Assessment of Corneal Graft Outcomes in a Murine Model of Endothelial Keratoplasty
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Surgical Procedure
2.3. Donor Tissue Preparation
2.4. Graft Implantation
3. Post-Operative Assessment
3.1. Clinical Grading
- Grade 0—Clear: The cornea appears transparent and devoid of any opacities. Light is transmitted through the transplanted corneal tissue unimpeded, allowing clear visualization of intraocular structures.
- Grade 1—Iris vessels clearly visible: Mild corneal haze might be present; however, the blood vessels on the surface of the iris remain clearly visible through the transplanted corneal tissue.
- Grade 2—Iris vessels partially visible: A few of the vessels of the iris remain visible; however, they may appear less distinct or partially masked by corneal haze or superficial changes in corneal transparency.
- Grade 3—Pupil margin completely visible: The iris vasculature cannot be distinguished due to the opacity of the cornea; however, the margin of the pupil is completely visible.
- Grade 4—Pupil margin partially visible: The corneal opacity partially obscures the margin of the pupil. While portions of the pupil margin may still be visible, the opacity limits the clarity of its outline, resulting in partial visibility.
- Grade 5—Anterior chamber not visible: Severe corneal opacity is observed that completely obscures the anterior chamber of the eye. The dense opacity prevents any visualization of intraocular structures beyond the cornea, including the iris, pupil, and anterior chamber.
3.2. Optical Coherence Tomography
3.3. Immunostaining
3.4. Enzyme-Linked Immunospot Assay
3.5. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tan, D.T.H.; Dart, J.K.G.; Holland, E.J.; Kinoshita, S. Corneal Transplantation. Lancet 2012, 379, 1749–1761. [Google Scholar] [CrossRef]
- Di Zazzo, A.; Kheirkhah, A.; Abud, T.B.; Goyal, S.; Dana, R. Management of High-Risk Corneal Transplantation. Surv. Ophthalmol. 2017, 62, 816–827. [Google Scholar] [CrossRef]
- Blanco, T.; Musayeva, A.; Singh, R.B.; Nakagawa, H.; Lee, S.; Alemi, H.; Gonzalez-Nolasco, B.; Ortiz, G.; Wang, S.; Kahale, F.; et al. The Impact of Donor Diabetes on Corneal Transplant Immunity. Am. J. Transplant. 2023, 23, 1345–1358. [Google Scholar] [CrossRef] [PubMed]
- Inomata, T.; Hua, J.; Nakao, T.; Shiang, T.; Chiang, H.; Amouzegar, A.; Dana, R. Corneal Tissue From Dry Eye Donors Leads to Enhanced Graft Rejection. Cornea 2018, 37, 95–101. [Google Scholar] [CrossRef]
- Zhu, J.; Inomata, T.; Di Zazzo, A.; Kitazawa, K.; Okumura, Y.; Coassin, M.; Surico, P.L.; Fujio, K.; Yanagawa, A.; Miura, M.; et al. Role of Immune Cell Diversity and Heterogeneity in Corneal Graft Survival: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 4667. [Google Scholar] [CrossRef] [PubMed]
- Stechschulte, S.U.; Azar, D.T. Complications after Penetrating Keratoplasty. Int. Ophthalmol. Clin. 2000, 40, 27–43. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Xu, J. Incidence and Risk Factors for Post-Penetrating Keratoplasty Glaucoma: A Systematic Review and Meta-Analysis. PLoS ONE 2017, 12, e0176261. [Google Scholar] [CrossRef]
- Deshmukh, R.; Nair, S.; Vaddavalli, P.K.; Agrawal, T.; Rapuano, C.J.; Beltz, J.; Vajpayee, R.B. Post-Penetrating Keratoplasty Astigmatism. Surv. Ophthalmol. 2022, 67, 1200–1228. [Google Scholar] [CrossRef]
- Price, M.O.; Price, F.W. Descemet Stripping Endothelial Keratoplasty: Fifteen-Year Outcomes. Cornea 2023, 42, 449–455. [Google Scholar] [CrossRef]
- Price, F.W.; Price, M.O. Evolution of Endothelial Keratoplasty. Cornea 2013, 32 (Suppl. 1), S28–S32. [Google Scholar] [CrossRef]
- Rose, L.; Kelliher, C.; Jun, A.S. Endothelial Keratoplasty: Historical Perspectives, Current Techniques, Future Directions. Can. J. Ophthalmol. 2009, 44, 401–405. [Google Scholar] [CrossRef]
- Shimizu, T.; Hayashi, T.; Ishida, A.; Kobayashi, A.; Yamaguchi, T.; Mizuki, N.; Yuda, K.; Yamagami, S. Evaluation of Corneal Nerves and Dendritic Cells by in Vivo Confocal Microscopy after Descemet’s Membrane Keratoplasty for Bullous Keratopathy. Sci. Rep. 2022, 12, 6936. [Google Scholar] [CrossRef]
- Wu, E.I.; Ritterband, D.C.; Yu, G.; Shields, R.A.; Seedor, J.A. Graft Rejection Following Descemet Stripping Automated Endothelial Keratoplasty: Features, Risk Factors, and Outcomes. Am. J. Ophthalmol. 2012, 153, P949–P957.E1. [Google Scholar] [CrossRef]
- Price, M.O.; Mehta, J.S.; Jurkunas, U.V.; Price, F.W. Corneal Endothelial Dysfunction: Evolving Understanding and Treatment Options. Prog. Retin. Eye Res. 2021, 82, 100904. [Google Scholar] [CrossRef]
- Park, C.Y.; Lee, J.K.; Gore, P.K.; Lim, C.Y.; Chuck, R.S. Keratoplasty in the United States: A 10-Year Review from 2005 through 2014. Ophthalmology 2015, 122, 2432–2442. [Google Scholar] [CrossRef] [PubMed]
- Viberg, A.; Samolov, B.; Byström, B. Descemet Stripping Automated Endothelial Keratoplasty versus Descemet Membrane Endothelial Keratoplasty for Fuchs Endothelial Corneal Dystrophy: A National Registry-Based Comparison. Ophthalmology 2023, 130, 1248–1257. [Google Scholar] [CrossRef] [PubMed]
- Price, M.O.; Jordan, C.S.; Moore, G.; Price, F.W. Graft Rejection Episodes after Descemet Stripping with Endothelial Keratoplasty: Part Two: The Statistical Analysis of Probability and Risk Factors. Br. J. Ophthalmol. 2009, 93, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.X.; Seitz, B.; Martus, P.; Langenbucher, A.; Cursiefen, C. Long-Term Topical Steroid Treatment Improves Graft Survival Following Normal-Risk Penetrating Keratoplasty. Am. J. Ophthalmol. 2007, 144, 318–319. [Google Scholar] [CrossRef]
- Li, J.Y.; Terry, M.A.; Goshe, J.; Shamie, N.; Davis-Boozer, D. Graft Rejection after Descemet’s Stripping Automated Endothelial Keratoplasty: Graft Survival and Endothelial Cell Loss. Ophthalmology 2012, 119, 90–94. [Google Scholar] [CrossRef]
- Allan, B.D.S.; Terry, M.A.; Price, F.W.; Price, M.O.; Griffin, N.B.; Claesson, M. Corneal Transplant Rejection Rate and Severity after Endothelial Keratoplasty. Cornea 2007, 26, 1039–1042. [Google Scholar] [CrossRef]
- Hos, D.; Tuac, O.; Schaub, F.; Stanzel, T.P.; Schrittenlocher, S.; Hellmich, M.; Bachmann, B.O.; Cursiefen, C. Incidence and Clinical Course of Immune Reactions after Descemet Membrane Endothelial Keratoplasty: Retrospective Analysis of 1000 Consecutive Eyes. Ophthalmology 2017, 124, 512–518. [Google Scholar] [CrossRef]
- Baydoun, L.; Livny, E.; Ham, L.; Bruinsma, M.; Melles, G.R.J. 360-Degree Scheimpflug Imaging to Predict Allograft Rejection after Descemet Membrane Endothelial Keratoplasty. Cornea 2016, 35, 1385–1390. [Google Scholar] [CrossRef]
- Guerra, F.P.; Anshu, A.; Price, M.O.; Giebel, A.W.; Price, F.W. Descemet’s Membrane Endothelial Keratoplasty: Prospective Study of 1-Year Visual Outcomes, Graft Survival, and Endothelial Cell Loss. Ophthalmology 2011, 118, 2368–2373. [Google Scholar] [CrossRef]
- Nakagawa, H.; Blanco, T.; Kahale, F.; Wang, S.; Musayeva, A.; Alemi, H.; Dohlman, T.H.; Dana, R. A Novel Murine Model of Endothelial Keratoplasty. Cornea 2023, 42, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.L.; Zhang, J.J.; Zhao, J.; Wang, D.J.; Zhang, H. Evaluation of Corneal Graft Survival in Mice Model. Int. J. Ophthalmol. 2013, 6, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Inomata, T.; Mashaghi, A.; Di Zazzo, A.; Dana, R. Ocular Surgical Models for Immune and Angiogenic Responses. J. Biol. Methods 2015, 2, e27. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, H.; Blanco, T.; Kahale, F.; Singh, R.B.; Dohlman, T.H.; Dana, R. Novel Adaptation of a Running Suture Technique in a Mouse Model of Corneal Transplantation. J. Biol. Methods 2021, 8, e156. [Google Scholar] [CrossRef]
- Klebe, S.; Coster, D.J.; Williams, K.A. Rejection and Acceptance of Corneal Allografts. Curr. Opin. Organ Transplant. 2009, 14, 4–9. [Google Scholar] [CrossRef]
- Plšková, J.; Kuffová, L.; Hólaň, V.; Filipec, M.; Forrester, J.V. Evaluation of Corneal Graft Rejection in a Mouse Model. Br. J. Ophthalmol. 2002, 86, 108–113. [Google Scholar] [CrossRef]
- Liu, Y.C.; Lwin, N.C.; Chan, N.S.W.; Mehta, J.S. Use of Anterior Segment Optical Coherence Tomography to Predict Corneal Graft Rejection in Small Animal Models. Investig. Ophthalmol. Vis. Sci. 2014, 55, 6736–6741. [Google Scholar] [CrossRef]
- Chauhan, S.K.; Jurkunas, U.; Funaki, T.; Dastjerdi, M.; Dana, R. Quantification of Allospecific and Nonspecific Corneal Endothelial Cell Damage after Corneal Transplantation. Eye 2015, 29, 136–144. [Google Scholar] [CrossRef]
- Hattori, T.; Saban, D.R.; Emami-naeini, P.; Chauhan, S.K.; Funaki, T.; Ueno, H.; Dana, R. Donor-Derived, Tolerogenic Dendritic Cells Suppress Immune Rejection in the Indirect Allosensitization-Dominant Setting of Corneal Transplantation. J. Leukoc. Biol. 2012, 91, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Price, M.O.; Price, F.W. Descemet’s Membrane Endothelial Keratoplasty Surgery: Update on the Evidence and Hurdles to Acceptance. Curr. Opin. Ophthalmol. 2013, 24, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Anshu, A.; Price, M.O.; Price, F.W. Risk of Corneal Transplant Rejection Significantly Reduced with Descemet’s Membrane Endothelial Keratoplasty. Ophthalmology 2012, 119, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Tilak, A.; Dora, J.; Tudu, K.C.; Hota, G.; Behera, S. A Comprehensive Investigation Into the Outcomes of Descemet’s Stripping Endothelial Keratoplasty (DSEK) as a Treatment for Corneal Endothelial Disorders. Cureus 2023, 15, e46076. [Google Scholar] [CrossRef] [PubMed]
- Chew, L.A.; Jun, A.S.; Barnett, B.P. Corneal Endothelial Transplantation from Bench to Bedside: A Review of Animal Models and Their Translational Value for Therapeutic Development. Exp. Eye Res. 2022, 224, 109241. [Google Scholar] [CrossRef]
- Tse, G.H.; Hesketh, E.E.; Clay, M.; Borthwick, G.; Hughes, J.; Marson, L.P. Mouse Kidney Transplantation: Models of Allograft Rejection. J. Vis. Exp. 2014, e52163. [Google Scholar] [CrossRef]
- Sakaguchi, S. Animal Models of Autoimmunity and Their Relevance to Human Diseases. Curr. Opin. Immunol. 2000, 12, 684–690. [Google Scholar] [CrossRef]
- Blanco, T.; Singh, R.B.; Nakagawa, H.; Taketani, Y.; Dohlman, T.H.; Chen, Y.; Chauhan, S.K.; Yin, J.; Dana, R. Conventional Type I Migratory CD103+ Dendritic Cells Are Required for Corneal Allograft Survival. Mucosal Immunol. 2023, 16, 711–726. [Google Scholar] [CrossRef]
- Amouzegar, A.; Chauhan, S.K.; Dana, R. Alloimmunity and Tolerance in Corneal Transplantation. J. Immunol. 2016, 196, 3983–3991. [Google Scholar] [CrossRef]
- Hwang, H.B.; Lyu, B.; Yim, H.B.; Lee, N.Y. Endothelial Cell Loss after Phacoemulsification According to Different Anterior Chamber Depths. J. Ophthalmol. 2015, 2015, 210716. [Google Scholar] [CrossRef] [PubMed]
- Tsatsos, M.; Athanasiadis, I.; Kopsachilis, N.; Krishnan, R.; Hossain, P.; Anderson, D. Comparison of the Endosaver with Noninjector Techniques in Descemet’s Stripping Endosthelial Keratoplasty. Indian J. Ophthalmol. 2017, 65, 1133–1137. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narimatsu, A.; Singh, R.B.; Surico, P.L.; Lee, S.; Forouzanfar, K.; Kahale, F.; Musayeva, A.; Dohlman, T.H.; Blanco, T.; Dana, R. Assessment of Corneal Graft Outcomes in a Murine Model of Endothelial Keratoplasty. J. Clin. Med. 2024, 13, 5010. https://doi.org/10.3390/jcm13175010
Narimatsu A, Singh RB, Surico PL, Lee S, Forouzanfar K, Kahale F, Musayeva A, Dohlman TH, Blanco T, Dana R. Assessment of Corneal Graft Outcomes in a Murine Model of Endothelial Keratoplasty. Journal of Clinical Medicine. 2024; 13(17):5010. https://doi.org/10.3390/jcm13175010
Chicago/Turabian StyleNarimatsu, Akitomo, Rohan Bir Singh, Pier Luigi Surico, Seokjoo Lee, Katayoon Forouzanfar, Francesca Kahale, Aytan Musayeva, Thomas H. Dohlman, Tomas Blanco, and Reza Dana. 2024. "Assessment of Corneal Graft Outcomes in a Murine Model of Endothelial Keratoplasty" Journal of Clinical Medicine 13, no. 17: 5010. https://doi.org/10.3390/jcm13175010
APA StyleNarimatsu, A., Singh, R. B., Surico, P. L., Lee, S., Forouzanfar, K., Kahale, F., Musayeva, A., Dohlman, T. H., Blanco, T., & Dana, R. (2024). Assessment of Corneal Graft Outcomes in a Murine Model of Endothelial Keratoplasty. Journal of Clinical Medicine, 13(17), 5010. https://doi.org/10.3390/jcm13175010