Kidney Transplantation and Cellular Immunity Dynamics: Immune Cell Alterations and Association with Clinical and Laboratory Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Flow Cytometry
2.3. Statistics
3. Results
3.1. Patient Characteristics
3.2. Changes in Immune Cell Phenotype during Follow-Up
3.3. Effect of Clinical and Laboratory Parameters in Adaptive Immunity during Follow-Up
3.3.1. Role of Peri-Transplantation Circumstances
3.3.2. The Role of Renal Function Outcomes after Renal Transplantation
3.3.3. Role of Lymphocyte Subsets in Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sampani, E.; Stangou, M.; Daikidou, D.; Nikolaidou, V.; Asouchidou, D.; Dimitriadis, C.; Lioulios, G.; Xochelli, A.; Fylaktou, A.; Papagianni, A. Influence of end stage renal disease on CD28 expression and T-cell immunity. Nephrology 2020, 26, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Lioulios, G.; Fylaktou, A.; Papagianni, A.; Stangou, M. T cell markers recount the course of immunosenescence in healthy individuals and chronic kidney disease. Clin. Immunol. 2021, 225, 108685. [Google Scholar] [CrossRef]
- Alelign, T.; Ahmed, M.M.; Bobosha, K.; Tadesse, Y.; Howe, R.; Petros, B. Kidney Transplantation: The Challenge of Human Leukocyte Antigen and Its Therapeutic Strategies. J. Immunol. Res. 2018, 2018, 5986740. [Google Scholar] [CrossRef] [PubMed]
- van Walraven, C.; Austin, P.C.; Knoll, G. Predicting potential survival benefit of renal transplantation in patients with chronic kidney disease. Can. Med. Assoc. J. 2010, 182, 666–672. [Google Scholar] [CrossRef]
- Raynaud, M.; Aubert, O.; Divard, G.; Reese, P.P.; Kamar, N.; Yoo, D.; Chin, C.-S.; Bailly, É.; Buchler, M.; Ladrière, M.; et al. Dynamic prediction of renal survival among deeply phenotyped kidney transplant recipients using artificial intelligence: An observational, international, multicohort study. Lancet Digit. Health 2021, 3, e795–e805. [Google Scholar] [CrossRef]
- Clayton, P.A.; Lim, W.H.; Wong, G.; Chadban, S.J. Relationship between eGFR Decline and Hard Outcomes after Kidney Transplants. J. Am. Soc. Nephrol. 2016, 27, 3440–3446. [Google Scholar] [CrossRef]
- Siu, J.H.Y.; Surendrakumar, V.; Richards, J.A.; Pettigrew, G.J. T cell Allorecognition Pathways in Solid Organ Transplantation. Front. Immunol. 2018, 9, 2548. [Google Scholar] [CrossRef] [PubMed]
- Le Mai, H.; Le Mai, H.; Degauque, N.; Degauque, N.; Le Bot, S.; Le Bot, S.; Rimbert, M.; Rimbert, M.; Renaudin, K.; Renaudin, K.; et al. Antibody-mediated allograft rejection is associated with an increase in peripheral differentiated CD28-CD8+ T cells—Analyses of a cohort of 1032 kidney transplant recipients. eBioMedicine 2022, 83, 104226. [Google Scholar] [CrossRef]
- Yong, Z.; Chang, L.; Mei, Y.X.; Yi, L. Role and mechanisms of CD4+CD25+ regulatory T cells in the induction and maintenance of transplantation tolerance. Transpl. Immunol. 2007, 17, 120–129. [Google Scholar] [CrossRef]
- Pontrelli, P.; Rascio, F.; Castellano, G.; Grandaliano, G.; Gesualdo, L.; Stallone, G. The Role of Natural Killer Cells in the Immune Response in Kidney Transplantation. Front. Immunol. 2020, 11, 1454. [Google Scholar] [CrossRef]
- Lim, W.H.; Clayton, P.; Wong, G.; Dogra, G.; Budgeon, C.A.; Murray, K.; Campbell, S.B.; Cohney, S.; Russ, G.R.; Polkinghorne, K.R.; et al. Association between initial and pretransplant dialysis modality and graft and patient outcomes in live- and deceased-donor renal transplant recipients. Transpl. Int. 2012, 25, 1032–1040. [Google Scholar] [CrossRef] [PubMed]
- Betjes, M.G.H.; Langerak, A.W.; Klepper, M.; Litjens, N.H.R. A very low thymus function identifies patients with substantial increased risk for long-term mortality after kidney transplantation. Immun. Ageing 2020, 17, 4. [Google Scholar] [CrossRef] [PubMed]
- Schaier, M.; Leick, A.; Uhlmann, L.; Kälble, F.; Morath, C.; Eckstein, V.; Ho, A.; Mueller-Tidow, C.; Meuer, S.; Mahnke, K.; et al. End-stage renal disease, dialysis, kidney transplantation and their impact on CD4+ T-cell differentiation. Immunology 2018, 155, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Rondaan, C.; de Joode, A.A.E.; Raveling-Eelsing, E.; Bos, N.A.; Westra, J. Changes in T and B cell subsets in end stage renal disease patients before and after kidney transplantation. Immun. Ageing 2021, 18, 43. [Google Scholar] [CrossRef]
- Zhu, L.; Aly, M.; Wang, H.; Karakizlis, H.; Weimer, R.; Morath, C.; Kuon, R.J.; Toth, B.; Ekpoom, N.; Opelz, G.; et al. Increased natural killer cell subsets with inhibitory cytokines and inhibitory surface receptors in patients with recurrent miscarriage and decreased or normal subsets in kidney transplant recipients late post-transplant. Clin. Exp. Immunol. 2018, 193, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Krajewska, M.; Kościelska-Kasprzak, K.; Kamińska, D.; Żabińska, M.; Myszka-Kozłowska, M.; Gomułkiewicz, A.; Dzięgiel, P.; Klinger, M. Kidney Transplant Outcome Is Associated with Regulatory T Cell Population and Gene Expression Early after Transplantation. J. Immunol. Res. 2019, 2019, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Cheung, J.; Zahorowska, B.; Suranyi, M.; Wong, J.K.W.; Diep, J.; Spicer, S.T.; Verma, N.D.; Hodgkinson, S.J.; Hall, B.M. CD4+CD25+ T regulatory cells in renal transplantation. Front. Immunol. 2022, 13, 1017683. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Braza, F.; Durand, M.; Degauque, N.; Brouard, S. Regulatory T Cells in Kidney Transplantation: New Directions? Am. J. Transplant. 2015, 15, 2288–2300. [Google Scholar] [CrossRef]
- Bestard, O.; Cruzado, J.M.; Lucia, M.; Crespo, E.; Casis, L.; Sawitzki, B.; Vogt, K.; Cantarell, C.; Torras, J.; Melilli, E.; et al. Prospective assessment of antidonor cellular alloreactivity is a tool for guidance of immunosuppression in kidney transplantation. Kidney Int. 2013, 84, 1226–1236. [Google Scholar] [CrossRef]
- van der Vliet, J.A.; Warlé, M.C. The need to reduce cold ischemia time in kidney transplantation. Curr. Opin. Organ Transplant. 2013, 18, 174–178. [Google Scholar] [CrossRef]
- Mealer, C.; Konsek, H.; Travis, Z.; Suk, R.N.; Rajab, T.K. Mechanisms of Cold Preservation and Reperfusion Injury for Solid Organ Transplantation: Implications for Partial Heart Transplantations. Transplantology 2023, 4, 124–138. [Google Scholar] [CrossRef]
- Tang, Q.; Dong, C.; Sun, Q. Immune response associated with ischemia and reperfusion injury during organ transplantation. Inflamm. Res. 2022, 71, 1463–1476. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-X.; Huang, X.; Jiang, J.; Lau, A.; Yin, Z.; Liu, W.; Haig, A.; Jevnikar, A.M. Natural Killer Cells Mediate Long-term Kidney Allograft Injury. Transplantation 2015, 99, 916–924. [Google Scholar] [CrossRef]
- Mishra, S.; Srinivasan, S.; Ma, C.; Zhang, N. CD8+ Regulatory T Cell—A Mystery to Be Revealed. Front. Immunol. 2021, 12, 708874. [Google Scholar] [CrossRef] [PubMed]
- Santarsiero, D.; Aiello, S. The Complement System in Kidney Transplantation. Cells 2023, 12, 791. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krüger, B.; Krick, S.; Dhillon, N.; Lerner, S.M.; Ames, S.; Bromberg, J.S.; Lin, M.; Walsh, L.; Vella, J.; Fischereder, M.; et al. Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation. Proc. Natl. Acad. Sci. USA 2009, 106, 3390–3395. [Google Scholar] [CrossRef]
- Caprara, C.; Corradi, V.; Scalzotto, E.; Frigo, A.C.; Proglio, M.; Sharma, R.; Ronco, C. Differential effects of peritoneal and hemodialysis on circulating regulatory T cells one month post initiation of renal replacement therapy. Clin. Nephrol. 2021, 95, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Nagai, K. Dysfunction of natural killer cells in end-stage kidney disease on hemodialysis. Ren. Replace. Ther. 2021, 7, 8. [Google Scholar] [CrossRef]
- Duni, A.; Vartholomatos, G.; Balafa, O.; Ikonomou, M.; Tseke, P.; Lakkas, L.; Rapsomanikis, K.P.; Kitsos, A.; Theodorou, I.; Pappas, C.; et al. The Association of Circulating CD14++CD16+ Monocytes, Natural Killer Cells and Regulatory T Cells Subpopulations with Phenotypes of Cardiovascular Disease in a Cohort of Peritoneal Dialysis Patients. Front. Med. 2021, 8, 724316. [Google Scholar] [CrossRef]
- Vacher-Coponat, H.; Brunet, C.; Lyonnet, L.; Bonnet, E.; Loundou, A.; Sampol, J.; Moal, V.; Dussol, B.; Brunet, P.; Berland, Y.; et al. Natural killer cell alterations correlate with loss of renal function and dialysis duration in uraemic patients. Nephrol. Dial. Transplant. 2007, 23, 1406–1414. [Google Scholar] [CrossRef]
- Zhuang, Q.; Cai, H.; Yang, M.; Peng, B.; Luo, Y.; Zhang, Y.; Ming, Y. The Association between Regulatory T Cell Subpopulations and Severe Pneumonia Post Renal Transplantation. J. Immunol. Res. 2022, 2022, 8720438. [Google Scholar] [CrossRef] [PubMed]
- Thibaudin, D.; Alamartine, E.; Mariat, C.; Absi, L.; Berthoux, F. Long-term Kinetic of T-lymphocyte Subsets in Kidney-Transplant Recipients: Influence of Anti–T-cell Antibodies and Association with Posttransplant Malignancies. Transplantation 2005, 80, 1514–1517. [Google Scholar] [CrossRef] [PubMed]
- Calarota, S.A.; Zelini, P.; De Silvestri, A.; Chiesa, A.; Comolli, G.; Sarchi, E.; Migotto, C.; Pellegrini, C.; Esposito, P.; Minoli, L.; et al. Kinetics of T-Lymphocyte Subsets and Posttransplant Opportunistic Infections in Heart and Kidney Transplant Recipients. Transplantation 2012, 93, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, P.; Chadban, S.J.; Atkins, R.C.; Holdsworth, S.R. Laboratory assessment of immune function in renal transplant patients. Nephrol. Dial. Transplant. 2003, 18, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Luque, Y.; Jamme, M.; Rabant, M.; DeWolf, S.; Noël, L.-H.; Thervet, E.; Chatenoud, L.; Snanoudj, R.; Anglicheau, D.; Legendre, C.; et al. Long-term CD4 lymphopenia is associated with accelerated decline of kidney allograft function. Nephrol. Dial. Transplant. 2015, 31, 487–495. [Google Scholar] [CrossRef] [PubMed]
Recipients’ Characteristics | N = 112 |
---|---|
Male/Female, N (%) | 77/35 (68.8/31.3%) |
Age (yrs) | 48.5 (39–57) |
Primary kidney disease, N (%) | |
Nephrosclerosis/hypertension | 6 (5.3%) |
Primary glomerulopathies | 26 (23%) |
Diabetes mellitus | 6 (5.3%) |
Urinary tract infections/stones | 6 (5.3%) |
Reflux nephropathy | 13 (11.6%) |
Polycystic kidney disease | 24 (21.4%) |
Other | 16 (14.2%) |
Unknown | 15 (13.3%) |
Dialysis Data, N (%) | |
HD/PD | 89/11 (79.5/9.8%) |
Dialysis vintage (months) | 87 (34–127) |
Preemptive transplantation | 12 (10.7%) |
Retransplantation | 10 (8.9%) |
Transplantation | |
Cold ischemia time (hours) | 17 (0–19) |
Delayed graft function, Ν (%) | 20 (17.9%) |
Rejection, N (%) | 7 (6.3%) |
Infections, N (%), | 13 (11.6%) |
Induction with basiliximab | 106 (94.6%) |
Treatment with anti-thymocyte globulin, N (%) | 17 (15.2%) |
Donors’ characteristics | |
Male/Female | 58/54 (51.8/48.2%) |
Age (years) | 53 (14–76) |
Marginal donor, Ν (%) | 6 (5.4%) |
Donor cause of death | |
Anoxia | 4 (3.6%) |
CVA | 60 (53.6%) |
Trauma | 19 (17.0%) |
Donor relationship, N (%) | |
CD/LD | 83/29 (74.1/25.9%) |
T Cell Subsets | T0 | T3 | T6 | T12 | p |
---|---|---|---|---|---|
T cells (cells/μL) | 1200 (1000–1600) | 1600 (1200–2300) | 1700 (1300–2300) | 1700 (1400–2300) | <0.001 |
T cells (%) | 18.3 (14.8–24) | 21.8 (16.8–31.5) | 24 (20.2–31.6) | 25.1 (20.3–31.6) | <0.001 |
CD4+ (cells/μL) | 483 (384–707) | 769 (526–1142) | 807 (574–1116) | 819 (600–1107) | <0.001 |
CD4+ (%) | 41.4 (36.1–48.7) | 47.4 (40.5–53.4) | 46.5 (40.3–53.4) | 46.8 (38.3–53.9) | <0.001 |
CD8+ (cells/μL) | 310 (215–416) | 437 (291–633) | 499 (341–648) | 534 (387–743) | <0.001 |
CD8+ (%) | 24.6 (20.4–30.1) | 26.9 (21.7–32) | 28.3 (24.1–34) | 29.1 (24–38) | <0.001 |
NK cells (cells/μL) | 210 (152–307) | 151 (86–245) | 150 (105–270) | 150 (106–299) | <0.001 |
NK cells (%) | 17.6 (11.8–25.2) | 8.9 (5.4–14.9) | 9.2 (6.1–16.5) | 8.7 (6–15.2) | <0.001 |
Tregs (cells/μL) | 24 (15–33) | 29 (18–51) | 33 (24–48) | 33 (21–48) | <0.001 |
Tregs (%) | 2.2 (1.4–3.1) | 2.2 (1.5–3) | 2.1 (1.5–2.9) | 2.1 (1.5–2.8) | 0.28 |
Univariate Regression | Multivariate Regression | ||||||||
---|---|---|---|---|---|---|---|---|---|
95% Confidence Interval | 95% Confidence Interval | ||||||||
T cells | β | R2 | p | lower | upper | β | p | lower | upper |
Age | −0.41 | 0.17 | <0.001 | −29.8 | −11.7 | −0.32 | 0.001 | −26.5 | −6.6 |
DV | −0.29 | 0.08 | 0.002 | −6.2 | −1.4 | −0.06 | 0.6 | −3.9 | 2.3 |
CIT | −0.31 | 0.09 | 0.001 | −38.2 | −9.8 | −0.14 | 0.23 | −29.5 | 7.1 |
CD4+ T cells | |||||||||
Age | −0.42 | 0.18 | <0.001 | −16.7 | −6.8 | −0.33 | 0.001 | −14.8 | −3.9 |
DV | −0.31 | 0.09 | 0.001 | −3.5 | −0.8 | −0.08 | 0.5 | −2.2 | 1.2 |
CIT | −0.32 | 0.1 | 0.001 | −21.2 | −5.6 | −0.13 | 0.25 | −15.8 | 4.2 |
CD8+ T cells | |||||||||
Age | −0.21 | 0.04 | 0.03 | −9.1 | −0.5 | −0.15 | 0.14 | −8.09 | 1.1 |
DV | −0.16 | 0.03 | 0.08 | −2 | 0.13 | ||||
CIT | −0.22 | 0.05 | 0.02 | −14.01 | −1.02 | −0.16 | 0.12 | −12.5 | 1.4 |
eGFR ≤ 50 | eGFR > 50 | |
---|---|---|
T cells T0 | 1200 (1000–1600) | 1200 (1000–1600) |
T cells T12 | 1600 (1200–1885) | 1900 (1500–2400) |
p | 0.01 | <0.001 |
CD4+ T cells T0 | 522 (364–827) | 481 (386–704) |
CD4+ T cells T12 | 628 (458–893) | 857 (616–1122) |
p | 0.12 | <0.001 |
CD8+ T cells T0 | 308 (182–387) | 314 (227–421) |
CD8+ T cells T12 | 467 (367–672) | 542 (389–767) |
p | <0.001 | <0.001 |
Natural Killers T0 | 225 (152–307) | 148 (103–332) |
Natural Killers T12 | 195 (107–297) | 198 (145–319) |
p | 0.14 | 0.04 |
Regulatory T cells T0 | 26 (14–38) | 23 (15–32) |
Regulatory T cells T12 | 26 (20–42) | 34 (23–49) |
p | 0.44 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vagiotas, L.; Lioulios, G.; Panteli, M.; Ouranos, K.; Xochelli, A.; Kasimatis, E.; Nikolaidou, V.; Samali, M.; Daoudaki, M.; Katsanos, G.; et al. Kidney Transplantation and Cellular Immunity Dynamics: Immune Cell Alterations and Association with Clinical and Laboratory Parameters. J. Clin. Med. 2024, 13, 5093. https://doi.org/10.3390/jcm13175093
Vagiotas L, Lioulios G, Panteli M, Ouranos K, Xochelli A, Kasimatis E, Nikolaidou V, Samali M, Daoudaki M, Katsanos G, et al. Kidney Transplantation and Cellular Immunity Dynamics: Immune Cell Alterations and Association with Clinical and Laboratory Parameters. Journal of Clinical Medicine. 2024; 13(17):5093. https://doi.org/10.3390/jcm13175093
Chicago/Turabian StyleVagiotas, Lampros, Georgios Lioulios, Manolis Panteli, Konstantinos Ouranos, Aliki Xochelli, Efstratios Kasimatis, Vasiliki Nikolaidou, Margarita Samali, Maria Daoudaki, Georgios Katsanos, and et al. 2024. "Kidney Transplantation and Cellular Immunity Dynamics: Immune Cell Alterations and Association with Clinical and Laboratory Parameters" Journal of Clinical Medicine 13, no. 17: 5093. https://doi.org/10.3390/jcm13175093
APA StyleVagiotas, L., Lioulios, G., Panteli, M., Ouranos, K., Xochelli, A., Kasimatis, E., Nikolaidou, V., Samali, M., Daoudaki, M., Katsanos, G., Antoniadis, N., Tsoulfas, G., Stangou, M., & Fylaktou, A. (2024). Kidney Transplantation and Cellular Immunity Dynamics: Immune Cell Alterations and Association with Clinical and Laboratory Parameters. Journal of Clinical Medicine, 13(17), 5093. https://doi.org/10.3390/jcm13175093