Two Members of Vitamin-K-Dependent Proteins, Gla-Rich Protein (GRP) and Matrix Gla Protein (MGP), as Possible New Players in the Molecular Mechanism of Osteoarthritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Population
2.2. Measurements of GRP and MGP
2.3. Statistical Analysis
3. Results
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fazio, A.; Di Martino, A.; Brunello, M.; Traina, F.; Marvi, M.V.; Mazzotti, A.; Faldini, C.; Manzoli, L.; Evangelisti, C.; Ratti, S. The involvement of signaling pathways in the pathogenesis of osteoarthritis: An update. J. Orthop. Transl. 2024, 47, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Miao, M.Z.; Lee, J.S.; Yamada, K.M.; Loeser, R.F. Integrin signalling in joint development, homeostasis and osteoarthritis. Nat. Rev. Rheumatol. 2024, 20, 492–509. [Google Scholar] [CrossRef] [PubMed]
- Coppola, C.; Greco, M.; Munir, A.; Musaro, D.; Quarta, S.; Massaro, M.; Lionetto, M.G.; Maffia, M. Osteoarthritis: Insights into Diagnosis, Pathophysiology, Therapeutic Avenues, and the Potential of Natural Extracts. Curr. Issues Mol. Biol. 2024, 46, 4063–4105. [Google Scholar] [CrossRef] [PubMed]
- KarpiŃSki, R.; Krakowski, P.; Jonak, J.; Machrowska, A.; Maciejewski, M. Comparison of Selected Classification Methods Based on Machine Learning as a Diagnostic Tool for Knee Joint Cartilage Damage Based on Generated Vibroacoustic Processes. Appl. Comput. Sci. 2023, 19, 136–150. [Google Scholar] [CrossRef]
- Lee, A.S.; Ellman, M.B.; Yan, D.; Kroin, J.S.; Cole, B.J.; van Wijnen, A.J.; Im, H.J. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene 2013, 527, 440–447. [Google Scholar] [CrossRef]
- Sampath, S.J.P.; Venkatesan, V.; Ghosh, S.; Kotikalapudi, N. Obesity, Metabolic Syndrome, and Osteoarthritis—An Updated Review. Curr. Obes. Rep. 2023, 12, 308–331. [Google Scholar] [CrossRef]
- Motta, F.; Barone, E.; Sica, A.; Selmi, C. Inflammaging and Osteoarthritis. Clin. Rev. Allergy Immunol. 2023, 64, 222–238. [Google Scholar] [CrossRef]
- Nedunchezhiyan, U.; Varughese, I.; Sun, A.R.; Wu, X.; Crawford, R.; Prasadam, I. Obesity, Inflammation, and Immune System in Osteoarthritis. Front. Immunol. 2022, 13, 907750. [Google Scholar] [CrossRef]
- Cavaco, S.; Viegas, C.S.; Rafael, M.S.; Ramos, A.; Magalhaes, J.; Blanco, F.J.; Vermeer, C.; Simes, D.C. Gla-rich protein is involved in the cross-talk between calcification and inflammation in osteoarthritis. Cell Mol. Life Sci. 2016, 73, 1051–1065. [Google Scholar] [CrossRef]
- Bernabei, I.; So, A.; Busso, N.; Nasi, S. Cartilage calcification in osteoarthritis: Mechanisms and clinical relevance. Nat. Rev. Rheumatol. 2023, 19, 10–27. [Google Scholar] [CrossRef]
- Stock, M.; Schett, G. Vitamin K-Dependent Proteins in Skeletal Development and Disease. Int. J. Mol. Sci. 2021, 22. [Google Scholar] [CrossRef] [PubMed]
- Viegas, C.S.B.; Costa, R.M.; Santos, L.; Videira, P.A.; Silva, Z.; Araujo, N.; Macedo, A.L.; Matos, A.P.; Vermeer, C.; Simes, D.C. Gla-rich protein function as an anti-inflammatory agent in monocytes/macrophages: Implications for calcification-related chronic inflammatory diseases. PLoS ONE 2017, 12, e0177829. [Google Scholar] [CrossRef] [PubMed]
- Bjorklund, G.; Svanberg, E.; Dadar, M.; Card, D.J.; Chirumbolo, S.; Harrington, D.J.; Aaseth, J. The Role of Matrix Gla Protein (MGP) in Vascular Calcification. Curr. Med. Chem. 2020, 27, 1647–1660. [Google Scholar] [CrossRef]
- Ghosh, S.; Oldenburg, J.; Czogalla-Nitsche, K.J. The Role of GRP and MGP in the Development of Non-Hemorrhagic VKCFD1 Phenotypes. Int. J. Mol. Sci. 2022, 23, 798. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Chen, J.; Duan, L.; Li, S. Role of emerging vitamin K-dependent proteins: Growth arrest-specific protein 6, Gla-rich protein and periostin (Review). Int. J. Mol. Med. 2021, 47. [Google Scholar] [CrossRef]
- Silva, A.P.; Viegas, C.S.; Mendes, F.; Macedo, A.; Guilherme, P.; Tavares, N.; Dias, C.; Rato, F.; Santos, N.; Faisca, M.; et al. Gla-Rich Protein (GRP) as an Early and Novel Marker of Vascular Calcification and Kidney Dysfunction in Diabetic Patients with CKD: A Pilot Cross-Sectional Study. J. Clin. Med. 2020, 9, 635. [Google Scholar] [CrossRef]
- Viegas, C.S.B.; Simes, D.C.; Laize, V.; Williamson, M.K.; Price, P.A.; Cancela, M.L. Gla-rich Protein (GRP), A New Vitamin K-dependent Protein Identified from Sturgeon Cartilage and Highly Conserved in Vertebrates. J. Biol. Chem. 2008, 283, 36655–36664. [Google Scholar] [CrossRef]
- Viegas, C.S.B.; Cavaco, S.; Neves, P.L.; Ferreira, A.; João, A.; Williamson, M.K.; Price, P.A.; Cancela, M.L.; Simes, D.C. Gla-Rich Protein Is a Novel Vitamin K-Dependent Protein Present in Serum That Accumulates at Sites of Pathological Calcifications. Am. J. Pathol. 2009, 175, 2288–2298. [Google Scholar] [CrossRef]
- Demirci, R.; Sevinc, C. The Relationship Between Carotid Intima Media Thickness, Inflammation and GLA Rich Protein Levels in Chronic Kidney Disease. Int. J. Gen. Med. 2021, 14, 5119–5126. [Google Scholar] [CrossRef]
- Ghasemi, A.; Zahediasl, S. Normality tests for statistical analysis: A guide for non-statisticians. Int. J. Endocrinol. Metab. 2012, 10, 486–489. [Google Scholar] [CrossRef]
- McHugh, M.L. The chi-square test of independence. Biochem. Med. 2013, 23, 143–149. [Google Scholar] [CrossRef]
- Kim, T.K. Understanding one-way ANOVA using conceptual figures. Korean J. Anesth. 2017, 70, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Mukaka, M.M. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar]
- Jarantow, S.W.; Pisors, E.D.; Chiu, M.L. Introduction to the Use of Linear and Nonlinear Regression Analysis in Quantitative Biological Assays. Curr. Protoc. 2023, 3, e801. [Google Scholar] [CrossRef] [PubMed]
- Stack, J.; McCarthy, G.M. Cartilage calcification and osteoarthritis: A pathological association? Osteoarthr. Cartil. 2020, 28, 1301–1302. [Google Scholar] [CrossRef]
- Coaccioli, S.; Sarzi-Puttini, P.; Zis, P.; Rinonapoli, G.; Varrassi, G. Osteoarthritis: New Insight on Its Pathophysiology. J. Clin. Med. 2022, 11, 6013. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Zhang, C.; Lu, Y.; Yuan, F. The molecular mechanism research of cartilage calcification induced by osteoarthritis. Bioengineered 2022, 13, 13082–13088. [Google Scholar] [CrossRef]
- Park, S.; Bello, A.; Arai, Y.; Ahn, J.; Kim, D.; Cha, K.Y.; Baek, I.; Park, H.; Lee, S.H. Functional Duality of Chondrocyte Hypertrophy and Biomedical Application Trends in Osteoarthritis. Pharmaceutics 2021, 13, 1139. [Google Scholar] [CrossRef]
- Hubert, J.; Beil, F.T.; Rolvien, T.; Butscheidt, S.; Hischke, S.; Puschel, K.; Frosch, S.; Mussawy, H.; Ries, C.; Hawellek, T. Cartilage calcification is associated with histological degeneration of the knee joint: A highly prevalent, age-independent systemic process. Osteoarthr. Cartil. 2020, 28, 1351–1361. [Google Scholar] [CrossRef]
- Fuerst, M.; Bertrand, J.; Lammers, L.; Dreier, R.; Echtermeyer, F.; Nitschke, Y.; Rutsch, F.; Schafer, F.K.; Niggemeyer, O.; Steinhagen, J.; et al. Calcification of articular cartilage in human osteoarthritis. Arthritis Rheum. 2009, 60, 2694–2703. [Google Scholar] [CrossRef]
- Liew, J.W.; Jarraya, M.; Guermazi, A.; Lynch, J.; Felson, D.; Nevitt, M.; Lewis, C.E.; Torner, J.; Roemer, F.W.; Crema, M.D.; et al. Intra-Articular Mineralization on Computerized Tomography of the Knee and Risk of Cartilage Damage: The Multicenter Osteoarthritis Study. Arthritis Rheumatol. 2024, 76, 1054–1061. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.; Ma, Z.; Yang, M.; Cong, L.; Zhao, R.; Cheng, L.; Sun, J.; Wang, Y.; Yang, R.; Wei, X.; et al. The Level of Histone Deacetylase 4 is Associated with Aging Cartilage Degeneration and Chondrocyte Hypertrophy. J. Inflamm. Res. 2022, 15, 3547–3560. [Google Scholar] [CrossRef] [PubMed]
- Ferrao Blanco, M.N.; Domenech Garcia, H.; Legeai-Mallet, L.; van Osch, G. Tyrosine kinases regulate chondrocyte hypertrophy: Promising drug targets for Osteoarthritis. Osteoarthr. Cartil. 2021, 29, 1389–1398. [Google Scholar] [CrossRef] [PubMed]
- Schrenker, S.; Cucchiarini, M.; Goebel, L.; Olah, T.; Venkatesan, J.K.; Schmitt, G.; Speicher-Mentges, S.; Maihofer, J.; Gao, L.; Zurakowski, D.; et al. In vivo rAAV-mediated human TGF-beta overexpression reduces perifocal osteoarthritis and improves osteochondral repair in a large animal model at one year. Osteoarthr. Cartil. 2023, 31, 467–481. [Google Scholar] [CrossRef]
- Zaki, S.; Smith, M.M.; Little, C.B. Pathology-pain relationships in different osteoarthritis animal model phenotypes: It matters what you measure, when you measure, and how you got there. Osteoarthr. Cartil. 2021, 29, 1448–1461. [Google Scholar] [CrossRef]
- Weissenberger, M.; Weissenberger, M.H.; Gilbert, F.; Groll, J.; Evans, C.H.; Steinert, A.F. Reduced hypertrophy in vitro after chondrogenic differentiation of adult human mesenchymal stem cells following adenoviral SOX9 gene delivery. BMC Musculoskelet. Disord. 2020, 21, 109. [Google Scholar] [CrossRef]
- Antoniou, J.; Wang, H.T.; Hadjab, I.; Aldebeyan, S.; Alaqeel, M.A.; Meij, B.P.; Tryfonidou, M.A.; Mwale, F. The Effects of Naproxen on Chondrogenesis of Human Mesenchymal Stem Cells. Tissue Eng. Part A 2015, 21, 2136–2146. [Google Scholar] [CrossRef]
- Kirsch, T.; von der Mark, K. Remodelling of collagen types I, II and X and calcification of human fetal cartilage. Bone Min. 1992, 18, 107–117. [Google Scholar] [CrossRef]
- Nurminskaya, M.; Linsenmayer, T.F. Identification and characterization of up-regulated genes during chondrocyte hypertrophy. Dev. Dyn. 1996, 206, 260–271. [Google Scholar] [CrossRef]
- Bianchi, A.; Guibert, M.; Cailotto, F.; Gasser, A.; Presle, N.; Mainard, D.; Netter, P.; Kempf, H.; Jouzeau, J.Y.; Reboul, P. Fibroblast Growth Factor 23 drives MMP13 expression in human osteoarthritic chondrocytes in a Klotho-independent manner. Osteoarthr. Cartil. 2016, 24, 1961–1969. [Google Scholar] [CrossRef]
- Little, C.B.; Barai, A.; Burkhardt, D.; Smith, S.M.; Fosang, A.J.; Werb, Z.; Shah, M.; Thompson, E.W. Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum. 2009, 60, 3723–3733. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, S.; Cha, B.H.; Kim, J.S.; Ahn, J.; Han, I.; Park, H.; Lee, S.H. Regulation of senescence associated signaling mechanisms in chondrocytes for cartilage tissue regeneration. Osteoarthr. Cartil. 2016, 24, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Pountos, I.; Giannoudis, P.V. Modulation of cartilage’s response to injury: Can chondrocyte apoptosis be reversed? Injury 2017, 48, 2657–2669. [Google Scholar] [CrossRef]
- Dusing, P.; Zietzer, A.; Goody, P.R.; Hosen, M.R.; Kurts, C.; Nickenig, G.; Jansen, F. Vascular pathologies in chronic kidney disease: Pathophysiological mechanisms and novel therapeutic approaches. J. Mol. Med. 2021, 99, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Koyama, E.; Yasuda, T.; Minugh-Purvis, N.; Kinumatsu, T.; Yallowitz, A.R.; Wellik, D.M.; Pacifici, M. Hox11 genes establish synovial joint organization and phylogenetic characteristics in developing mouse zeugopod skeletal elements. Development 2010, 137, 3795–3800. [Google Scholar] [CrossRef]
- Wuelling, M.; Kaiser, F.J.; Buelens, L.A.; Braunholz, D.; Shivdasani, R.A.; Depping, R.; Vortkamp, A. Trps1, a regulator of chondrocyte proliferation and differentiation, interacts with the activator form of Gli3. Dev. Biol. 2009, 328, 40–53. [Google Scholar] [CrossRef]
- Luo, G.; Ducy, P.; McKee, M.D.; Pinero, G.J.; Loyer, E.; Behringer, R.R.; Karsenty, G. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 1997, 386, 78–81. [Google Scholar] [CrossRef]
- Wallin, R.; Schurgers, L.J.; Loeser, R.F. Biosynthesis of the vitamin K-dependent matrix Gla protein (MGP) in chondrocytes: A fetuin-MGP protein complex is assembled in vesicles shed from normal but not from osteoarthritic chondrocytes. Osteoarthr. Cartil. 2010, 18, 1096–1103. [Google Scholar] [CrossRef]
- Houtman, E.; Coutinho de Almeida, R.; Tuerlings, M.; Suchiman, H.E.D.; Broekhuis, D.; Nelissen, R.; Ramos, Y.F.M.; van Meurs, J.B.J.; Meulenbelt, I. Characterization of dynamic changes in Matrix Gla Protein (MGP) gene expression as function of genetic risk alleles, osteoarthritis relevant stimuli, and the vitamin K inhibitor warfarin. Osteoarthr. Cartil. 2021, 29, 1193–1202. [Google Scholar] [CrossRef]
- Ma, X.; Zhang, Z.; Kang, X.; Deng, C.; Sun, Y.; Li, Y.; Huang, D.; Liu, X. Defining matrix Gla protein expression in the Dunkin-Hartley guinea pig model of spontaneous osteoarthritis. BMC Musculoskelet. Disord. 2021, 22, 870. [Google Scholar] [CrossRef]
- Shepherd, C.; Reese, A.E.; Reynard, L.N.; Loughlin, J. Expression analysis of the osteoarthritis genetic susceptibility mapping to the matrix Gla protein gene MGP. Arthritis Res. Ther. 2019, 21, 149. [Google Scholar] [CrossRef] [PubMed]
- Silaghi, C.N.; Fodor, D.; Gheorghe, S.R.; Craciun, A.M. Serum total matrix Gla protein: Reference interval in healthy adults and variations in patients with vascular and osteoarticular diseases. Clin. Chim. Acta 2019, 490, 128–134. [Google Scholar] [CrossRef] [PubMed]
OA (n = 26) Mean ± SD | Non-OA (n = 31) Mean ± SD | p-Value | |
---|---|---|---|
Gender | |||
Male (n) | 7 (26.9%) | 16 (51.6%) | 0.058 * |
Female (n) | 19 (73.1%) | 15 (48.4%) | |
Age (years) | 62.03 ± 11.53 | 47.70 ± 14.49 | 0.0001 ** |
GRP (ng/mL) | 419.61 ± 70.14 | 382.18 ± 62.34 | 0.037 ** |
MGP (ng/mL) | 67.76 ± 11.36 | 53.49 ± 18.28 | 0.001 ** |
Ca++ (mg/dL) | 12.89 ± 3.43 | 9.51 ± 2.15 | 0.0001 ** |
Unstandardized Coefficients | Standardized Coefficients | t | p | 95.0% Confidence Interval for B | |||
---|---|---|---|---|---|---|---|
B | Std. Error | Beta | Lower Bound | Upper Bound | |||
Constant | 39.368 | 8.107 | 4.856 | 0.000 | 23.121 | 55.615 | |
Age | 0.380 | 0.144 | 0.335 | 2.639 | 0.011 | 0.092 | 0.669 |
Unstandardized Coefficients | Standardized Coefficients | t | p | 95.0% Confidence Interval for B | |||
---|---|---|---|---|---|---|---|
B | Std. Error | Beta | Lower Bound | Upper Bound | |||
Constant | 30.000 | 7.500 | 4.000 | 0.000 | 15.140 | 45.520 | |
Age | 0.100 | 0.140 | 0.080 | 0.700 | 0.486 | −0.0180 | 0.380 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurtulus, B.; Atilgan, N.; Yilmaz, M.; Dokuyucu, R. Two Members of Vitamin-K-Dependent Proteins, Gla-Rich Protein (GRP) and Matrix Gla Protein (MGP), as Possible New Players in the Molecular Mechanism of Osteoarthritis. J. Clin. Med. 2024, 13, 5159. https://doi.org/10.3390/jcm13175159
Kurtulus B, Atilgan N, Yilmaz M, Dokuyucu R. Two Members of Vitamin-K-Dependent Proteins, Gla-Rich Protein (GRP) and Matrix Gla Protein (MGP), as Possible New Players in the Molecular Mechanism of Osteoarthritis. Journal of Clinical Medicine. 2024; 13(17):5159. https://doi.org/10.3390/jcm13175159
Chicago/Turabian StyleKurtulus, Burhan, Numan Atilgan, Mehmet Yilmaz, and Recep Dokuyucu. 2024. "Two Members of Vitamin-K-Dependent Proteins, Gla-Rich Protein (GRP) and Matrix Gla Protein (MGP), as Possible New Players in the Molecular Mechanism of Osteoarthritis" Journal of Clinical Medicine 13, no. 17: 5159. https://doi.org/10.3390/jcm13175159
APA StyleKurtulus, B., Atilgan, N., Yilmaz, M., & Dokuyucu, R. (2024). Two Members of Vitamin-K-Dependent Proteins, Gla-Rich Protein (GRP) and Matrix Gla Protein (MGP), as Possible New Players in the Molecular Mechanism of Osteoarthritis. Journal of Clinical Medicine, 13(17), 5159. https://doi.org/10.3390/jcm13175159