinVar (ID1255534—P) | |
EX3 | c.843G>A | N/A | ADPKD (LP); ClinVar (ID1255690—VUS) |
IVS3 | c.843+1G>A | [25] | ClinVar (ID997217—P) |
IVS3 | c.843+1G>T | N/A | LOVD (ID0000089511—P) |
IVS3 | c.843+2T>C | N/A | ADPKD (P) |
IVS3 | c.843+3A>G | N/A | ADPKD (P) |
IVS3 | c.844-2A>G | N/A | ClinVar (ID997239—P) |
IVS4 | c.1094+1del | N/A | ClinVar (ID1699919—LP) |
IVS4 | c.1094+1G>A | [41] | ClinVar (ID280008—P) |
IVS4 | c.1094+1G>C | [42] | ClinVar (ID 997171—P) |
IVS4 | c.1094+2T>G | [39] | ADPKD (P) |
IVS4 | c.1094+3_+6del | [39] | ClinVar (ID434014—P) |
IVS4 | c.1095-2A>G | [25] | ClinVar (ID1916255—P) |
IVS4 | c.1095-1G>T | N/A | ClinVar (ID2445831—LP) |
IVS4 | c.1095-5A>G | [40] | ADPKD (P) |
IVS5 | c.1319+1G>A | [43] | ClinVar (ID430967—P) |
IVS5 | c.1319+1G>T | [40] | ADPKD (P) |
IVS5 | c.1320-2del | N/A | ClinVar (ID638001—P) |
IVS5 | c.1320-1G>A | [25] | ADPKD (P) |
EX6 | c.1480G>T | [9,38] | ADPKD (P) |
IVS6 | c.1548+1G>A | N/A | ClinVar (ID562283—P) |
IVS6 | c.1549-1G>A | N/A | ClinVar (ID972872—P) |
EX7 | c.1716G>A | [44] | ADPKD (P) |
IVS7 | c.1716+1T>A | [25] | ADPKD (P) |
IVS7 | c.1716+2T>A | [45] | ClinVar (ID997114—P) |
IVS7 | c.1717-3C>G | [9] | ADPKD (P) |
IVS7 | c.1717-2A>G | [25]; this study | ADPKD (P) |
IVS7 | c.1717-1G>A | [46] | ADPKD (P) |
IVS8 | c.1898+5G>A | [40,46] | ClinVar (ID448033—P) |
IVS8 | c.1898+1G>A | [40] | ADPKD (P) |
IVS8 | c.1899-2A>T | N/A | ClinVar (ID2443217—P) |
EX9 | c.2019G>A | N/A | ADPKD (P) |
IVS9 | c.2019+1G>A | N/A | ClinVar (ID477626—P) |
IVS9 | c.2019+2T>A | [22] | ADPKD (P) |
IVS9 | c.2019+1_2019+5del | N/A | ClinVar (ID829998—P) |
IVS9 | c.2020-2A>G | N/A | ClinVar (ID1973472—LP) |
IVS9 | c.2020-2_-1del | [42,47] | ADPKD (P) |
IVS9 | c.2020-2del | N/A | ClinVar (ID1328420—LP) |
IVS9-EX10 | c.2020-1_2020del | N/A | ClinVar (ID449307—LP) |
IVS10 | c.2118-2A>G | N/A | ADPKD (P) |
IVS10 | c.2118+1G>C | N/A | ClinVar (ID976823—P) |
IVS10 | c.2119-2A>G | N/A | ClinVar (ID974544—P) |
IVS11 | c.2240+1G>A | [45] | ClinVar (ID448034—P) |
IVS11 | c.2240+1G>T | [41] | ADPKD (P) |
IVS11 | c.2240+1G>C | N/A | ClinVar (ID872745—LP) |
IVS11 | c.2241-2A>G | [9] | ClinVar (ID562263—P) |
IVS11 | c.2241-1G>T | [40] | ADPKD (P) |
IVS12 | c.2358+1G>A | [40] | ClinVar (ID2664070—P) |
IVS12 | c.2358+1G>T | N/A | ClinVar (ID 2428817—P) |
IVS12 | c.2358+1G>C | N/A | ClinVar (ID1693454—P) |
IVS13 | c.2522+1_2522+2del | N/A | ClinVar (ID 975054—P) |
IVS13 | c.2522+1G>T | N/A | ClinVar (ID1806275—P) |
IVS13 | c.2523-1G>A | [48] | ClinVar (ID440150—P) |
IVS14 | c.2670+1G>A | N/A | LOVD (ID0000089601—P) |
IVS14 | c.2671-2A>G | [40] | ADPKD (P) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Paolis, E.; Raspaglio, G.; Ciferri, N.; Zangrilli, I.; Ricciardi Tenore, C.; Urbani, A.; Ferraro, P.M.; Minucci, A.; Concolino, P. Single-Base Substitution Causing Dual-Exon Skipping Event in PKD2 Gene: Unusual Molecular Finding from Exome Sequencing in a Patient with Autosomal Dominant Polycystic Kidney Disease. J. Clin. Med. 2024, 13, 4682. https://doi.org/10.3390/jcm13164682
De Paolis E, Raspaglio G, Ciferri N, Zangrilli I, Ricciardi Tenore C, Urbani A, Ferraro PM, Minucci A, Concolino P. Single-Base Substitution Causing Dual-Exon Skipping Event in PKD2 Gene: Unusual Molecular Finding from Exome Sequencing in a Patient with Autosomal Dominant Polycystic Kidney Disease. Journal of Clinical Medicine. 2024; 13(16):4682. https://doi.org/10.3390/jcm13164682
Chicago/Turabian StyleDe Paolis, Elisa, Giuseppina Raspaglio, Nunzia Ciferri, Ilaria Zangrilli, Claudio Ricciardi Tenore, Andrea Urbani, Pietro Manuel Ferraro, Angelo Minucci, and Paola Concolino. 2024. "Single-Base Substitution Causing Dual-Exon Skipping Event in PKD2 Gene: Unusual Molecular Finding from Exome Sequencing in a Patient with Autosomal Dominant Polycystic Kidney Disease" Journal of Clinical Medicine 13, no. 16: 4682. https://doi.org/10.3390/jcm13164682
APA StyleDe Paolis, E., Raspaglio, G., Ciferri, N., Zangrilli, I., Ricciardi Tenore, C., Urbani, A., Ferraro, P. M., Minucci, A., & Concolino, P. (2024). Single-Base Substitution Causing Dual-Exon Skipping Event in PKD2 Gene: Unusual Molecular Finding from Exome Sequencing in a Patient with Autosomal Dominant Polycystic Kidney Disease. Journal of Clinical Medicine, 13(16), 4682. https://doi.org/10.3390/jcm13164682