Lens Factor Choice in IOL Power Calculation after Laser Refractive Surgery: The Right Constant for Advanced Lens Measurement Approach (ALMA)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Study Protocol
- -
- Previous myopic PRK or myopic LASIK;
- -
- Standard phacoemulsification surgery;
- -
- Stable postoperative refraction obtained at least 1 month after cataract surgery.
- -
- Unknown preoperative keratometry or AL or refraction data, or AL measurement obtained with ultrasound biometry;
- -
- Unknown postoperative refraction data;
- -
- Unknown model or power of the implanted IOL;
- -
- Previous refractive surgery different from PRK/LASIK (such as radial keratotomy) or non-myopic LRS;
- -
- Corneal diseases that could interfere with keratometric readings reliability (such as severe dry eye, pterygium, corneal ectasia);
- -
- Ocular or systemic pathologies that could interfere with the post-operative refractive result;
- -
- Any intraoperative and postoperative complications;
- -
- Corrected distance visual acuity <20/25;
- -
- Postoperative refraction obtained before 1 month from cataract surgery.
- -
- The nominal constants published on the ULIB platform;
- -
- The nominal constants published on the IOL Con platform;
- -
- The optimized constants published on the ULIB platform;
- -
- The optimized constants published on the IOL Con platform.
2.2. Statistical Analysis
- -
- ME;
- -
- Median absolute error (MedAE), the main outcome of the study;
- -
- Mean absolute error (MAE);
- -
- Number and percentage of eyes within ±0.5 and ±1.0 D of PE, main outcomes of the study;
- -
- Minimum, maximum, and standard error, 95% confidence interval around the ME;
- -
- Interquartile ranges (IQR).
- -
- Exact Kolmogorov–Smirnov test to determine the normality of the population distribution;
- -
- One-sample T-test for screening whether the ME was significantly different from zero;
- -
- Friedman’s test with Bonferroni correction to compare MedAE;
- -
- Cochran Q test with and without Bonferroni correction to compare the percentage of eyes within ±0.50 D and ±1.00 D of PE;
3. Results
- −1;
- −1.1;
- −1.2;
- −1.3;
- −1.4;
- −1.5.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ting, D.S.J.; Gatinel, D.; Ang, M. Cataract surgery after corneal refractive surgery: Preoperative considerations and management. Curr. Opin. Ophthalmol. 2024, 35, 4–10. [Google Scholar] [CrossRef]
- Lundström, M.; Manning, S.; Barry, P.; Stenevi, U.; Henry, Y.; Rosen, P. The European registry of quality outcomes for cataract and refractive surgery (EUREQUO): A database study of trends in volumes, surgical techniques and outcomes of refractive surgery. Eye Vis. 2015, 2, 8. [Google Scholar] [CrossRef]
- Manning, S.; Barry, P.; Henry, Y.; Rosen, P.; Stenevi, U.; Lundström, M. Cataract surgery outcomes in corneal refractive surgery eyes: Study from the european registry of quality outcomes for cataract and refractive surgery. J. Cataract. Refract. Surg. 2015, 41, 2358–2365. [Google Scholar] [CrossRef]
- Wang, L.; Koch, D.D. Intraocular lens power calculations in eyes with previous corneal refractive surgery: Challenges, approaches, and outcomes. Taiwan J. Ophthalmol. 2021, 12, 22–31. [Google Scholar] [CrossRef]
- Wang, L.; Koch, D.D. Intraocular lens power calculations in eyes with previous corneal refractive surgery: Review and expert opinion. Ophthalmology 2021, 128, e121–e131. [Google Scholar] [CrossRef]
- Naseri, A.; McLeod, S.D. Cataract surgery after refractive surgery. Curr. Opin. Ophthalmol. 2010, 21, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Stopyra, W.; Langenbucher, A.; Grzybowski, A. Intraocular Lens Power Calculation Formulas—A Systematic Review. Ophthalmol. Ther. 2023, 12, 2881–2902. [Google Scholar] [CrossRef]
- Anders, P.; Anders, L.M.; Barbara, A.; Szentmary, N.; Langenbucher, A.; Gatzioufas, Z. Intraocular lens power calculation in eyes with previous corneal refractive surgery. Ther. Adv. Ophthalmol. 2022, 14, 25158414221118524. [Google Scholar] [CrossRef] [PubMed]
- Rosa, N.; Cione, F.; Pepe, A.; Musto, S.; De Bernardo, M. An advanced lens measurement approach (ALMA) in post refractive surgery IOL power calculation with unknown preoperative parameters. PLoS ONE 2020, 15, e0237990. [Google Scholar] [CrossRef]
- Cione, F.; De Bernardo, M.; Gioia, M.; Oliviero, M.; Santoro, A.G.; Caputo, A.; Capasso, L.; Pagliarulo, S.; Rosa, N. A No-History Multi-Formula Approach to Improve the IOL Power Calculation after Laser Refractive Surgery: Preliminary Results. J. Clin. Med. 2023, 12, 2890. [Google Scholar] [CrossRef]
- Savini, G.; Hoffer, K.J.; Ribeiro, F.J.; Dias, J.M.; Coutinho, C.P.; Barboni, P.; Schiano-Lomoriello, D. Intraocular lens power calculation with ray tracing based on AS-OCT and adjusted axial length after myopic excimer laser surgery. J. Cataract. Refract. Surg. 2022, 48, 947–953. [Google Scholar] [CrossRef]
- Cione, F.; Gioia, M.; Pagliarulo, S. Bias That Should Be Avoided to Obtain a Reliable Study of IOL Power Calculation After Myopic Refractive Surgery. J. Refract. Surg. 2023, 39, 68. [Google Scholar] [CrossRef] [PubMed]
- Hoffer, K.J.; Savini, G. Update on Intraocular Lens Power Calculation Study Protocols: The Better Way to Design and Report Clinical Trials. Ophthalmology 2021, 128, e115–e120. [Google Scholar] [CrossRef] [PubMed]
- De Bernardo, M.; Casaburi, C.; De Pascale, I.; Capasso, L.; Cione, F.; Rosa, N. Comparison between dynamic contour tonometry and Goldmann applanation tonometry correcting equations. Sci. Rep. 2022, 12, 20190. [Google Scholar] [CrossRef] [PubMed]
- Yeo, T.K.; Heng, W.J.; Pek, D.; Wong, J.; Fam, H.B. Accuracy of intraocular lens formulas using total keratometry in eyes with previous myopic laser refractive surgery. Eye 2021, 35, 1705–1711. [Google Scholar] [CrossRef]
- Ferguson, T.J.; Randleman, J.B. Cataract surgery following refractive surgery: Principles to achieve optical success and patient satisfaction. Surv. Ophthalmol. 2024, 69, 140–159. [Google Scholar] [CrossRef]
- Pantanelli, S.M.; Lin, C.C.; Al-Mohtaseb, Z.; Rose-Nussbaumer, J.R.; Santhiago, M.R.; Steigleman, W.A., 3rd; Schallhorn, J.M. Intraocular Lens Power Calculation in Eyes with Previous Excimer Laser Surgery for Myopia: A Report by the American Academy of Ophthalmology. Ophthalmology 2021, 128, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Davidson, J.; Gu, X.; Breen, M.; Babu, R.J. Impact of global optimization of lens constants on absolute prediction error for final IOL power selection when using intraoperative aberrometry. Clin. Ophthalmol. 2022, 16, 3155–3164. [Google Scholar] [CrossRef]
- El-Khayat, A.R.; Tesha, P. Optimizing the intraocular lens formula constant according to intraocular lens diameter. Int. J. Ophthalmol. 2021, 14, 700–703. [Google Scholar] [CrossRef]
- Langenbucher, A.; Schwemm, M.; Eppig, T.; Schröder, S.; Cayless, A.; Szentmáry, N. Optimal Dataset Sizes for Constant Optimization in Published Theoretical Optical Formulae. Curr. Eye Res. 2021, 46, 1589–1596. [Google Scholar] [CrossRef]
- Langenbucher, A.; Eppig, T.; Viestenz, A.; Seitz, B.; Müllner, G.; Schönherr, U. Individualisierung der IOL-Konstanten für 2 hydrophobe Intraokularlinsen. SRK II, SRK/T, Hoffer Q, Holladay 1 und Haigis-Formel [Individualization of IOL constants for two hydrophobic intraocular lenses. SRK II, SRK/T, Hoffer-Q, Holladay 1 and Haigis formula]. Ophthalmologe 2012, 109, 468–473. (In German) [Google Scholar] [PubMed]
- Chong, E.W.; Mehta, J.S. High myopia and cataract surgery. Curr. Opin. Ophthalmol. 2016, 27, 45–50. [Google Scholar] [CrossRef]
- Fang, X.; Ben, S.; Dong, Y.; Chen, X.; Xue, W.; Wang, Y. Outcomes of the Haigis-L formula for calculating intraocular lens power in extreme long axis eyes after myopic laser in situ keratomileusis. Eye 2022, 36, 1178–1184. [Google Scholar] [CrossRef] [PubMed]
- Kenny, P.I.; Kozhaya, K.; Truong, P.; Wang, L.; Koch, D.D.; Weikert, M.P. Performance of IOL calculation formulas that use measured posterior corneal power in eyes following myopic laser vision correction. J. Cataract. Refract. Surg. 2024, 50, 7–11. [Google Scholar]
- Anter, A.M.; Bleeker, A.R.; Shammas, H.J.; Suraneni, S.; Kingrey, B.; Murphy, D.A.; Leal, S.; Ghalibafan, S.; Tonk, R.S.; Cooke, D.L.; et al. Comparison of Legacy and New No-History IOL Power Calculation Formulas in Postmyopic Laser Vision Correction Eyes. Am. J. Ophthalmol. 2024, 264, 44–52. [Google Scholar] [CrossRef]
- Cione, F.; De Bernardo, M.; Di Paola, I.; Caputo, A.; Graziano, M.; Rosa, N. IOL power calculation in long eyes: Selection of the best axial length adjustement factor using the most common formulas. Heliyon 2024, 10, e36609. [Google Scholar] [CrossRef]
- Gupta, V.; Pal, H.; Sawhney, S.; Aggarwal, A.; Vanathi, M.; Luthra, G. Optimization of biometry for best refractive outcome in cataract surgery. Indian J. Ophthalmol. 2024, 72, 29–43. [Google Scholar] [CrossRef]
- Gioia, M.; De Bernardo, M.; Pagliarulo, S.; Cione, F.; Mottola, F.F.; La Marca, A.; De Pascale, I.; Albano, G.; Rosa, N. Evaluation of Tropicamide-Phenylephrine Mydriatic Eye Drop Instillation on Choroidal Thickness. J. Clin. Med. 2023, 12, 6355. [Google Scholar] [CrossRef]
- Langenbucher, A.; Hoffmann, P.; Cayless, A.; Wendelstein, J.; Szentmáry, N. Limitations of constant optimization with disclosed intraocular lens power formulae. J. Cataract. Refract. Surg. 2024, 50, 201–208. [Google Scholar] [CrossRef]
- Holladay, J.T.; Wilcox, R.R.; Koch, D.D.; Wang, L. Statistics of prediction error for non-Gaussian dependent and independent datasets. J. Cataract. Refract. Surg. 2023, 49, 440–442. [Google Scholar] [CrossRef]
- Hoffer, K.J.; Savini, G. Reply. Ophthalmology 2021, 128, e21–e22. [Google Scholar] [CrossRef] [PubMed]
- Stopyra, W.; Voytsekhivskyy, O.; Grzybowski, A. Accuracy of 20 Intraocular Lens Power Calculation Formulas in Medium-Long Eyes. Ophthalmol. Ther. 2024, 13, 1893–1907. [Google Scholar] [CrossRef] [PubMed]
- Voytsekhivskyy, O.V. The VRF-L and VRF-GL IOL power calculation methods after radial keratotomy. Eye 2024. ahead of print. [Google Scholar]
IOL Model | A—Constant | ||||
---|---|---|---|---|---|
N° | Nominal ULIB | Nominal IOL Con | Optimized ULIB | Optimized IOL Con | |
AcrySof IQ Vivity DFT015 | 1 | - | 118.80 | 119.20 | 119.08 |
AcrySof TFNT00 | 2 | 119.10 | 119.10 | 119.10 | 119.13 |
Alcon Acrysof MA 60 BM | 5 | 118.90 | - | 119.80 | - |
Alcon Restor Sa60D3 | 2 | 118.10 | - | 118.50 | - |
Alcon SA60AT | 3 | 118.40 | 118.40 | 118.80 | 118.83 |
Alcon SN60WF | 25 | 118.70 | 118.70 | 119.00 | 118.93 |
AMO Sensar AAB00 | 5 | 118.40 | 119.00 | 119.00 | 118.97 |
AMO sensar AR 40e | 14 | 118.40 | 118.70 | 118.70 | - |
AMO Tecnis PCB00 | 21 | 118.80 | 119.30 | 119.30 | - |
AMO Tecnis Z9000 | 16 | 119.00 | - | 119.20 | - |
AMO Tecnis ZMA00 | 2 | 119.10 | 119.10 | 119.50 | - |
B&L Akreos Adapt | 11 | 118.00 | 118.00 | 118.40 | - |
B&L Akreos AO MI60 | 2 | 118.40 | 118.40 | 119.10 | - |
Clareon CNAT00 | 1 | - | 118.80 | 119.10 | 119.33 |
Corneal ACR 600 SE | 2 | 119.50 | - | 120.30 | - |
Corneal ACR6D | 1 | 118.50 | - | 119.00 | - |
Corneal quatrix | 1 | 119.60 | - | 119.80 | - |
Curamed SA 60CZ | 3 | 118.80 | - | 118.50 | - |
Hexavision HQ 203 HEP | 2 | 118.20 | - | 118.50 | - |
Hoya 118,5 AF1FY60AD | 3 | 118.40 | 118.40 | 118.60 | - |
Hoya 250 | 7 | 118.40 | 118.40 | 118.50 | - |
Hoya Nc1-Sp (Nanex) | 6 | - | 119.20 | 119.11 | 119.11 |
Hoya va 60 bb | 6 | 118.70 | 118.70 | 118.70 | - |
RayONE | 2 | - | 118.00 | 118.60 | 118.70 |
SN6ATx | 7 | 119.00 | 119.00 | 119.20 | - |
Soleko Fil611 | 3 | 118.50 | - | 119.10 | - |
Tech Med ISP60H/Z | 6 | - | 118.20 | 118.70 | 119.08 |
Zeiss CT spheris 203 | 1 | 118.00 | 118.00 | 118.50 | 119.13 |
160 Eyes | Parameter | |||
---|---|---|---|---|
K1 | K2 | Km | AL | |
Median | 37.82 D | 38.36 D | 38.07 D | 27.53 mm |
Mean | 37.80 D | 38.47 D | 38.09 D | 27.75 mm |
Standard Deviation | 2.68 D | 2.53 D | 2.66 D | 2.07 mm |
Standard Error | 0.21 D | 0.20 D | 0.21 D | 0.16 mm |
95% Confidence Interval around the Mean | 37.38–38.22 D | 38.08–38.87 D | 37.67–38.50 D | 27.42–28.07 mm |
Minimum | 30.12 D | 32.48 D | 29.42 D | 23.45 mm |
Maximum | 44.29 D | 45.12 D | 44.71 D | 34.20 mm |
Interquartile Range | 3.84 D | 3.23 D | 3.33 D | 2.91 mm |
KS | 0.982 | 0.849 | 0.927 | 0.553 |
A Constant | MedAE (MAE/STD) | P1 | SD (95% CI) | IQR (Min–Max) | N°/% <0.5 D | P2 | N°/% <1.0 D | P3 | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Nominal ULIB N° = 144 eyes | 0.94 D (1.02 D/0.06 D) | 0.000 | A 0.002 | 0.76 D (0.89–1.14 D) | 0.96 D (0.01–3.52 D) | 49/34.0% | 0.301 | - | 93/64.6% | 0.001 | A 0.041 |
Nominal IOL Con N° = 125 eyes | 1.02 D (1.15 D/0.07 D) | B 0.000 | 0.80 D (1.01–1.29 D) | 0.99 D (0.01–3.82 D) | 34/27.2% | - | 70/56.0% | B 0.000 | |||
Optimized ULIB N° = 160 eyes | 1.04 D (1.15 D/0.06 D) | C 0.001 | 0.80 D (1.02–1.27 D) | 1.11 D (0.02–3.83 D) | 52/32.5% | - | 87/54.4% | C 0.102 | |||
Optimized IOL Con N° = 45 eyes | 1.19 D (1.18 D/0.11 D) | Not Analysed | 0.72 D (0.96–1.39 D) | 1.08 D (0.09–3.12 D) | 12/26.7% | Not Analysed | 20/44.4% |
A-Constant | ALMA | ||||
---|---|---|---|---|---|
N° | ME ± SD | Median (STD) | KS | p | |
Nominal ULIB | 144 | −0.72 ± 1.04 D | −1.02 D (0.14 D) | 0.807 | <0.001 |
Nominal IOL Con | 125 | −0.96 ± 1.02 D | −1.02 D (0.13 D) | 0.461 | <0.001 |
Optimized ULIB | 160 | −0.97 ± 1.00 D | −1.19 D (0.13 D | 0.683 | <0.001 |
Optimized IOL Con | 45 | −1.13 ± 0.79 D | −1.16 D (0.13 D) | 0.716 | <0.001 |
Optimized ULIB −1.0 | 160 | −0.30 ± 1.06 D | −0.36 D (0.08 D) | 0.905 | <0.001 |
Optimized ULIB −1.1 | 160 | −0.23 ± 1.06 D | −0.31 D (0.08 D) | 0.871 | 0.006 |
Optimized ULIB −1.2 | 160 | −0.16 ± 1.06 D | −0.24 D (0.08 D) | 0.857 | 0.054 |
Optimized ULIB −1.3 | 160 | −0.09 ± 1.07 D | −0.18 D (0.08 D) | 0.914 | 0.259 |
Optimized ULIB −1.4 | 160 | −0.03 ± 1.08 D | −0.10 D (0.09 D) | 0.955 | 0.742 |
Optimized ULIB −1.5 | 160 | 0.04 ± 1.09 D | −0.02 D (0.09 D) | 0.955 | 0.641 |
A Constant | MedAE (MAE/STD) | P1 | SD (95% CI) | IQR (Min-Max) | N°/% <0.5 D | P2 | N°/% <1.0 D | P3 | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Nominal ULIB N° = 144 eyes | 0.94 D (1.02 D/0.06 D) | 0.002 | A 0.058 | 0.76 D (0.89–1.14 D) | 0.96 D (0.01–3.52 D) | 49/34.0% | 0.008 | A 0.064 | 93/64.6% | 0.034 | A 0.031 |
Optimized ULIB −1.2 N° = 160 eyes | 0.67 D (0.84/0.05 D) | B 0.010 | 0.67 D (0.74–0.95 D) | 0.80 D (0.02–3.86 D) | 72/45.0% | B 0.006 | 119/74.4% | B 0.112 | |||
Optimized ULIB −1.3 N° = 160 eyes | 0.66 D (0.84/0.05 D) | C 0.006 | 0.67 D (0.74–0.94 D) | 0.81 D (0.00–3.94 D) | 78/48.8% | C 0.064 | 118/73.8% | C 0.346 | |||
Optimized ULIB −1.4 N° = 160 eyes | 0.66 D (0.84/0.05 D) | D 0.007 | 0.68 D (0.74–0.95 D) | 0.84 D (0.02–4.03 D) | 74/46.3% | D 0.011 | 116/72.5% | D 0.346 | |||
Optimized ULIB −1.5 N° = 160 eyes | 0.68 D (0.85/0.05 D) | 0.68 D (0.74–0.95 D) | 0.87 D (0.02–4.11 D) | 74/46.3% | 116/72.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cione, F.; De Bernardo, M.; Di Stasi, M.; De Luca, M.; Albano, R.; Rosa, N. Lens Factor Choice in IOL Power Calculation after Laser Refractive Surgery: The Right Constant for Advanced Lens Measurement Approach (ALMA). J. Clin. Med. 2024, 13, 5186. https://doi.org/10.3390/jcm13175186
Cione F, De Bernardo M, Di Stasi M, De Luca M, Albano R, Rosa N. Lens Factor Choice in IOL Power Calculation after Laser Refractive Surgery: The Right Constant for Advanced Lens Measurement Approach (ALMA). Journal of Clinical Medicine. 2024; 13(17):5186. https://doi.org/10.3390/jcm13175186
Chicago/Turabian StyleCione, Ferdinando, Maddalena De Bernardo, Margherita Di Stasi, Martina De Luca, Rosa Albano, and Nicola Rosa. 2024. "Lens Factor Choice in IOL Power Calculation after Laser Refractive Surgery: The Right Constant for Advanced Lens Measurement Approach (ALMA)" Journal of Clinical Medicine 13, no. 17: 5186. https://doi.org/10.3390/jcm13175186
APA StyleCione, F., De Bernardo, M., Di Stasi, M., De Luca, M., Albano, R., & Rosa, N. (2024). Lens Factor Choice in IOL Power Calculation after Laser Refractive Surgery: The Right Constant for Advanced Lens Measurement Approach (ALMA). Journal of Clinical Medicine, 13(17), 5186. https://doi.org/10.3390/jcm13175186