Drug-Related Glomerular Phenotypes: A Global Pharmacovigilance Perspective
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schroll, J.B.; Maund, E.; Gøtzsche, P.C. Challenges in coding adverse events in clinical trials: A systematic review. PLoS ONE 2012, 7, e41174. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R.L.; Awdishu, L.; Davenport, A.; Murray, P.T.; Macedo, E.; Cerda, J.; Chakaravarthi, R.; Holden, A.L.; Goldstein, S.L. Phenotype standardization for drug-induced kidney disease. Kidney Int. 2015, 88, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Garnier, A.-S.; Laubacher, H.; Briet, M. Drug-induced glomerular diseases. Therapies 2023, 79, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, J.; Perazella, M.A. Drug-Induced Glomerular Disease. Clin. J. Am. Soc. Nephrol. 2015, 10, 1287–1290. [Google Scholar] [CrossRef] [PubMed]
- Markowitz, G.S.; Bomback, A.S.; Perazella, M.A. Drug-induced glomerular disease: Direct cellular injury. Clin. J. Am. Soc. Nephrol. 2015, 10, 1291–1299. [Google Scholar] [CrossRef] [PubMed]
- Hamid, A.A.A.; Rahim, R.; Teo, S.P. Pharmacovigilance and Its Importance for Primary Health Care Professionals. Korean J. Fam. Med. 2022, 43, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Uppsala Monitoring Centre. Guideline for Using VigiBase Data in Studies. 2021. Available online: https://www.vigiaccess.org (accessed on 13 April 2024).
- Vogler, M.; Conesa, H.R.; Ferreira, K.d.A.; Cruz, F.M.; Gasparotto, F.S.; Fleck, K.; Rebelo, F.M.; Kollross, B.; Gonçalves, Y.S. Electronic Reporting Systems in Pharmacovigilance: The Implementation of VigiFlow in Brazil. Pharm. Med. 2020, 34, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Varallo, F.R.; Planeta, C.S.; Herdeiro, M.T.; de Mastroianni, P.C. Imputation of adverse drug reactions: Causality assessment in hospitals. PLoS ONE 2017, 12, e0171470. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. European Union. Available online: https://www.ema.europa.eu/en/glossary/summary-product-characteristics (accessed on 1 May 2024).
- UpToDate. UpToDate. Available online: https://www.uptodate.com (accessed on 1 May 2024).
- Drugs.com. Drugs.com. Available online: https://www.drugs.com (accessed on 1 May 2024).
- James, E.T.; Douglas, A.M. Drug-Induced Diseases, 3rd ed.; American Society of Health-System Pharmacists: Bethesda, MD, USA, 2018. [Google Scholar]
- Ray, S.D. Side Effects of Drugs Annual 38—A Worldwide Yearly Survey of New Data in Adverse Drug Reactions; Elsevier B.V.: Amsterdam, The Netherlands, 2016. [Google Scholar]
- O’Shaughnessy, M.M.; Hogan, S.L.; Thompson, B.D.; Coppo, R.; Fogo, A.B.; Jennette, J.C. Glomerular disease frequencies by race, sex and region: Results from the International Kidney Biopsy Survey. Nephrol. Dial. Transplant. 2018, 33, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Paueksakon, P.; Fogo, A.B. Drug-induced nephropathies. Histopathology 2017, 70, 94–108. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, N.R.; Davis, N.F.; Nolan, W.J.; Flynn, R.J.; McDermott, T.; Thomas, A.Z.; Manecksha, R.P. Incidence of Visible Hematuria Among Antithrombotic Agents: A Systematic Review of Over 175,000 Patients. Urology 2018, 114, 27–32. [Google Scholar] [CrossRef]
- Peng, Y.-C.; Lin, C.-L.; Yeh, H.-Z.; Chang, C.-S.; Wu, Y.-L.; Kao, C.-H. Association Between the Use of Proton Pump Inhibitors and the Risk of ESRD in Renal Diseases. Medicine 2016, 95, e3363. [Google Scholar] [CrossRef]
- Wu, B.; Li, D.; Xu, T.; Luo, M.; He, Z.; Li, Y. Proton pump inhibitors associated acute kidney injury and chronic kidney disease: Data mining of US FDA adverse event reporting system. Sci. Rep. 2021, 11, 3690. [Google Scholar] [CrossRef] [PubMed]
- Amin, R.; Ahn, S.-Y.; Moudgil, A. Kidney and urinary tract disorders. In Biochemical and Molecular Basis of Pediatric Disease; Academic Press: Cambridge, MA, USA, 2021; pp. 167–228. [Google Scholar] [CrossRef]
- Perazella, M.A. Clinical Approach to Diagnosing Acute and Chronic Tubulointerstitial Disease. Adv. Chronic Kidney Dis. 2017, 24, 57–63. [Google Scholar] [CrossRef]
- Rossert, J. Drug-induced acute interstitial nephritis. Kidney Int. 2001, 60, 804–817. [Google Scholar] [CrossRef] [PubMed]
- Kelly, M.D.; Gibson, A.; Bartlett, H.; Rowling, D.; Patten, J. Tenofovir-associated proteinuria. AIDS 2013, 27, 479–481. [Google Scholar] [CrossRef]
- Chan, L.; Asriel, B.; Eaton, E.F.; Wyatt, C.M. Potential kidney toxicity from the antiviral drug tenofovir. Curr. Opin. Nephrol. Hypertens. 2018, 27, 102–112. [Google Scholar] [CrossRef]
- Chadwick, D.R.; Sarfo, F.S.; Kirk, E.S.M.; Owusu, D.; Bedu-Addo, G.; Parris, V.; Owusu, A.L.; Phillips, R. Tenofovir is associated with increased tubular proteinuria and asymptomatic renal tubular dysfunction in Ghana. BMC Nephrol. 2015, 16, 195. [Google Scholar] [CrossRef] [PubMed]
- Hall, G.; Wyatt, C.M. Mechanisms of Proteinuria in HIV. Front. Med. 2021, 8, 749061. [Google Scholar] [CrossRef]
- Singh, A.K.B.; Jeyaruban, A.S.; Wilson, G.J.; Ranganathan, D. Adalimumab-induced IgA nephropathy. BMJ Case Rep. 2019, 12, e226442. [Google Scholar] [CrossRef]
- Mertelj, T.; Smrekar, N.; Kojc, N.; Lindič, J.; Kovač, D. IgA Nephropathy in a Patient Treated with Adalimumab. Case Rep. Nephrol. Dial. 2021, 11, 233–240. [Google Scholar] [CrossRef]
- Jeong, C.W.; Lee, S.; Byun, S.-S.; Lee, D.H.; Lee, S.E. No Increase in Risk of Microscopic Hematuria with Aspirin Use by Asymptomatic Healthy People. JAMA Intern. Med. 2013, 173, 1145. [Google Scholar] [CrossRef]
- Wallis, C.J.D.; Juvet, T.; Lee, Y.; Matta, R.; Herschorn, S.; Kodama, R.; Kulkarni, G.S.; Satkunasivam, R.; Geerts, W.; McLeod, A.; et al. Association Between Use of Antithrombotic Medication and Hematuria-Related Complications. JAMA 2017, 318, 1260. [Google Scholar] [CrossRef]
- Moudi, E.; Hosseini, S.-R.; Bijani, A. Higher rate of microscopic hematuria in elderly patients who take regular doses of aspirin: Result from AHAP Study. Casp. J. Intern. Med. 2016, 7, 278–282. [Google Scholar]
- Avidor, Y.; Nadu, A.; Matzkin, H. Clinical significance of gross hematuria and its evaluation in patients receiving anticoagulant and aspirin treatment. Urology 2000, 55, 22–24. [Google Scholar] [CrossRef]
- Davis, R.; Jones, J.S.; Barocas, D.A.; Castle, E.P.; Lang, E.K.; Leveillee, R.J.; Messing, E.M.; Miller, S.D.; Peterson, A.C.; Turk, T.M.; et al. Diagnosis, Evaluation and Follow-Up of Asymptomatic Microhematuria in Adults: AUA Guideline. J. Urol. 2012, 188, 2473–2481. [Google Scholar] [CrossRef]
- Wu, H.; Wahane, A.; Alhamadani, F.; Zhang, K.; Parikh, R.; Lee, S.; McCabe, E.M.; Rasmussen, T.P.; Bahal, R.; Zhong, X.-B.; et al. Nephrotoxicity of marketed antisense oligonucleotide drugs. Curr. Opin. Toxicol. 2022, 32, 100373. [Google Scholar] [CrossRef]
- Law, S.; Arnold, J.; Rauf, M.U.; Heptinstall, L.; Gilbertson, J.; Rowczenio, D.; Baharani, J.; Langman, G.; Fontana, M.; Gillmore, J.D. Focal Segmental Glomerulosclerosis Complicating Therapy with Inotersen, an Antisense Oligonucleotide Inhibitor: A Case Report. Am. J. Kidney Dis. 2023, 81, 606–610. [Google Scholar] [CrossRef]
- Electronic Medicines Compendium. Available online: https://www.medicines.org.uk/emc/files/pil.2712.pdf (accessed on 27 April 2024).
- Habib, G.S.; Saliba, W.; Nashashibi, M.; Armali, Z. Penicillamine and nephrotic syndrome. Eur. J. Intern. Med. 2006, 17, 343–348. [Google Scholar] [CrossRef]
- Hall, C.L.; Jawad, S.; Harrison, P.R.; MacKenzie, J.C.; A Bacon, P.; Klouda, P.T.; MacIver, A.G. Natural Course of Penicillamine Nephropathy: A Long Term Study of 33 Patients. Br. Med. J. 1988, 296, 1083–1086. [Google Scholar] [CrossRef]
- Borrego García, E.; Hernández García, E.; Caba Molina, M.; Navas-Parejo Casado, A.M. Massive proteinuria for minimal change nephropathy secondary to treatment with D-penicillamine in a patient with Wilson’s disease. Case report. Gastroenterol. Y Hepatol. 2020, 43, 92–93. [Google Scholar] [CrossRef]
- Theodoni, G.; Printza, N.; Karyda, S.; Pantzaki, A.; Papachristou, F. D-penicillamine induced membranous glomerulonephritis in a child with Wilson’s disease. Hippokratia 2012, 16, 94. [Google Scholar]
- Person, F.; Rinschen, M.M.; Brix, S.R.; Wulf, S.; Noriega, M.d.L.M.; Fehrle, W.; Schmitz, J.; Schwarz, A.; Ivanyi, P.; Steinmetz, O.M.; et al. Bevacizumab-associated glomerular microangiopathy. Mod. Pathol. 2019, 32, 684–700. [Google Scholar] [CrossRef]
- Kiyomi, A.; Koizumi, F.; Imai, S.; Yamana, H.; Horiguchi, H.; Fushimi, K.; Sugiura, M. Bevacizumab-induced proteinuria and its association with antihypertensive drugs: A retrospective cohort study using a Japanese administrative database. PLoS ONE 2023, 18, e0289950. [Google Scholar] [CrossRef]
- George, B.A.; Zhou, X.J.; Toto, R. Nephrotic Syndrome After Bevacizumab: Case Report and Literature Review. Am. J. Kidney Dis. 2007, 49, e23–e29. [Google Scholar] [CrossRef]
- Onteddu, N.K.; Vemula, S.S.M.; Areddy, V.R.; Onteddu, J.; Mabbu, T. Bevacizumab-Induced Nephropathy Presenting as Crescentic Glomerulopathy. Cureus 2023, 15, e48787. [Google Scholar] [CrossRef]
- Endo, Y.; Negishi, K.; Hirayama, K.; Suzuki, H.; Shimizu, A. Bevacizumab-induced immunoglobulin A vasculitis with nephritis. Medicine 2019, 98, e17870. [Google Scholar] [CrossRef]
- European Medicines Agency. Committee for Medicinal Products for Human Use (CHMP) Assessment Report—Lenvatinib. Available online: https://www.ema.europa.eu/contact (accessed on 28 November 2023).
- Shibutani, Y.; Suzuki, S.; Sagara, A.; Enokida, T.; Okano, S.; Fujisawa, T.; Sato, F.; Yumoto, T.; Sano, M.; Kawasaki, T.; et al. Impact of lenvatinib-induced proteinuria and renal dysfunction in patients with thyroid cancer. Front. Oncol. 2023, 13, 1154771. [Google Scholar] [CrossRef]
- Izzedine, H.; Massard, C.; Spano, J.P.; Goldwasser, F.; Khayat, D.; Soria, J.C. VEGF signalling inhibition-induced proteinuria: Mechanisms, significance and management. Eur. J. Cancer 2010, 46, 439–448. [Google Scholar] [CrossRef]
- Choi, Y.H.; Han, C.Y.; Kim, K.S.; Kim, S.G. Future Directions of Pharmacovigilance Studies Using Electronic Medical Recording and Human Genetic Databases. Toxicol. Res. 2019, 35, 319–330. [Google Scholar] [CrossRef]
- Swen, J.J.; van der Wouden, C.H.; Manson, L.E.; Abdullah-Koolmees, H.; Blagec, K.; Blagus, T.; Böhringer, S.; Cambon-Thomsen, A.; Cecchin, E.; Cheung, K.-C.; et al. A 12-gene pharmacogenetic panel to prevent adverse drug reactions: An open-label, multicentre, controlled, cluster-randomised crossover implementation study. Lancet 2023, 401, 347–356. [Google Scholar] [CrossRef]
- Yang, S.; Kar, S. Application of artificial intelligence and machine learning in early detection of adverse drug reactions (ADRs) and drug-induced toxicity. Artif. Intell. Chem. 2023, 1, 100011. [Google Scholar] [CrossRef]
- Syrowatka, A.; Song, W.; Amato, M.G.; Foer, D.; Edrees, H.; Co, Z.; Kuznetsova, M.; Dulgarian, S.; Seger, D.L.; Simona, A.; et al. Key use cases for artificial intelligence to reduce the frequency of adverse drug events: A scoping review. Lancet Digit. Health 2022, 4, e137–e148. [Google Scholar] [CrossRef]
Reported Preferred Terms (MedDRA) | Co-Reported Preferred Terms (MedDRA) | ||
---|---|---|---|
Hematuria | 52.5% | Fever | 6.3% |
Blood urine present | 17.4% | Fatigue | 5.8% |
Proteinuria | 13.3% | Nausea | 4.7% |
Nephrotic syndrome | 6.5% | Urinary tract infection | 4.4% |
Protein urine present | 3.8% | Headache | 4.2% |
Albuminuria | 3.1% | Diarrhea | 4.2% |
White blood cells urine positive | 2.3% | Acute kidney injury | 4.0% |
Culture urine negative | 1.5% | Vomits | 3.8% |
Blood urine | 1.4% | Anemia | 3.8% |
Protein urine | 1.3% | Pain | 3.8% |
Active Ingredient | % Notifications | ATC Class | IC025 | Phenotype | BS |
---|---|---|---|---|---|
Bevacizumab | 2.9% | L | 5.9 | Proteinuria | 3 |
Ibuprofen | 0.8% | M | 0.3 | Proteinuria | 3 |
Lenvatinib | 0.4% | L | 5.4 | Proteinuria | 3 |
Apixaban | 2.4% | B | 3.5 | Renal Hemorrhage | 2 |
Clopidogrel | 2.1% | B | 4.0 | Hematuria | 2 |
Inotersen | 0.3% | N | 8.3 | Proteinuria | 2 |
Penicillamine | 0.5% | M | 6.8 | Nephrotic Syndrome | 2 |
Acenocoumarol | 0.8% | B | 4.9 | Hematuria | 1 |
Dabigatran | 2.5% | B | 4.0 | Hematuria | 1 |
Lithium | 0.1% | N | 2.8 | Nephrotic Syndrome | 1 |
Esomeprazol | 0.7% | A | 0.9 | Hematuria | 1 |
Selumetinib | 0.1% | L | 3.4 | Proteinuria | 1 |
Rivaroxaban | 7.5% | B | 4.5 | Hematuria | 1 |
Warfarin | 5.4% | B | 4.7 | Hematuria | 1 |
Acetylsalicylic Acid | 5.2% | B | 3.9 | Hematuria | 0 |
Adalimumab | 1.3% | L | 1.9 | IgA Nephropathy | 0 |
COVID-19 vaccine | 7.1% | J | 1.9 | Proteinuria | 0 |
Enoxaparin | 1.7% | B | 4.2 | Hematuria | 0 |
Heparin | 1.0% | B | 4.2 | Hematuria | 0 |
Lansoprazole | 1.0% | A | 4.4 | Proteinuria | 0 |
Omeprazole | 1.0% | A | 3.1 | Proteinuria | 0 |
Pneumococcal vaccine | 1.0% | J | 0.9 | Urinary sediment abnormal | 0 |
Tenofovir | 0.5% | J | 2.8 | Proteinuria | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baptista, A.; Macedo, A.M.; Marreiros, A.; Coelho, A.; Perazella, M.A. Drug-Related Glomerular Phenotypes: A Global Pharmacovigilance Perspective. J. Clin. Med. 2024, 13, 4869. https://doi.org/10.3390/jcm13164869
Baptista A, Macedo AM, Marreiros A, Coelho A, Perazella MA. Drug-Related Glomerular Phenotypes: A Global Pharmacovigilance Perspective. Journal of Clinical Medicine. 2024; 13(16):4869. https://doi.org/10.3390/jcm13164869
Chicago/Turabian StyleBaptista, Alexandre, Ana M. Macedo, Ana Marreiros, André Coelho, and Mark A. Perazella. 2024. "Drug-Related Glomerular Phenotypes: A Global Pharmacovigilance Perspective" Journal of Clinical Medicine 13, no. 16: 4869. https://doi.org/10.3390/jcm13164869
APA StyleBaptista, A., Macedo, A. M., Marreiros, A., Coelho, A., & Perazella, M. A. (2024). Drug-Related Glomerular Phenotypes: A Global Pharmacovigilance Perspective. Journal of Clinical Medicine, 13(16), 4869. https://doi.org/10.3390/jcm13164869