Bone Quality Indices Correlate with Growth Hormone Secretory Capacity in Women Affected by Weight Excess: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Anthropometric Measurements
2.3. Laboratory Test
2.4. Dual-Energy X-ray Absorptiometry
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tozzi, R.; Masi, D.; Cipriani, F.; Contini, S.; Gangitano, E.; Spoltore, M.E.; Barchetta, I.; Basciani, S.; Watanabe, M.; Baldini, E.; et al. Circulating SIRT1 and Sclerostin Correlates with Bone Status in Young Women with Different Degrees of Adiposity. Nutrients 2022, 14, 983. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Balena, A.; Tuccinardi, D.; Tozzi, R.; Risi, R.; Masi, D.; Caputi, A.; Rossetti, R.; Spoltore, M.E.; Filippi, V.; et al. Central obesity, smoking habit, and hypertension are associated with lower antibody titres in response to COVID-19 mRNA vaccine. Diabetes Metab. Res. Rev. 2021, 38, e3465. [Google Scholar] [CrossRef] [PubMed]
- Seki, Y.; Ichihara, A. Association between overweight and growth hormone secretion in patients with non-functioning pituitary tumors. PLoS ONE 2022, 17, e0267324. [Google Scholar] [CrossRef]
- Lubrano, C.; Tenuta, M.; Costantini, D.; Specchia, P.; Barbaro, G.; Basciani, S.; Mariani, S.; Pontecorvi, A.; Lenzi, A.; Gnessi, L. Severe growth hormone deficiency and empty sella in obesity: A cross-sectional study. Endocrine 2015, 49, 503–511. [Google Scholar] [CrossRef]
- Garlaschi, C.; Di Natale, B.; Del Guercio, M.J.; Caccamo, A.; Gargantini, L.; Chiumello, G. Effect of physical exercise on secretion of growth hormone, glucagon, and cortisol in obese and diabetic children. Diabetes 1975, 24, 758–761. [Google Scholar] [CrossRef]
- Ferini-Strambi, L.; Franceschi, M.; Cattaneo, A.G.; Smirne, S.; Calori, G.; Caviezel, F. Sleep-related growth hormone secretion in human obesity: Effect of dietary treatment. Neuroendocrinology 1991, 54, 412–415. [Google Scholar] [CrossRef]
- Weltman, A.; Weltman, J.Y.; Hartman, M.L.; Abbott, R.D.; Rogol, A.D.; Evans, W.S.; Veldhuis, J.D. Relationship between age, percentage body fat, fitness, and 24-hour growth hormone release in healthy young adults: Effects of gender. J. Clin. Endocrinol. Metab. 1994, 78, 543–548. [Google Scholar] [CrossRef]
- Hormone, G.; Secretory, G.H.; Iranmanesh, L.I.; Lizarralde, G.; Veldhuis, J.D. Age and Relative Adiposity Are Specific Negative. J. Clin. Endocrinol. Metab. 1991, 73, 1081–1088. [Google Scholar]
- Poggiogalle, E.; Lubrano, C.; Gnessi, L.; Mariani, S.; Lenzi, A.; Donini, L.M. Fatty liver index associates with relative sarcopenia and GH/IGF-1 status in obese subjects. PLoS ONE 2016, 11, e0145811. [Google Scholar] [CrossRef]
- Gangitano, E.; Barbaro, G.; Susi, M.; Rossetti, R.; Spoltore, M.E.; Masi, D.; Tozzi, R.; Mariani, S.; Gnessi, L.; Lubrano, C. Growth Hormone Secretory Capacity Is Associated with Cardiac Morphology and Function in Overweight and Obese Patients: A Controlled, Cross-Sectional Study. Cells 2022, 11, 2420. [Google Scholar] [CrossRef] [PubMed]
- Chennaoui, M.; Léger, D.; Gomez-Merino, D. Sleep and the GH/IGF-1 axis: Consequences and countermeasures of sleep loss/disorders. Sleep. Med. Rev. 2020, 49, 101223. [Google Scholar] [CrossRef]
- Gangitano, E.; Martinez-Sanchez, N.; Bellini, M.I.; Urciuoli, I.; Monterisi, S.; Mariani, S.; Ray, D.; Gnessi, L. Weight Loss and Sleep, Current Evidence in Animal Models and Humans. Nutrients 2023, 15, 3431. [Google Scholar] [CrossRef] [PubMed]
- Gangitano, E.; Tozzi, R.; Mariani, S.; Lenzi, A.; Gnessi, L.; Lubrano, C. Ketogenic Diet for Obese COVID-19 Patients: Is Respiratory Disease a Contraindication? A Narrative Review of the Literature on Ketogenic Diet and Respiratory Function. Front. Nutr. 2021, 8, 771047. [Google Scholar] [CrossRef]
- Gangitano, E.; Baxter, M.; Voronkov, M.; Lenzi, A.; Gnessi, L.; Ray, D. The interplay between macronutrients and sleep: Focus on circadian and homeostatic processes. Front. Nutr. 2023, 10, 1166699. [Google Scholar] [CrossRef] [PubMed]
- Pecora, G.; Sciarra, F.; Gangitano, E.; Venneri, M.A. How Food Choices Impact on Male Fertility. Curr. Nutr. Rep. 2023, 12, 864–876. [Google Scholar] [CrossRef] [PubMed]
- Gangitano, E.; Gnessi, L.; Lenzi, A.; Ray, D. Chronobiology and Metabolism: Is Ketogenic Diet Able to Influence Circadian Rhythm? Front. Neurosci. 2021, 15, 756970. [Google Scholar] [CrossRef] [PubMed]
- Doga, M.; Bonadonna, S.; Gola, M.; Mazziotti, G.; Giustina, A. Growth hormone deficiency in the adult. Pituitary 2006, 9, 305–311. [Google Scholar] [CrossRef]
- Colao, A.; Di Somma, C.; Pivonello, R.; Loche, S.; Aimaretti, G.; Cerbone, G.; Faggiano, A.; Corneli, G.; Ghigo, E.; Lombardi, G. Bone Loss Is Correlated to the Severity of Growth Hormone Deficiency in Adult Patients with Hypopituitarism. J. Clin. Endocrinol. Metab. 1999, 84, 1919–1924. [Google Scholar] [CrossRef]
- Risi, R.; Masieri, S.; Poggiogalle, E.; Watanabe, M.; Caputi, A.; Tozzi, R.; Gangitano, E.; Masi, D.; Mariani, S.; Gnessi, L.; et al. Nickel sensitivity is associated with gh-igf1 axis impairment and pituitary abnormalities on mri in overweight and obese subjects. Int. J. Mol. Sci. 2020, 21, 9733. [Google Scholar] [CrossRef]
- Fornari, R.; Marocco, C.; Francomano, D.; Fittipaldi, S.; Lubrano, C.; Bimonte, V.M.; Donini, L.M.; Nicolai, E.; Aversa, A.; Lenzi, A.; et al. Insulin growth factor-1 correlates with higher bone mineral density and lower inflammation status in obese adult subjects. Eat. Weight Disord. 2018, 23, 375–381. [Google Scholar] [CrossRef]
- Varlamov, E.; McCartney, S.; Fleseriu, M. Growth hormone deficiency and replacement effect on adult bone mass: A clinical update. Curr. Opin. Endocr. Metab. Res. 2018, 3, 7–20. [Google Scholar] [CrossRef]
- Wydra, A.; Czajka-Oraniec, I.; Wydra, J.; Zgliczyński, W. The influence of growth hormone deficiency on bone health and metabolism. Rheumatology 2023, 61, 239–247. [Google Scholar] [CrossRef]
- Prevrhal, S.; Shepherd, J.A.; Faulkner, K.G.; Gaither, K.W.; Black, D.M.; Lang, T.F. Comparison of DXA Hip Structural Analysis with Volumetric QCT. J. Clin. Densitom. 2008, 11, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Ramamurthi, K.; Ahmad, O.; Engelke, K.; Taylor, R.H.; Zhu, K.; Gustafsson, S.; Prince, R.L.; Wilson, K.E. An in vivo comparison of hip structure analysis (HSA) with measurements obtained by QCT. Osteoporos. Int. 2012, 23, 543–551. [Google Scholar] [CrossRef]
- Cook, D.M.; Yuen, K.C.J.; Biller, B.M.K.; Gharib, H.; Mechanick, J.I.; Petak, S.M. American Association of Clinical Endocrinologists Medical Guidelines for Clinical Practice for Growth Hormone Use in Growth Hormone-Deficient Adults and Transition Patients—2009 Update. Endocr. Pract. 2009, 15, 1–29. [Google Scholar] [CrossRef]
- Silva, B.C.; Boutroy, S.; Zhang, C.; McMahon, D.J.; Zhou, B.; Wang, J.; Udesky, J.; Cremers, S.; Sarquis, M.; Guo, X.-D.E.; et al. Trabecular bone score (TBS)-A novel method to evaluate bone microarchitectural texture in patients with primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 2013, 98, 1963–1970. [Google Scholar] [CrossRef] [PubMed]
- Dixit, M.; Poudel, S.B.; Yakar, S. Effects of GH/IGF axis on bone and cartilage. Mol. Cell Endocrinol. 2021, 519, 111052. [Google Scholar] [CrossRef]
- Bouillon, R.; Koledova, E.; Bezlepkina, O.; Nijs, J.; Shavrikhova, E.; Nagaeva, E.; Chikulaeva, O.; Peterkova, V.; Dedov, I.; Bakulin, A.; et al. Bone status and fracture prevalence in Russian adults with childhood-onset growth hormone deficiency. J. Clin. Endocrinol. Metab. 2004, 89, 4993–4998. [Google Scholar] [CrossRef]
- Holmer, H.; Svensson, J.; Rylander, L.; Johannsson, G.; Rosén, T.; Bengtsson, B.; Thorén, M.; Höybye, C.; Degerblad, M.; Bramnert, M.; et al. Fracture incidence in GH-deficient patients on complete hormone replacement including GH. J. Bone Miner. Res. 2007, 22, 1842–1850. [Google Scholar] [CrossRef]
- Bachmann, K.N.; Fazeli, P.K.; Lawson, E.A.; Russell, B.M.; Riccio, A.D.; Meenaghan, E.; Gerweck, A.V.; Eddy, K.; Holmes, T.; Goldstein, M.; et al. Comparison of hip geometry, strength, and estimated fracture risk in women with anorexia nervosa and overweight/obese women. J. Clin. Endocrinol. Metab. 2014, 99, 4664–4673. [Google Scholar] [CrossRef]
- Søgaard, A.J.; Holvik, K.; Omsland, T.K.; Tell, G.S.; Dahl, C.; Schei, B.; Falch, J.A.; Eisman, J.A.; Meyer, H.E. Abdominal obesity increases the risk of hip fracture. A population-based study of 43 000 women and men aged 60–79 years followed for 8 years. Cohort of Norway. J. Intern. Med. 2014, 277, 306–317. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, O.; Saneei, P.; Nasiri, M.; Larijani, B.; Esmaillzadeh, A. Abdominal Obesity and Risk of Hip Fracture: A Systematic Review and Meta-Analysis of Prospective Studies. Adv. Nutr. 2017, 8, 728–738. [Google Scholar] [CrossRef]
- Li, X.; Gong, X.; Jiang, W. Abdominal obesity and risk of hip fracture: A meta-analysis of prospective studies. Osteoporos. Int. 2017, 28, 2747–2757. [Google Scholar] [CrossRef]
- Greco, E.A.; Fornari, R.; Rossi, F.; Santiemma, V.; Prossomariti, G.; Annoscia, C.; Aversa, A.; Brama, M.; Marini, M.; Donini, L.M.; et al. Is obesity protective for osteoporosis? Evaluation of bone mineral density in individuals with high body mass index. Int. J. Clin. Pract. 2010, 64, 817–820. [Google Scholar] [CrossRef] [PubMed]
- Mazziotti, G.; Doga, M.; Frara, S.; Maffezzoni, F.; Porcelli, T.; Cerri, L.; Maroldi, R.; Giustina, A. Incidence of morphometric vertebral fractures in adult patients with growth hormone deficiency. Endocrine 2016, 52, 103–110. [Google Scholar] [CrossRef]
- Rosen, T.; Wilhelmsen, L.; Landin-Wilhelmsen, K.; Lappas, G.; Bengtsson, B. Increased fracture frequency in adult patients with hypopituitarism and GH deficiency. Eur. J. Endocrinol. 1997, 137, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, P.; Jørgensen, J.O.L.; Hagen, C.; Hoeck, H.C.; Laurberg, P.; Rejnmark, L.; Brixen, K.; Weeke, J.; Andersen, M.; Conceicao, F.L.; et al. Fracture risk is increased in patients with GH deficiency or untreated prolactinomas—A case-control study. Clin. Endocrinol. 2002, 56, 159–167. [Google Scholar] [CrossRef]
- Mazziotti, G.; Bianchi, A.; Bonadonna, S.; Nuzzo, M.; Cimino, V.; Fusco, A.; De Marinis, L.; Giustina, A. Increased prevalence of radiological spinal deformities in adult patients with GH deficiency: Influence of GH replacement therapy. J. Bone Miner. Res. 2006, 21, 520–528. [Google Scholar] [CrossRef]
- Wüster, C.; Abs, R.; Bengtsson, B.; Bennmarker, H.; Feldt-Rasmussen, U.; Hernberg-Ståhl, E.; Monson, J.P.; Westberg, B.; Wilton, P. The influence of growth hormone deficiency, growth hormone replacement therapy, and other aspects of hypopituitarism on fracture rate and bone mineral density. J. Bone Miner. Res. 2001, 16, 398–405. [Google Scholar] [CrossRef]
- Mo, D.; Fleseriu, M.; Qi, R.; Jia, N.; Child, C.J.; Bouillon, R.; Hardin, D.S. Fracture risk in adult patients treated with growth hormone replacement therapy for growth hormone deficiency: A prospective observational cohort study. Lancet Diabetes Endocrinol. 2015, 3, 331–338. [Google Scholar] [CrossRef]
- Hazem, A.; Elamin, M.B.; Bancos, I.; Malaga, G.; Prutsky, G.; Domecq, J.P.; A Elraiyah, T.; O Abu Elnour, N.; Prevost, Y.; Almandoz, J.P.; et al. Body composition and quality of life in adults treated with GH therapy: A systematic review and meta-analysis. Eur. J. Endocrinol. 2012, 166, 13–20. [Google Scholar] [CrossRef]
- Rochira, V.; Mossetto, G.; Jia, N.; Cannavo, S.; Beck-Peccoz, P.; Aimaretti, G.; Ambrosio, M.R.; Di Somma, C.; Losa, M.; Ferone, D.; et al. Analysis of characteristics and outcomes by growth hormone treatment duration in adult patients in the Italian cohort of the Hypopituitary Control and Complications Study (HypoCCS). J. Endocrinol. Investig. 2018, 41, 1259–1266. [Google Scholar] [CrossRef] [PubMed]
- Rossini, A.; Lanzi, R.; Galeone, C.; Pelucchi, C.; Pennacchioni, M.; Perticone, F.; Sirtori, M.; Losa, M.; Rubinacci, A. Bone and body composition analyses by DXA in adults with GH deficiency: Effects of long-term replacement therapy. Endocrine 2021, 74, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Szybiak, W.; Kujawa, B.; Miedziaszczyk, M.; Lacka, K. Effect of Growth Hormone and Estrogen Replacement Therapy on Bone Mineral Density in Women with Turner Syndrome: A Meta-Analysis and Systematic Review. Pharmaceuticals 2023, 16, 1320. [Google Scholar] [CrossRef] [PubMed]
- Aycan, Z.; Cetinkaya, E.; Darendeliler, F.; Vidinlisan, S.; Bas, F.; Bideci, A.; Demirel, F.; Darcan, S.; Buyukgebiz, A.; Yildiz, M.; et al. The effect of growth hormone treatment on bone mineral density in prepubertal girls with Turner syndrome: A multicentre prospective clinical trial. Clin. Endocrinol. 2008, 68, 769–772. [Google Scholar] [CrossRef]
- Vaňuga, P.; Kužma, M.; Stojkovičová, D.; Smaha, J.; Jackuliak, P.; Killinger, Z.; Payer, J. The Long-Term Effects of Growth Hormone Replacement on Bone Mineral Density and Trabecular Bone Score: Results of the 10-Year Prospective Follow-up. Physiol. Res. 2021, 70, S61–S68. [Google Scholar] [CrossRef]
- Watson, P.; Lazowski, D.; Han, V.; Fraher, L.; Steer, B.; Hodsman, A. Parathyroid hormone restores bone mass and enhances osteoblast insulin-like growth factor I gene expression in ovariectomized rats. Bone 1995, 16, 357–365. [Google Scholar] [CrossRef]
- Bikle, D.D.; Sakata, T.; Leary, C.; Elalieh, H.; Ginzinger, D.; Rosen, C.J.; Beamer, W.; Majumdar, S.; Halloran, B.P. Insulin-like growth factor I is required for the anabolic actions of parathyroid hormone on mouse bone. J. Bone Miner. Res. 2002, 17, 1570–1578. [Google Scholar] [CrossRef]
- Tritos, N.A. Focus on growth hormone deficiency and bone in adults. Best. Pract. Res. Clin. Endocrinol. Metab. 2017, 31, 49–57. [Google Scholar] [CrossRef]
- Ohlsson, C.; Bengtsson, B.-Å.; Isaksson, P.; Andreassen, T.T.; Slootweg, M.C. Growth hormone and bone. Endocr. Rev. 1998, 19, 55–79. [Google Scholar] [CrossRef]
- Miguel, G.A.; Plá, A.S.; Muñoz, M.L.P.; Díaz-Guerra, G.M.; Hawkins, F. Seven years of follow up of trabecular bone score, bone mineral density, body composition and quality of life in adults with growth hormone deficiency treated with rhGH replacement in a single center. Ther. Adv. Endocrinol. Metab. 2016, 7, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Appelman-Dijkstra, N.M.; Claessen, K.M.J.A.; Hamdy, N.A.T.; Pereira, A.M.; Biermasz, N.R. Effects of up to 15 years of recombinant human GH (rhGH) replacement on bone metabolism in adults with Growth Hormone Deficiency (GHD): The Leiden Cohort Study. Clin. Endocrinol. 2014, 81, 727–735. [Google Scholar] [CrossRef]
- Elbornsson, M.; Gotherstrom, G.; Bosaeus, I.; Bengtsson, B.-A.; Johannsson, G.; Svensson, J. Fifteen years of GH replacement increases bone mineral density in hypopituitary patients with adult-onset GH deficiency. Eur. J. Endocrinol. 2012, 166, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Tritos, N.A.; Hamrahian, A.H.; King, D.; Greenspan, S.L.; Cook, D.M.; Jönsson, P.J.; Koltowska-Häggstrom, M.; Biller, B.M. Predictors of the effects of 4 years of growth hormone replacement on bone mineral density in patients with adult-onset growth hormone deficiency—A KIMS database analysis. Clin. Endocrinol. 2013, 79, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Arwert, L.I.; Roos, J.C.; Lips, P.; Twisk, J.W.R.R.; Manoliu, R.A.; Drent, M.L. Effects of 10 years of growth hormone (GH) replacement therapy in adult GH-deficient men. Clin. Endocrinol. 2005, 63, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Snyder, P.J.; Biller, B.M.; Zagar, A.; Jackson, I.; Arafah, B.M.; Nippoldt, T.B.; Cook, D.M.; Mooradian, A.D.; Kwan, A.; Scism-Bacon, J.; et al. Effect of growth hormone replacement on BMD in adult-onset growth hormone deficiency. J. Bone Miner. Res. 2007, 22, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Barake, M.; Klibanski, A.; Tritos, N.A. Effects of recombinant human growth hormone therapy on bone mineral density in adults with growth hormone deficiency: A meta-analysis. J. Clin. Endocrinol. Metab. 2014, 99, 852–860. [Google Scholar] [CrossRef]
- Clanget, C.; Seck, T.; Hinke, V.; Wu, C.; Ziegler, R.; Pfeilschifter, J. Effects of 6 years of growth hormone (GH) treatment on bone mineral density in GH-deficient adults. Clin. Endocrinol. 2001, 55, 93–99. [Google Scholar] [CrossRef]
- Kužma, M.; Kužmová, Z.; Zelinková, Z.; Killinger, Z.; Vaňuga, P.; Lazurová, I.; Tomková, S.; Payer, J. Impact of the growth hormone replacement on bone status in growth hormone deficient adults. Growth Horm. IGF Res. 2014, 24, 22–28. [Google Scholar] [CrossRef]
- Kužma, M.; Binkley, N.; Bednárová, A.; Killinger, Z.; Vaňuga, P.; Payer, J. Trabecular bone score change differs with regard to 25(OH)D levels in patients treated for adult-onset growth hormone deficiency. Endocr. Pract. 2016, 22, 951–958. [Google Scholar] [CrossRef]
Our Cohort (n = 276) | |
---|---|
Age (years) | 45.08 ± 12.56 |
Height (m) | 1.61 ± 0.07 |
Weight (kg) | 99.93 ± 21.60 |
BMI (kg/m2) | 38.53 ± 7.81 |
WC (cm) | 117.83 ± 16.59 |
HC (cm) | 122.03 ± 13.66 |
WHR | 0.95 ± 0.09 |
Demographic, Anthropometric, and Body Composition Parameters | Controls (n = 179) | GHD (n = 97) | p Value |
---|---|---|---|
Age (years) | 45.25 ± 13.69 | 46.81 ± 10.13 | 0.324 |
Height (m) | 1.61 ± 0.07 | 1.61 ± 0.07 | 0.662 |
Weight (kg) | 95.69 ± 18.12 | 107.74 ± 25.15 | 0.000 |
BMI (kg/m2) | 36.81 ± 6.25 | 41.71 ± 9.30 | 0.000 |
WC (cm) | 113.87 ± 14.88 | 125.07 ± 17.19 | 0.000 |
HC (cm) | 120.92 ± 13.32 | 125.17 ± 14.28 | 0.014 |
WHR | 0.94 ± 0.09 | 0.97 ± 0.10 | 0.011 |
FM % | 42.06 ± 5.04 | 42.70 ± 5.71 | 0.362 |
FFM % | 57.94 ± 5.04 | 57.29 ± 5.71 | 0.362 |
FM (kg) | 39.81 ± 10.66 | 42.98 ± 10.91 | 0.029 |
FFM (kg) | 53.77 ± 8.85 | 56.72 ± 9.49 | 0.016 |
Trunk Fat (kg) | 18.70 ± 5.89 | 20.90 ± 5.78 | 0.005 |
Trunk Fat (%) | 39.74 ± 5.85 | 41.22 ± 6.63 | 0.074 |
Trunk Lean (kg) | 27.19 ± 4.77 | 28.70 ± 4.98 | 0.020 |
UFDI | 1.75± 0.52 | 1.93 ± 0.60 | 0.010 |
Parameter | Controls (n = 179) | GHD (n = 97) | p Value |
---|---|---|---|
AUC GH after GHRH + Arg (ng/mL/h) | 524.39 ± 389.13 | 119.69 ± 69.72 | 0.000 |
Peak (ng/mL) | 17.07 ± 12.47 | 3.48 ± 1.85 | 0.000 |
IGF-1 (ng/mL) | 145.95 ± 68.15 | 133.89 ± 55.31 | 0.136 |
Bone Parameters | Controls (n = 179) | GHD (n = 97) | p Value |
---|---|---|---|
Lumbar T-score | −0.07 ± 1.43 | −0.07 ± 1.51 | 0.994 |
Lumbar BMD (g/cm2) | 1.04 ± 0.153 | 1.05 ± 0.16 | 0.772 |
Hip T-score | 0.42 ± 1.19 | 0.77 ± 1.21 | 0.037 |
Hip BMD (g/cm2) | 0.99 ± 0.15 | 1.02 ± 0.16 | 0.103 |
TBS | 1.27 ± 0.14 | 1.21 ± 0.15 | 0.011 |
TB BMD (g/cm2) | 1.09 ± 0.12 | 1.13 ± 0.12 | 0.022 |
NN CSA (cm2) | 3.20 ± 0.55 | 3.19 ± 0.58 | 0.901 |
NN CSMI (cm4) | 2.87 ± 0.74 | 2.81 ± 0.96 | 0.630 |
NN Z (cm3) | 1.53 ± 0.33 | 1.49 ± 0.39 | 0.552 |
NN Cort (cm) | 0.19 ± 0.04 | 0.19 ± 0.04 | 0.872 |
NN BR | 10.36 ± 2.83 | 10.28 ± 2.94 | 0.885 |
IT CSA (cm2) | 5.51 ± 1.05 | 5.83 ± 1.25 | 0.073 |
IT CSMI (cm4) | 14.82 ± 4.19 | 15.99 ± 5.89 | 0.129 |
IT Z (cm3) | 4.72 ± 1.15 | 5.07 ± 1.47 | 0.087 |
IT Cort (cm) | 0.44 ± 0.09 | 0.45 ± 0.10 | 0.439 |
IT BR | 7.38 ± 1.74 | 7.16 ± 1.63 | 0.433 |
FS CSA (cm2) | 4.62 ± 0.79 | 4.89 ± 0.89 | 0.043 |
FS CSMI (cm4) | 4.04 ± 1.11 | 4.48 ± 1.46 | 0.029 |
FS Z (cm3) | 2.55 ± 0.53 | 2.74 ± 0.66 | 0.038 |
FS Cort (cm) | 0.61 ± 0.12 | 0.62 ± 0.12 | 0.463 |
FS BR | 2.66 ± 0.63 | 2.68 ± 0.62 | 0.868 |
Bone Parameters/BMI | Controls (n = 179) | GHD (n = 97) | p Value |
---|---|---|---|
Lumbar BMD (g/cm2)/BMI(g/cm2) | 0.29 ± 0.06 | 0.27 ± 0.05 | 0.004 |
TBS/BMI (g/cm2) | 0.36 ± 0.08 | 0.31 ± 0.08 | 0.001 |
Hip BMD (g/cm2)/BMI (g/cm2) | 0.27 ± 0.05 | 0.26 ± 0.04 | 0.030 |
NN CSA (cm2)/BMI (g/cm2) | 0.034 ± 0.01 | 0.031 ± 0.01 | 0.012 |
NN Cort/BMI (cm)/BMI (g/cm2) | 0.05 ± 0.01 | 0.049 ± 0.01 | 0.011 |
IT CSA (cm2)/BMI (g/cm2) | 1.52 ± 0.27 | 1.50 ± 0.34 | 0.569 |
IT Cort (cm)/BMI (g/cm2) | 0.12 ± 0.03 | 0.11 ± 0.02 | 0.072 |
FS CSA (cm2)/BMI (g/cm2) | 1.27 ± 0.19 | 1.25 ± 0.24 | 0.439 |
FS Cort (cm)/BMI (g/cm2) | 0.17 ± 0.03 | 0.16 ± 0.03 | 0.026 |
Bone Quality Parameters | Before Correction for BMI | After Correction for BMI | ||
---|---|---|---|---|
r | p Value | r | p Value | |
TBS | 0.253 | 0.000 | 0.414 | 0.000 |
NN CSA (cm2) | −0.178 | 0.006 | 0.233 | 0.000 |
DXA Parameter/BMI | r | p Value |
---|---|---|
Lumbar BMD (g/cm2)/BMI (gr/cm2) | 0.262 | 0.000 |
Hip BMD(g/cm2)/BMI (gr/cm2) | 0.205 | 0.000 |
TBS (g/cm2)/BMI (gr/cm2) | 0.414 | 0.000 |
NN CSA (cm2) (g/cm2)/BMI (gr/cm2) | 0.233 | 0.000 |
NN Cort (cm) (g/cm2)/BMI (gr/cm2) | 0.199 | 0.005 |
IT CSA (cm2) (g/cm2)/BMI (gr/cm2) | 0.089 | 0.222 |
IT Cort (cm) (g/cm2)/BMI (gr/cm2) | 0.183 | 0.010 |
FS CSA (cm2) (g/cm2)/BMI (gr/cm2) | 0.053 | 0.467 |
FS Cort (cm) (g/cm2)/BMI (gr/cm2) | 0.140 | 0.050 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gangitano, E.; Curreli, M.I.; Gandini, O.; Masi, D.; Spoltore, M.E.; Gnessi, L.; Lubrano, C. Bone Quality Indices Correlate with Growth Hormone Secretory Capacity in Women Affected by Weight Excess: A Cross-Sectional Study. J. Clin. Med. 2024, 13, 5064. https://doi.org/10.3390/jcm13175064
Gangitano E, Curreli MI, Gandini O, Masi D, Spoltore ME, Gnessi L, Lubrano C. Bone Quality Indices Correlate with Growth Hormone Secretory Capacity in Women Affected by Weight Excess: A Cross-Sectional Study. Journal of Clinical Medicine. 2024; 13(17):5064. https://doi.org/10.3390/jcm13175064
Chicago/Turabian StyleGangitano, Elena, Maria Ignazia Curreli, Orietta Gandini, Davide Masi, Maria Elena Spoltore, Lucio Gnessi, and Carla Lubrano. 2024. "Bone Quality Indices Correlate with Growth Hormone Secretory Capacity in Women Affected by Weight Excess: A Cross-Sectional Study" Journal of Clinical Medicine 13, no. 17: 5064. https://doi.org/10.3390/jcm13175064
APA StyleGangitano, E., Curreli, M. I., Gandini, O., Masi, D., Spoltore, M. E., Gnessi, L., & Lubrano, C. (2024). Bone Quality Indices Correlate with Growth Hormone Secretory Capacity in Women Affected by Weight Excess: A Cross-Sectional Study. Journal of Clinical Medicine, 13(17), 5064. https://doi.org/10.3390/jcm13175064