Features and Limitations of Robotically Assisted Percutaneous Coronary Intervention (R-PCI): A Systematic Review of R-PCI
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Concept and Evolution of R-PCI
3.2. Systematic Search Results
3.3. Efficacy
3.4. Safety
3.5. Treatment Precision
3.6. Exposure to Radiation
3.6.1. Operator Exposure to Radiation
3.6.2. Patient Exposure to Radiation
3.7. Contrast Volume
3.8. Procedural Times
4. Discussion
4.1. Limited Escalation Features for Complex Interventions
4.2. Lack of Compatibility with Intravascular Imaging or Invasive Physiology
4.3. Lesion Crossing in Chronic Total Occlusions
4.4. Operator Training
5. Perspectives
5.1. Potential for Telemedicine
5.2. Cost-Effectiveness and Economic Impact
5.3. Future Iterations of R-PCI Platforms
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Townsend, N.; Kazakiewicz, D.; Wright, F.L.; Timmis, A.; Huculeci, R.; Torbica, A.; Gale, C.P.; Achenbach, S.; Weidinger, F.; Vardas, P. Epidemiology of cardiovascular disease in Europe. Nat. Rev. Cardiol. 2022, 19, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Grüntzig, A. Transluminal dilatation of coronary-artery stenosis. Lancet Lond. Engl. 1978, 1, 263. [Google Scholar] [CrossRef] [PubMed]
- Neumann, F.J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.-P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019, 40, 87–165. [Google Scholar] [CrossRef]
- Mahmud, E.; Naghi, J.; Ang, L.; Harrison, J.; Behnamfar, O.; Pourdjabbar, A.; Reeves, R.; Patel, M. Demonstration of the Safety and Feasibility of Robotically Assisted Percutaneous Coronary Intervention in Complex Coronary Lesions: Results of the CORA-PCI Study (Complex Robotically Assisted Percutaneous Coronary Intervention). JACC Cardiovasc. Interv. 2017, 10, 1320–1327. [Google Scholar]
- Patel, T.M.; Shah, S.C.; Soni, Y.Y.; Radadiya, R.C.; Patel, G.A.; Tiwari, P.O.; Pancholy, S.B. Comparison of Robotic Percutaneous Coronary Intervention With Traditional Percutaneous Coronary Intervention: A Propensity Score-Matched Analysis of a Large Cohort. Circ. Cardiovasc. Interv. 2020, 13, e008888. [Google Scholar] [CrossRef]
- Beyar, R.; Gruberg, L.; Deleanu, D.; Roguin, A.; Almagor, Y.; Cohen, S.; Kumar, G.; Wenderow, T. Remote-control percutaneous coronary interventions: Concept, validation, and first-in-humans pilot clinical trial. J. Am. Coll. Cardiol. 2006, 47, 296–300. [Google Scholar] [CrossRef]
- Smitson, C.C.; Ang, L.; Pourdjabbar, A.; Reeves, R.; Patel, M.; Mahmud, E. Safety and Feasibility of a Novel, Second-Generation Robotic-Assisted System for Percutaneous Coronary Intervention: First-in-Human Report. J. Invasive Cardiol. 2018, 30, 152–156. [Google Scholar] [CrossRef]
- Jeger, R.V.; Farah, A.; Ohlow, M.-A.; Mangner, N.; Möbius-Winkler, S.; Leibundgut, G.; Weilenmann, D.; Wöhrle, J.; Richter, S.; Schreiber, M.; et al. Drug-coated balloons for small coronary artery disease (BASKET-SMALL 2): An open-label randomised non-inferiority trial. Lancet 2018, 392, 849–856. [Google Scholar] [CrossRef]
- Buchanan, G.L.; Chieffo, A.; Mehilli, J.; Mikhail, G.W.; Mauri, F.; Presbitero, P.; Grinfeld, L.; Petronio, A.S.; Skelding, K.A.; Hoye, A.; et al. The occupational effects of interventional cardiology: Results from the WIN for Safety survey. EuroIntervention 2012, 8, 658–663. [Google Scholar] [CrossRef]
- Heidbuchel, H.; Wittkampf, F.H.; Vano, E.; Ernst, S.; Schilling, R.; Picano, E.; Mont, L.; ESC Scientific Document Group; Jais, P.; de Bono, J.; et al. Practical ways to reduce radiation dose for patients and staff during device implantations and electrophysiological procedures. Europace 2014, 16, 946–964. [Google Scholar] [CrossRef]
- Venneri, L.; Rossi, F.; Botto, N.; Andreassi, M.G.; Salcone, N.; Emad, A.; Lazzeri, M.; Gori, C.; Vano, E.; Picano, E. Cancer risk from professional exposure in staff working in cardiac catheterization laboratory: Insights from the National Research Council’s Biological Effects of Ionizing Radiation VII Report. Am. Heart J. 2009, 157, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Doody, M.M.; Freedman, D.M.; Alexander, B.H.; Hauptmann, M.; Miller, J.S.; Rao, R.S.; Mabuchi, K.; Ron, E.; Sigurdson, A.J.; Linet, M.S. Breast cancer incidence in U. S. radiologic technologists. Cancer 2006, 106, 2707–2715. [Google Scholar] [PubMed]
- Finkelstein, M.M. Is brain cancer an occupational disease of cardiologists? Can. J. Cardiol. 1998, 14, 1385–1388. [Google Scholar] [PubMed]
- Roguin, A.; Goldstein, J.; Bar, O.; Goldstein, J.A. Brain and neck tumors among physicians performing interventional procedures. Am. J. Cardiol. 2013, 111, 1368–1372. [Google Scholar] [CrossRef] [PubMed]
- Ciraj-Bjelac, O.; Rehani, M.M.; Sim, K.H.; Liew, H.B.; Vano, E.; Kleiman, N.J. Risk for radiation-induced cataract for staff in interventional cardiology: Is there reason for concern? Catheter. Cardiovasc. Interv. 2010, 76, 826–834. [Google Scholar] [CrossRef]
- Beyar, R.; Wenderow, T.; Lindner, D.; Kumar, G.; Shofti, R. Concept, design and pre-clinical studies for remote control percutaneous coronary interventions. EuroIntervention 2005, 1, 340–345. [Google Scholar]
- Lazar, J.F.; Hwalek, A.E. A Review of Robotic Thoracic Surgery Adoption and Future Innovations. Thorac. Surg. Clin. 2023, 33, 1–10. [Google Scholar] [CrossRef]
- Schwartz, J.G.; Kumar, U.N.; Azagury, D.E.; Brinton, T.J.; Yock, P.G. Needs-Based Innovation in Cardiovascular Medicine: The Stanford Biodesign Process. JACC Basic. Transl. Sci. 2016, 1, 541–547. [Google Scholar] [CrossRef]
- McGloughlin, E.K.; Anglim, P.; Keogh, I.; Sharif, F. Innovation for the future of Irish MedTech industry: Retrospective qualitative review of impact of BioInnovate Ireland’s clinical fellows. BMJ Innov. 2018, 4, 32–38. [Google Scholar] [CrossRef]
- Granada, J.F.; Delgado, J.A.; Uribe, M.P.; Fernandez, A.; Blanco, G.; Leon, M.B.; Weisz, G. First-in-human evaluation of a novel robotic-assisted coronary angioplasty system. JACC Cardiovasc. Interv. 2011, 4, 460–465. [Google Scholar] [CrossRef]
- Durand, E.; Sabatier, R.; Smits, P.C.; Verheye, S.; Pereira, B.; Fajadet, J. Evaluation of the R-One robotic system for percutaneous coronary intervention: The R-EVOLUTION study. EuroIntervention 2023, 18, e1339–e1347. [Google Scholar] [CrossRef] [PubMed]
- Cassese, S.; A Byrne, R.; Tada, T.; Pinieck, S.; Joner, M.; Ibrahim, T.; A King, L.; Fusaro, M.; Laugwitz, K.-L.; Kastrati, A. Incidence and predictors of restenosis after coronary stenting in 10 004 patients with surveillance angiography. Heart Br. Card. Soc. 2014, 100, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Malik, A.H.; Chan, J.S.K.M.; Lawrence, H.D.; Mehta, A.B.; Venkata, V.S.; Aedma, S.K.; Ranchal, P.; Dhaduk, K.; Aronow, W.S.M.F.; et al. Robotic Assisted versus Manual Percutaneous Coronary Intervention—Systematic Review and Meta-Analysis. Cardiol. Rev. 2022, 32, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Weisz, G.; Metzger, D.C.; Caputo, R.P.; Delgado, J.A.; Marshall, J.J.; Vetrovec, G.W.; Reisman, M.; Waksman, R.; Granada, J.F.; Novack, V.; et al. Safety and feasibility of robotic percutaneous coronary intervention: PRECISE (Percutaneous Robotically-Enhanced Coronary Intervention) Study. J. Am. Coll. Cardiol. 2013, 61, 1596–1600. [Google Scholar] [CrossRef]
- Smilowitz, N.R.; Moses, J.W.; A Sosa, F.; Lerman, B.; Qureshi, Y.H.; E Dalton, K.; Privitera, L.T.; Canone-Weber, D.; Singh, V.; Leon, M.B.; et al. Robotic-Enhanced PCI Compared to the Traditional Manual Approach. J. Invasive Cardiol. 2014, 26, 318–321. [Google Scholar]
- Madder, R.D.; VanOosterhout, S.; Mulder, A.; Elmore, M.; Campbell, J.; Borgman, A.; Parker, J.; Wohns, D. Impact of robotics and a suspended lead suit on physician radiation exposure during percutaneous coronary intervention. Cardiovasc. Revascularization Med. Mol. Interv. 2017, 18, 190–196. [Google Scholar] [CrossRef]
- Hirai, T.; Kearney, K.; Kataruka, A.; Gosch, K.L.; Brandt, H.; Nicholson, W.J.; Lombardi, W.L.; Grantham, J.A.; Salisbury, A.C. Initial report of safety and procedure duration of robotic-assisted chronic total occlusion coronary intervention. Catheter. Cardiovasc. Interv. Off. J. Soc. Card. Angiogr. Interv. 2020, 95, 165–169. [Google Scholar] [CrossRef]
- Leung, J.; French, J.; Xu, J.; Kachwalla, H.; Kaddapu, K.; Badie, T.; Mussap, C.; Rajaratnam, R.; Leung, D.; Lo, S.; et al. Robotic Assisted Percutaneous Coronary Intervention: Initial Australian Experience. Heart Lung Circ. 2024, 33, 493–499. [Google Scholar] [CrossRef]
- Kagiyama, K.; Mitsutake, Y.; Ueno, T.; Sakai, S.; Nakamura, T.; Yamaji, K.; Ishimatsu, T.; Sasaki, M.; Chibana, H.; Itaya, N.; et al. Successful introduction of robotic-assisted percutaneous coronary intervention system into Japanese clinical practice: A first-year survey at single center. Heart Vessel. 2021, 36, 955–964. [Google Scholar] [CrossRef]
- Lemos, P.A.; Franken, M.; Mariani , M., Jr.; Caixeta, A.; Almeida, B.O.; Pitta, F.G.; Prado, G.F.A.; Garzon, S.; Ramalho, F.; Albuquerque, G.; et al. Safety and effectiveness of introducing a robotic-assisted percutaneous coronary intervention program in a tertiary center: A prospective study. Cardiovasc. Diagn. Ther. 2022, 12, 67–76. [Google Scholar] [CrossRef]
- Brunner, F.J.; Waldeyer, C.; Zengin-Sahm, E.; Kondziella, C.; Schrage, B.; Clemmensen, P.; Westermann, D.; Blankenberg, S.; Seiffert, M. Establishing a robotic-assisted PCI program: Experiences at a large tertiary referral center. Heart Vessel. 2022, 37, 1669–1678. [Google Scholar] [CrossRef] [PubMed]
- Häner, J.D.; Räber, L.; Moro, C.; Losdat, S.; Windecker, S. Robotic-assisted percutaneous coronary intervention: Experience in Switzerland. Front. Cardiovasc. Med. 2023, 10, 1294930. [Google Scholar] [CrossRef] [PubMed]
- Walters, D.; Reeves, R.R.; Patel, M.; Naghi, J.; Ang, L.; Mahmud, E. Complex robotic compared to manual coronary interventions: 6- and 12-month outcomes. Catheter. Cardiovasc. Interv. Off. J. Soc. Card. Angiogr. Interv. 2019, 93, 613–617. [Google Scholar] [CrossRef]
- Harrison, J.; Ang, L.; Naghi, J.; Behnamfar, O.; Pourdjabbar, A.; Patel, M.P.; Reeves, R.R.; Mahmud, E. Robotically-assisted percutaneous coronary intervention: Reasons for partial manual assistance or manual conversion. Cardiovasc. Revascularization Med. Mol. Interv. 2018, 19 Pt A, 526–531. [Google Scholar] [CrossRef]
- Bay, B.; Kiwus, L.M.; Goßling, A.; Koester, L.; Blaum, C.; Schrage, B.; Clemmensen, P.; Blankenberg, S.; Waldeyer, C.; Seiffert, M.; et al. Procedural and one-year outcomes of robotic-assisted versus manual percutaneous coronary intervention. EuroIntervention J. Eur. Collab. Work. Group. Interv. Cardiol. Eur. Soc. Cardiol. 2024, 20, 56–65. [Google Scholar] [CrossRef]
- Bezerra, H.G.; Mehanna, E.; WVetrovec, G.; ACosta, M.; Weisz, G. Longitudinal Geographic Miss (LGM) in Robotic Assisted Versus Manual Percutaneous Coronary Interventions. J. Intervent Cardiol. 2015, 28, 449–455. [Google Scholar] [CrossRef]
- Lee, J.M.; Choi, K.H.; Song, Y.B.; Lee, J.Y.; Lee, S.J.; Lee, S.Y.; Kim, S.M.; Yun, K.H.; Cho, J.Y.; Kim, C.J.; et al. Intravascular Imaging-Guided or Angiography-Guided Complex PCI. N. Engl. J. Med. 2023, 388, 1668–1679. [Google Scholar] [CrossRef]
- Koeda, Y.; Ishida, M.; Sasaki, K.; Kikuchi, S.; Yamaya, S.; Tsuji, K.; Ishisone, T.; Goto, I.; Kimura, T.; Shimoda, Y.; et al. Periprocedural and 30-day outcomes of robotic-assisted percutaneous coronary intervention used in the intravascular imaging guidance. Cardiovasc. Interv. Ther. 2023, 38, 39–48. [Google Scholar] [CrossRef]
- Kimura, T.; Koeda, Y.; Ishida, M.; Numahata, W.; Yamaya, S.; Kikuchi, S.; Ishisone, T.; Goto, I.; Itoh, T.; Morino, Y. Safety and feasibility of intravascular ultrasound-guided robotic percutaneous coronary intervention. Coron. Artery Dis. 2023, 34, 463–469. [Google Scholar] [CrossRef]
- Madder, R.; VanOosterhout, S.; Jacoby, M.; Collins, J.S.; Borgman, A.; Mulder, A.; Elmore, M.; Campbell, J.; McNamara, R.; Wohns, D. Percutaneous coronary intervention using a combination of robotics and telecommunications by an operator in a separate physical location from the patient: An early exploration into the feasibility of telestenting (the REMOTE-PCI study). EuroIntervention J. Eur. Collab. Work. Group. Interv. Cardiol. Eur. Soc. Cardiol. 2017, 12, 1569–1576. [Google Scholar] [CrossRef]
- Patel, T.M.; Shah, S.C.; Pancholy, S.B. Long Distance Tele-Robotic-Assisted Percutaneous Coronary Intervention: A Report of First-in-Human Experience. EClinicalMedicine 2019, 14, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Sooknanan, N.N.; Memon, S.; George, J.C. Robotic Percutaneous Coronary Intervention During COVID-19 Pandemic: Outcomes and Cost Effectiveness With Procedural Distancing. J. Invasive Cardiol. 2022, 34, E87–E91. [Google Scholar] [CrossRef] [PubMed]
- Mangels, D.; Fregoso, A.; Ang, L.; Mahmud, E. Resource Utilization During Elective Robotic-Assisted Percutaneous Coronary Intervention. J. Invasive Cardiol. 2020, 32, E321–E325. [Google Scholar] [CrossRef]
- Siemens Calls It Quits in Robotic Heart Surgery. 2023. Available online: https://www.mddionline.com/robotics/siemens-calls-it-quits-robotic-heart-surgery (accessed on 27 August 2023).
- Li, P.; Zhang, L.; Li, B.; Chen, W.-S.; Guo, Z.-F.; Zhang, B.-L. The first experience of multi-gripper robot assisted percutaneous coronary intervention in complex coronary lesions. J. Geriatr. Cardiol. JGC 2023, 20, 608–611. [Google Scholar] [CrossRef] [PubMed]
Year | Authors Journal | R-PCI Platform | N R-PCI | Control Group | N Controls | Efficacy Endpoint | Results for R-PCI |
---|---|---|---|---|---|---|---|
2006 | Beyar et al. [6] JACC | RNS | 18 | Y | 20 | Technical success: the ability to complete the procedure without reverting to manual mode Clinical success: the ability to successfully complete the procedure without complications | Technical success: 83% Clinical success: 100% |
2013 | Weisz et al. [24] JACC | CorPath 200 | 164 | N | N/A | Technical success: the successful manipulation of intracoronary devices using the robotic system only Clinical success: <30% residual stenosis, without MACEs within 48 h or hospital discharge | Technical success: 98.8% Clinical success: 97.6% |
2014 | Smilowitz et al. [25] J. Invasive Cardiol | CorPath 200 | 40 | Y | 80 | Technical success: the successful intracoronary advancement of intravascular devices by the robotic system without conversion to manual operation Clinical success: <30% residual stenosis by visual assessment at the target lesion in the absence of MACEs before discharge | Technical success: 95% Clinical success: 100% |
2017 | Madder et al. [26] Cardiovasc Revasc Med | CorPath 200 | 45 | Y | 123 + 168 | Technical success: N/A Clinical success: <30% residual stenosis | Technical success: N/A Clinical success: 100% |
2017 | Mahmud et al. [4] JACC Cardiovasc Interv | CorPath 200 | 108 | Y | 226 | Technical success: clinical success + the completion of PCI entirely robotically or with partial manual assistance (but the completion of the procedure using the re-engaged robotic drive) Clinical success: <30% residual stenosis, with TIMI flow grade 3, without an in-hospital MACE | Technical success: 91.7% a. 81.5% completely robotic b. 11.1% partial manual assistance (7.4% manual conversion, 0.9% MACE) Clinical success: 99.1% |
2019 | Walters et al. [33] Catheter Cardiovasc Interv | CorPath 200 | 103 | Y | 210 | Technical success: clinical success + the completion of PCI entirely robotically or with partial manual assistance (but the completion of the procedure using the re-engaged robotic drive) Clinical success: <30% residual stenosis, without an in-hospital MACE | Technical success: N/A (no reanalysis performed; data were previously published in the CORA-PCI study—Mahmud et al. JACC 2017 [4]) clinical success: N/A |
2018 | Smitson et al. [7] J Invasive Cardiol | Corpath GRX | 40 | N | N/A | Technical success: clinical success without unplanned manual assistance or conversion to manual PCI for procedural completion Clinical success: <30% residual stenosis and TIMI 3 flow, in the absence of an in-hospital MACE | Technical success: 90.0% Clinical success: 97.5% |
2020 | Hirai et al. [27] Catheter Cardiovasc Interv. | CorPath GRX | 49 | Y | 46 | Technical success: not specified Clinical success: N/A; only patients with successful PCI of a single CTO lesion were included in the analysis | Technical success: 98% (per-protocol hybrid approach in all cases) Clinical success: N/A |
2020 | Patel et al. [5] JACC Cardiovasc Interv. | CorPath GRX | 280 | Y | 280 | N/A The primary endpoint was patient exposure to radiation, and propensity score matching was performed for a cohort of patients who underwent successful R-PCI | N/A |
2021 | Kagiyama et al. [29] Heart & Vessels | CorPath GRX | 28 | Y | 35 | Technical success: clinical success and the completion of the PCI entirely robotically, or with partial manual assistance Clinical success: <30% residual stenosis by QCA, without an in-hospital MACE (within 72 h or to hospital discharge) | Technical success: 90.0% Clinical success: 93.3% |
2022 | Lemos et al. [30] Cardiovasc Diagn Ther. | CorPath GRX | 83 | N | N/A | Technical success: <30% residual stenosis and no unplanned manual conversions Clinical success: angiographic success (not specified) | Technical success: 85.7% Clinical success: 99.1% |
2022 | Brunner et al. [31] Heart & Vessels | CorPath GRX | 71 | N | N/A | Technical success: the completion of PCI with no or partial manual assistance (planned and unplanned), ultimate robotic completion of the procedure Clinical success: angiographic success: residual diameter stenosis <20% and TIMI 3 flow | Technical success: 94.2% Clinical success: 100% |
2023 | Häner et al. [32] Front. Cardiovasc. Med. | CorPath GRX | 21 | N | N/A | Technical success: clinical success and the completion of the PCI entirely robotically, or with partial manual assistance Clinical success: <30% residual stenosis by visual estimation, without an in-hospital MACE | Technical success: 81% Clinical success: 100% |
2024 | Leung et al. [28] Heart Lung Circ. | CorPath GRX | 21 | N | N/A | Technical success: the completion of R-PCI without unplanned manual conversion Clinical success: <30% residual stenosis by QCA, without an in-hospital MACE | Technical success: 81% Clinical success: 100% |
2023 | Durand et al. [21] Eurointervention | R-One | 62 | N | N/A | Technical success: treatment of all the target lesions using the R-One system without total conversion to manual operation Clinical success: absence of intraprocedural complications | Technical success: 95.2% Clinical success: 100% |
Authors Journal | R-PCI Platform | N R-PCI | Reasons for Conversion |
---|---|---|---|
Beyar et al. [6] JACC | RNS | 18 | 1× unsuccessful guidewire navigation, technical problems with RNS 2× system malfunction |
Weisz et al. [24] JACC | CorPath 200 | 164 | 2× severe resistance to stent delivery (need for buddy wire, guide extension catheter) |
Smilowitz et al. [25] J. Invasive Cardiol | CorPath 200 | 40 | 2× resistance to stent delivery |
Madder et al. [26] Cardiovasc Revasc Med | CorPath 200 | 45 | not reported |
Mahmud et al. [4] JACC Cardiovasc Interv | CorPath 200 | 108 | 9× limited guidewire/catheter support 8× technical limitations 3× MACEs |
Smitson et al. [7] J Invasive Cardiol | Corpath GRX | 40 | 1× uncrossable CTO lesion 1× uncrossable long-segment type C lesion 1× resistance to balloon crossing, need for orbital atherectomy |
Hirai et al. [27] Catheter Cardiovasc Interv | CorPath GRX | 49 | 1× thrombus formation, intracoronary tPA application |
Kagiyama et al. [29] Heart & Vessels | CorPath GRX | 28 | 1× wiring of subintimal space 2× resistance to stent/balloon delivery |
Lemos et al. [30] Cardiovasc Diagn Ther. | CorPath GRX | 83 | 6× unable to reach target lesion (with guidewire, balloon or stent) 2× uncrossable lesion (guidewire, stent) 2× clinically indicated conversion 1× device malfunction 4× other reasons |
Brunner et al. [31] Heart & Vessels | CorPath GRX | 71 | 4× friction, unable to deliver devices or repetitive use of microcatheters 1× side-branch perforation (tortuous vessel) |
Häner et al. [32] Front. Cardiovasc. Med. | CorPath GRX | 21 | 2× platform limitations/poor guide catheter support 1× transient slow-flow due to prolonged exchange times 1× software error |
Leung et al. [28] Heart Lung Circ. | CorPath GRX | 21 | 1× unsuccessful postdilatation balloon delivery 1× resistance to stent delivery 1× cassette error 1× guide catheter disengagement |
Durand et al. [21] Eurointervention | R-One | 62 | 1× balloon-uncrossable lesion, guide extension catheter 1× technical fault, incorrect guidewire loading into the R-PCI cassette 1× coronary dissection (NHLBI type B) |
Year | Authors Journal | R-PCI Platform | N R-PCI | Control Group | N Controls | Safety Endpoint |
---|---|---|---|---|---|---|
2006 | Beyar et al. [6] JACC | RNS | 18 | Y | 20 | MACE, procedural, in-hospital: 0 1 non-target vessel myocardial infarction 3 weeks post-procedure |
2013 | Weisz et al. [24] JACC | CorPath 200 | 164 | N | N/A | 4 patients (2.4%) with modest post-procedural myocardial biomarker elevations, meeting the criteria for non-Q-wave myocardial infarction (CK-MB > 3 times ULN, in the absence of new Q-waves) |
2014 | Smilowitz et al. [25] J. Invasive Cardiol | CorPath 200 | 40 | Y | 80 | no adverse events or elevations in CPK (>2 times the upper limit of normal) |
2017 | Madder et al. [26] Cardiovasc Revasc Med | CorPath 200 | 45 | Y | 123 + 168 | not reported (the primary endpoint of the trial was the comparison of operator radiation exposure in different radioprotective settings) |
2017 | Mahmud et al. [4] JACC Cardiovasc Interv | CorPath 200 | 108 | Y | 226 | MACE, in-hospital: 0.9% for both groups, p = non-significant |
2019 | Walters et al. [33] Catheter Cardiovasc Interv | CorPath 200 | 103 | Y | 210 | MACE, 6 months: R-PCI 5.8% vs. M-PCI 3.3%, p = 0.51 MACE, 12 months (primary endpoint): R-PCI 7.8% vs. M-PCI 8.1%, p = 0.92 no access-site complications (BARC III or higher) |
2018 | Smitson et al. [7] J Invasive Cardiol | Corpath GRX | 40 | N | N/A | MACE, in-hospital: none reported |
2020 | Hirai et al. [27] Catheter Cardiovasc Interv | CorPath GRX | 49 | Y | 46 | MACE: R-PCI 10.4%, M-PCI 13.0%, p = 0.67 |
2020 | Patel et al. [5] JACC Cardiovasc Interv | CorPath GRX | 280 | Y | 280 | MACE, 30 days: R-PCI 2.50%, M-PCI 3.21%, p = 0.445 |
2021 | Kagiyama et al. [29] Heart & Vessels | Corpath GRX | 28 | Y | 35 | MACE, 72 h/in-hospital: 0 |
2022 | Lemos et al. [30] Cardiovasc Diagn Ther. | CorPath GRX | 83 | N | N/A | MACE, in-hospital: R-PCI 2.4% MACE, 30 days: 1.2% |
2023 | Häner et al. [32] Front. Cardiovasc. Med. | CorPath GRX | 21 | N | N/A | MACE, in-hospital: 0 MACE, 12 months: 4.8% (1 non-target vessel myocardial infarction) |
2024 | Bay et al. [35] Eurointervention | CorPath GRX | 70 | Y | 210 | MACE, 12 months: R-PCI 10.5%, M-PCI 6.5%, p = 0.25 |
2024 | Leung et al. [28] Heart Lung Circ. | CorPath GRX | 21 | N | N/A | MACE, in-hospital: 0 |
2023 | Durand et al. [21] Eurointervention | R-One | 62 | N | N/A | MACE, in-hospital: 0 MACE, 30 days: 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagener, M.; Onuma, Y.; Sharif, R.; Coen, E.; Wijns, W.; Sharif, F. Features and Limitations of Robotically Assisted Percutaneous Coronary Intervention (R-PCI): A Systematic Review of R-PCI. J. Clin. Med. 2024, 13, 5537. https://doi.org/10.3390/jcm13185537
Wagener M, Onuma Y, Sharif R, Coen E, Wijns W, Sharif F. Features and Limitations of Robotically Assisted Percutaneous Coronary Intervention (R-PCI): A Systematic Review of R-PCI. Journal of Clinical Medicine. 2024; 13(18):5537. https://doi.org/10.3390/jcm13185537
Chicago/Turabian StyleWagener, Max, Yoshinobu Onuma, Ruth Sharif, Eileen Coen, William Wijns, and Faisal Sharif. 2024. "Features and Limitations of Robotically Assisted Percutaneous Coronary Intervention (R-PCI): A Systematic Review of R-PCI" Journal of Clinical Medicine 13, no. 18: 5537. https://doi.org/10.3390/jcm13185537
APA StyleWagener, M., Onuma, Y., Sharif, R., Coen, E., Wijns, W., & Sharif, F. (2024). Features and Limitations of Robotically Assisted Percutaneous Coronary Intervention (R-PCI): A Systematic Review of R-PCI. Journal of Clinical Medicine, 13(18), 5537. https://doi.org/10.3390/jcm13185537