Sutureless Aortic Prosthesis Valves versus Transcatheter Aortic Valve Implantation in Intermediate Risk Patients with Severe Aortic Stenosis: A Literature Review
Abstract
:1. Introduction
2. Material and Methods
2.1. Types and Characteristics of Prostheses
- -
- The size of the ring (in case of an annulus that is too small, which would require enlargement procedures, or too large for which size XL prostheses should be used, surgery with a traditional prosthesis is preferable).
- -
- Calcifications (the absence of calcifications can cause a dislocation of the TAVR due to lack of anchoring). Furthermore, failure to remove the calcified native valve increases the risk of stroke as well as being the main cause of PVL and pacemaker implantation in TAVR. In fact, the removal of the valve and accurate decalcification of the annulus (in addition to the possible removal of infected material) allow for better positioning of the prosthesis, as well as ensuring greater durability over time.
- -
- The wall quality (the fragility of the wall suggests the use of a sutureless prosthesis to avoid the risk of rupture or dissection post-TAVR).
- -
- Anatomical anomalies (bicuspid aortic valve or aneurysmal dilations) orient toward the choice of traditional prostheses.
- -
- Porcelain aorta (absolute contraindication to the surgical procedure), while in the presence of calcifications at the level of the aortic root (previous homograft), a sutureless prosthesis is advisable.
- -
- The height of the coronary ostia (a reduced distance between the valve plane and the ostia is a significant risk in the use of stented prostheses such as TAVR or sutureless; therefore, the use of traditional prostheses is preferable).
- -
- The risk of atrioventricular conduction block (due to previous conduction disorders or the presence of calcifications at the level of the interventricular septum) makes surgical treatment with a traditional prosthesis advisable.
2.2. Data Sources and Search Strategy
2.3. Study Selection
2.3.1. Inclusion Criteria
2.3.2. Exclusion Criteria
3. Management of Severe Aortic Stenosis According to the International Guidelines
4. State of the Art in the Management of Intermediate-Surgical-Risk Patients with Severe Aortic Stenosis
4.1. Peak and Mean Transvalvular Gradients
4.2. Perivalvular Leaks
4.3. Pacemaker Implantation
4.4. Clinical Outcomes
4.5. Minimally Invasive AVR versus TAVI
4.6. Structural Durability of TAVAR versus SAVAR
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carabello, B.A. Introduction to Aortic Stenosis. Circ. Res. 2013, 113, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Iung, B.; Vahanian, A. Epidemiology of valvular heart disease in the adult. Nat. Rev. Cardiol. 2011, 8, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Iung, B.; Baron, G.; Butchart, E.G.; Delahaye, F.; Gohlke-Bärwolf, C.; Levang, O.W.; Tornos, P.; Vanoverschelde, J.-L.; Vermeer, F.; Boersma, E.; et al. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur. Heart J. 2003, 24, 1231–1243. [Google Scholar] [CrossRef]
- Sedrakyan, A.; Dhruva, S.S.; Sun, T.; Mao, J.; Gaudino, M.F.L.; Redberg, R.F. Trends in Use of Transcatheter Aortic Valve Replacement by Age. JAMA 2018, 320, 598–600. [Google Scholar] [CrossRef] [PubMed]
- Flynn, C.D.; Williams, M.L.; Chakos, A.; Hirst, L.; Muston, B.; Tian, D.H. Sutureless valve and rapid deployment valves: A systematic review and meta-analysis of comparative studies. Ann. Cardiothorac. Surg. 2020, 9, 364–374. [Google Scholar] [CrossRef]
- Fischlein, T.; Caporali, E.; Asch, F.M.; Vogt, F.; Pollari, F.; Folliguet, T.; Kappert, U.; Meuris, B.; Shrestha, M.L.; Roselli, E.E.; et al. Hemodynamic Performance of Sutureless vs. Conventional Bioprostheses for Aortic Valve Replacement: The 1-Year Core-Lab Results of the Randomized PERSIST-AVR Trial. Front. Cardiovasc. Med. 2022, 9, 844876. [Google Scholar] [CrossRef]
- Minh, T.H.; Mazine, A.; Bouhout, I.; El-Hamamsy, I.; Carrier, M.; Bouchard, D.; Demers, P. Expanding the indication for sutureless aortic valve replacement to patients with mitral disease. J. Thorac. Cardiovasc. Surg. 2014, 148, 1354–1359. [Google Scholar] [CrossRef]
- Phan, K.; Tsai, Y.-C.; Niranjan, N.; Bouchard, D.; Carrel, T.P.; Dapunt, O.E.; Eichstaedt, H.C.; Fischlein, T.; Gersak, B.; Glauber, M.; et al. Sutureless aortic valve replacement: A systematic review and meta-analysis. Ann. Cardiothorac. Surg. 2015, 4, 100–111. [Google Scholar] [CrossRef]
- Flameng, W.; Herregods, M.-C.; Hermans, H.; Van der Mieren, G.; Vercalsteren, M.; Poortmans, G.; Van Hemelrijck, J.; Meuris, B. Effect of sutureless implantation of the Perceval S aortic valve bioprosthesis on intraoperative and early postoperative outcomes. J. Thorac. Cardiovasc. Surg. 2011, 142, 1453–1457. [Google Scholar] [CrossRef]
- Glauber, M.; Moten, S.C.; Quaini, E.; Solinas, M.; Folliquet, T.A.; Marius, B.; Miceli, A.; Oberwalder, P.J.; Rambaldini, M.; Teoh, K.H.T.; et al. International Expert Consensus on Sutureless and Rapid Deployment Valves in Aortic Valve Replacement Using Minimally Invasive Approaches. Innovations 2016, 11, 165–173. [Google Scholar]
- Bonderman, D.; Graf, A.; Kammerlander, A.A.; Kocher, A.; Laufer, G.; Lang, I.M.; Mascherbauer, J. Factors determining patient-prosthesis mismatch after aortic valve replacement--a prospective cohort study. PLoS ONE 2013, 8, e81940. [Google Scholar] [CrossRef] [PubMed]
- Phan, K.; Xie, A.; Di Eusanio, M.; Yan, T.D. A meta-analysis of minimally invasive versus conventional sternotomy for aortic valve replacement. Ann. Thorac. Surg. 2014, 98, 1499–1511. [Google Scholar] [CrossRef] [PubMed]
- Glauber, M.; Miceli, A.; di Bacco, L. Sutureless and rapid deployment valves: Implantation technique from A to Z—The Perceval valve. Ann. Cardiothorac. Surg. 2020, 9, 330–340. [Google Scholar] [CrossRef] [PubMed]
- Laufer, G.; Strauch, J.T.; Terp, K.A.; Salinas, M.; Arribas, J.M.; Massetti, M.; Andreas, M.; Young, C.P. Real-world 6-month outcomes of minimally invasive aortic valve replacement with the EDWARDS INTUITY Elite valve system. Interact. Cardiovasc. Thorac. Surg. 2022, 35, ivac083. [Google Scholar] [CrossRef]
- Postolache, A.; Sperlongano, S.; Lancellotti, P. TAVI after More than 20 Years. J. Clin. Med. 2023, 12, 5645. [Google Scholar] [CrossRef]
- Spadaccio, C.; Nenna, A.; Pisani, A.; Laskawski, G.; Nappi, F.; Moon, M.R.; Biancari, F.; Jassar, A.S.; Greason, K.L.; Shrestha, M.L.; et al. Sutureless Valves, a “Wireless” Option for Patients with Aortic Valve Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2024, 284, 382–407. [Google Scholar] [CrossRef]
- Ahmed, A.; Levy, K.H. Valve-in-valve transcatheter aortic valve replacement versus redo surgical aortic valve replacement: A systematic review and meta-analysis. J. Card. Surg. 2021, 36, 2486–2495. [Google Scholar] [CrossRef] [PubMed]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
- Thourani, V.H.; Suri, R.M.; Gunter, R.L.; Sheng, S.; O’brien, S.M.; Ailawadi, G.; Szeto, W.Y.; Dewey, T.M.; Guyton, R.A.; Bavaria, J.E.; et al. Contemporary real-world outcomes of surgical aortic valve replacement in 141,905 low-risk, intermediate-risk, and high-risk patients. Ann. Thorac. Surg. 2015, 99, 55–61. [Google Scholar] [CrossRef]
- Leon, M.B.; Smith, C.R.; Mack, M.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 2010, 363, 1597–1607. [Google Scholar] [CrossRef]
- Deeb, G.M.; Reardon, M.J.; Chetcuti, S.; Patel, H.J.; Grossman, P.M.; Yakubov, S.J.; Kleiman, N.S.; Coselli, J.S.; Gleason, T.G.; Lee, J.S.; et al. CoreValve USCI.3-Year outcomes in high-risk patients who underwent surgical or transcatheter aortic valve replacement. J. Am. Coll. Cardiol. 2016, 67, 2565–2574. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.R.; Leon, M.B.; Mack, M.J.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med. 2011, 364, 2187–2198. [Google Scholar] [CrossRef]
- Mack, M.J.; Leon, M.B.; Smith, C.R.; Miller, D.C.; Moses, J.W.; Tuzcu, E.M.; Webb, J.G.; Douglas, P.S.; Anderson, W.N.; Blackstone, E.H.; et al. 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): A randomised controlled trial. Lancet 2015, 385, 2477–2484. [Google Scholar] [CrossRef] [PubMed]
- Adams, D.H.; Popma, J.J.; Reardon, M.J.; Yakubov, S.J.; Coselli, J.S.; Deeb, G.M.; Gleason, T.G.; Buchbinder, M.; Hermiller, J., Jr.; Kleiman, N.S.; et al. Transcatheter aortic-valve replacement with a selfexpanding prosthesis. N. Engl. J. Med. 2014, 370, 1790–1798. [Google Scholar] [CrossRef]
- Thyregod, H.G.; Steinbruchel, D.A.; Ihlemann, N.; Nissen, H.; Kjeldsen, B.J.; Petursson, P.; Chang, Y.; Franzen, O.W.; Engstrom, T.; Clemmensen, P.; et al. Transcatheter versus surgical aortic valve replacement in patients with severe aortic valve stenosis: 1-year results from the All-Comers NOTION randomized clinical trial. J. Am. Coll. Cardiol. 2015, 65, 2184–2194. [Google Scholar] [CrossRef]
- Leon, M.B.; Smith, C.R.; Mack, M.J.; Makkar, R.R.; Svensson, L.G.; Kodali, S.K.; Thourani, V.H.; Tuzcu, E.M.; Miller, D.C.; Herrmann, H.C.; et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N. Engl. J. Med. 2016, 374, 1609–1620. [Google Scholar] [CrossRef] [PubMed]
- Thourani, V.H.; Kodali, S.; Makkar, R.R.; Herrmann, H.C.; Williams, M.; Babaliaros, V.; Smalling, R.; Lim, S.; Malaisrie, S.C.; Kapadia, S.; et al. Transcatheter aortic valve replacement versus surgical valve replacement in intermediate-risk patients: A propensity score analysis. Lancet 2016, 387, 2218–2225. [Google Scholar] [CrossRef]
- Reardon, M.J.; Van Mieghem, N.M.; Popma, J.J.; Kleiman, N.S.; Søndergaard, L.; Mumtaz, M.; Adams, D.H.; Deeb, G.M.; Maini, B.; Gada, H.; et al. Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. N. Engl. J. Med. 2017, 376, 1321–1331. [Google Scholar] [CrossRef]
- Makkar, R.R.; Thourani, V.H.; Mack, M.J.; Kodali, S.K.; Kapadia, S.; Webb, J.G.; Yoon, S.-H.; Trento, A.; Svensson, L.G.; Herrmann, H.C.; et al. Five-year outcomes of transcatheter or surgical aortic-valve replacement. N. Engl. J. Med. 2020, 382, 799–809. [Google Scholar] [CrossRef]
- Gleason, T.G.; Reardon, M.J.; Popma, J.J.; Deeb, G.M.; Yakubov, S.J.; Lee, J.S.; Kleiman, N.S.; Chetcuti, S.; Hermiller, J.B., Jr.; Heiser, J.; et al. CoreValve US Pivotal High Risk Trial Clinical Investigators.5-Year outcomes of self-expanding transcatheter versus surgical aortic valve replacement in high-risk patients. J. Am. Coll. Cardiol. 2018, 72, 2687–2696. [Google Scholar] [CrossRef]
- Thyregod, H.G.H.; Ihlemann, N.; Jorgensen, T.H.; Nissen, H.; Kjeldsen, B.J.; Petursson, P.; Chang, Y.; Franzen, O.W.; Engstrom, T.; Clemmensen, P.; et al. Five-year clinical and echocardiographic outcomes from the Nordic Aortic Valve Intervention (NOTION) randomized clinical trial in lower surgical risk patients. Circulation 2019, 139, 2714–2723. [Google Scholar] [CrossRef]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef]
- Popma, J.J.; Deeb, G.M.; Yakubov, S.J.; Mumtaz, M.; Gada, H.; O’Hair, D.; Bajwa, T.; Heiser, J.C.; Merhi, W.; Kleiman, N.S.; et al. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N. Engl. J. Med. 2019, 380, 1706–1715. [Google Scholar] [CrossRef]
- Leon, M.B.; Mack, M.J.; Hahn, R.T.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Alu, M.C.; Madhavan, M.V.; Chau, K.H.; Russo, M.; et al. Outcomes 2 years after transcatheter aortic valve replacement in patients at low surgical risk. J. Am. Coll. Cardiol. 2021, 77, 1149–1161. [Google Scholar] [CrossRef]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, e72–e227. [Google Scholar] [CrossRef]
- Zoghbi, W.A.; Adams, D.; Bonow, R.O.; Enriquez-Sarano, M.; Foster, E.; Grayburn, P.A.; Hahn, R.T.; Han, Y.; Hung, J.; Lang, R.M.; et al. Recommendations for noninvasive evaluation of native valvular regurgitation: A report from the American Society of Echocardiography. Developed in collaboration with the Society for Cardiovascular Magnetic Resonance. J. Am. Soc. Echocardiogr. 2017, 30, 303–371. [Google Scholar] [CrossRef]
- Detaint, D.; Messika-Zeitoun, D.; Maalouf, J.; Tribouilloy, C.; Mahoney, D.W.; Tajik, A.J.; Enriquez-Sarano, M. Quantitative echocardiographic determinants of clinical outcome in asymptomatic patients with aortic regurgitation: A prospective study. JACC Cardiovasc. Imaging 2008, 1, 1–11. [Google Scholar] [CrossRef]
- Pizarro, R.; Bazzino, O.O.; Oberti, P.F.; Falconi, M.L.; Arias, A.M.; Krauss, J.G.; Cagide, A.M. Prospective validation of the prognostic usefulness of B-type natriuretic peptide in asymptomatic patients with chronic severe aortic regurgitation. J. Am. Coll. Cardiol. 2011, 58, 1705–1714. [Google Scholar] [CrossRef]
- Tribouilloy, C.; Rusinaru, D.; Grigioni, F.; Avierinos, J.F.; Barbieri, A.; Szymanski, C.; Habib, G.; Enriquez-Sarano, M. Survival implication of left ventricular end-systolic diameter in mitral regurgitation due to flail leaflets a long-term follow-up multicenter study. J. Am. Coll. Cardiol. 2009, 54, 1961–1968. [Google Scholar] [CrossRef]
- Enriquez-Sarano, M.; Avierinos, J.-F.; Messika-Zeitoun, D.; Detaint, D.; Capps, M.; Nkomo, V.; Scott, C.; Schaff, H.V.; Tajik, A.J. Quantitative determinants of the outcome of asymptomatic mitral regurgitation. N. Engl. J. Med. 2005, 352, 875–883. [Google Scholar] [CrossRef]
- Ozdogan, O.; Yuksel, A.; Gurgun, C.; Kayikcioglu, M.; Yavuzgil, O.; Cinar, C.S. Evaluation of the severity of mitral regurgitation by the use of signal void in magnetic resonance imaging. Echocardiography 2009, 26, 1127–1135. [Google Scholar] [CrossRef]
- Pflugfelder, P.W.; Sechtem, U.P.; White, R.D.; Cassidy, M.M.; Schiller, N.B.; Higgins, C.B. Noninvasive evaluation of mitral regurgitation by analysis of left atrial signal loss in cine magnetic resonance. Am. Heart J. 1989, 117, 1113–1119. [Google Scholar] [CrossRef]
- Myerson, S.G.; D’arcy, J.; Christiansen, J.P.; Dobson, L.E.; Mohiaddin, R.; Francis, J.M.; Prendergast, B.; Greenwood, J.P.; Karamitsos, T.D.; Neubauer, S. Determination of clinical outcome in mitral regurgitation with cardiovascular magnetic resonance quanti-fication. Circulation 2016, 133, 2287–2296. [Google Scholar] [CrossRef]
- Dahm, M.; Iversen, S.; Schmid, F.X.; Drexler, M.; Erbel, R.; Oelert, H. Intraoperative evaluation of reconstruction of the atrioventricular valves by transesophageal echocardiography. Thorac. Cardiovasc. Surg. 1987, 35, 140–142. [Google Scholar] [CrossRef]
- Lee, G.; Chikwe, J.; Milojevic, M.; Wijeysundera, H.C.; Biondi-Zoccai, G.; Flather, M.; Gaudino, M.F.L.; Fremes, S.E.; Tam, D.Y. ESC/EACTS vs. ACC/AHA guidelines for the management of severe aortic stenosis. Eur. Heart J. 2023, 44, 796–812. [Google Scholar] [CrossRef]
- Fairbairn, T.; Kemp, I.; Young, A.; Ronayne, C.; Barton, J.; Crowe, J. Effect of transcatheter aortic valve implantation vs surgical aortic valve replacement on all-cause mortality in patients with aortic stenosis: A randomized clinical trial. JAMA 2022, 327, 1875–1887. [Google Scholar]
- Jørgensen, T.H.; Thyregod, H.G.H.; Ihlemann, N.; Nissen, H.; Petursson, P.; Kjeldsen, B.J.; Steinbrüchel, D.A.; Olsen, P.S.; Søndergaard, L. Eight-year outcomes for patients with aortic valve stenosis at low surgical risk randomized to transcatheter vs. surgical aortic valve replacement. Eur. Heart J. 2021, 42, 2912–2919. [Google Scholar] [CrossRef]
- Van Mieghem, N.M.; Deeb, G.M.; Søndergaard, L.; Grube, E.; Windecker, S.; Gada, H. Self-expanding transcatheter vs surgical aortic valve replacement in intermediate-risk patients: 5-year outcomes of the SURTAVI randomized clinical trial. JAMA Cardiol. 2022, 7, 1000–1008. [Google Scholar] [CrossRef]
- Lorusso, R.; Ravaux, J.M.; Pollari, F.; Folliguet, T.A.; Kappert, U.; Meuris, B.; Shrestha, M.L.; Roselli, E.E.; Bonaros, N.; Fabre, O.; et al. Pacemaker implantation after sutureless or stented valve: Results from a controlled randomized trial. Eur. J. Cardio-Thoracic Surg. 2022, 62, ezac164. [Google Scholar] [CrossRef]
- Sá, M.P.; Jabagi, H.; Dokollari, A.; Awad, A.K.; Eynde, J.V.D.; Malin, J.H.; Sicouri, S.; Torregrossa, G.; Ruhparwar, A.; Weymann, A.; et al. Early and late outcomes of surgical aortic valve replacement with sutureless and rapid-deployment valves versus transcatheter aortic valve implantation: Meta-analysis with reconstructed time-to-event data of matched studies. Catheter. Cardiovasc. Interv. 2022, 99, 1886–1896. [Google Scholar] [CrossRef]
- Glauber, M.; Miceli, A.; Bevilacqua, S.; Farneti, P.A. Minimally invasive aortic valve replacement via right anterior minithoracotomy: Early outcomes and midterm follow-up. J. Thorac. Cardiovasc. Surg. 2011, 142, 1577–1579. [Google Scholar] [CrossRef] [PubMed]
- Solinas, M.; Bianchi, G.; Chiaramonti, F.; Margaryan, R.; Kallushi, E.; Gasbarri, T.; Santarelli, F.; Murzi, M.; Farneti, P.; Leone, A.; et al. Right anterior mini-thoracotomy and sutureless valves: The perfect marriage. Ann. Cardiothorac. Surg. 2020, 9, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Miceli, A.; Gilmanov, D.; Murzi, M.; Marchi, F.; Ferrarini, M.; Cerillo, A.G.; Quaini, E.; Solinas, M.; Berti, S.; Glauber, M. Minimally invasive aortic valve replacement with a sutureless valve through a right anterior mini-thoracotomy versus transcatheter aortic valve implantation in high-risk patients. Eur. J. Cardio-Thoracic Surg. 2016, 49, 960–965. [Google Scholar] [CrossRef] [PubMed]
- Muneretto, C.; Solinas, M.; Folliguet, T.; Di Bartolomeo, R.; Repossini, A.; Laborde, F.; Rambaldini, M.; Santarpino, G.; Di Bacco, L.; Fischlein, T. Sutureless versus transcatheter aortic valves in elderly patients with aortic stenosis at intermediate risk: A multi-institutional study. J. Thorac. Cardiovasc. Surg. 2020, 163, 925–935.e5. [Google Scholar] [CrossRef]
- Muneretto, C.; Alfieri, O.; Cesana, B.M.; Bisleri, G.; De Bonis, M.; Di Bartolomeo, R.; Savini, C.; Folesani, G.; Di Bacco, L.; Rambaldini, M.; et al. A comparison of conventional surgery, transcatheter aortic valve replacement, and sutureless valves in “real-world” patients with aortic stenosis and intermediateto high-risk profile. J. Thorac. Cardiovasc. Surg. 2015, 2150, 1570–1577. [Google Scholar] [CrossRef]
- Vilalta, V.; Alperi, A.; Cediel, G.; Mohammadi, S.; Fernández-Nofrerias, E.; Kalvrouziotis, D.; Delarochellière, R.; Paradis, J.-M.; González-Lopera, M.; Fadeuilhe, E.; et al. Midterm Outcomes Following Sutureless and Transcatheter Aortic Valve Replacement in Low-Risk Patients with Aortic Stenosis. Circ. Cardiovasc. Interv. 2021, 14, e011120. [Google Scholar] [CrossRef]
- Kamperidis, V.; van Rosendael, P.J.; de Weger, A.; Katsanos, S.; Regeer, M.; van der Kley, F.; Mertens, B.; Sianos, G.; Ajmone Marsan, N.; Bax, J.J.; et al. Surgical sutureless and transcatheter aortic valves: Hemodynamic performance and clinical outcomes in propensity score-matched high-risk populations with severe aortic stenosis. JACC Cardiovasc. Interv. 2015, 28, 670–677. [Google Scholar] [CrossRef]
- Lloyd, D.; Luc, J.G.Y.; Indja, B.E.; Leung, V.; Wang, N.; Phan, K. Transcatheter, sutureless and conventional aortic-valve replacement: A network meta-analysis of 16,432 patients. J. Thorac. Dis. 2019, 11, 188–199. [Google Scholar] [CrossRef]
- Qureshi, S.H.; Boulemden, A.; Szafranek, A.; Vohra, H. Meta-analysis of sutureless technology versus standard aortic valve replacement and transcatheter aortic valve replacement. Eur. J. Cardio-Thoracic Surg. 2017, 53, 463–471. [Google Scholar] [CrossRef]
- Shinn, S.H.; Altarabsheh, S.E.; Deo, S.V.; Sabik, J.H.; Markowitz, A.H.; Park, S.J. A Systemic Review and Meta-Analysis of Sutureless Aortic Valve Replacement Versus Transcatheter Aortic Valve Implantation. Ann. Thorac. Surg. 2018, 106, 924–929. [Google Scholar] [CrossRef]
- Van Belle, E.; Juthier, F.; Susen, S.; Vincentelli, A.; Dallongeville, J.; Iung, B.; Eltchaninoff, H.; Laskar, M.; Leprince, P.; Lievre, M.; et al. Postprocedural aortic regurgitation in balloon-expandable and self-expandable transcatheter aortic valve replacement procedures: Analysis of predictors and impact on long-term mortality: Insights from the FRANCE2 Registry. Circulation 2014, 1, 1415–1427. [Google Scholar] [CrossRef] [PubMed]
- Landes, U.; Hochstadt, A.; Manevich, L.; Webb, J.G.; Sathananthan, J.; Sievert, H.; Piayda, K.; Leon, M.B.; Nazif, T.M.; Blusztein, D.; et al. Treatment of late paravalvular regurgitation after transcatheter aortic valve implantation: Prognostic implications. Eur. Heart J. 2023, 44, 1331–1339. [Google Scholar] [CrossRef] [PubMed]
- Meco, M.; Miceli, A.; Montisci, A.; Donatelli, F.; Cirri, S.; Ferrarini, M.; Lio, A.; Glauber, M. Sutureless aortic valve replacement versus transcatheter aortic valve implantation: A meta-analysis of comparative matched studies using propensity score matching. Interact. Cardiovasc. Thorac. Surg. 2017, 26, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Zubarevich, A.; Szczechowicz, M.; Amanov, L.; Rad, A.A.; Osswald, A.; Torabi, S.; Ruhparwar, A.; Weymann, A. Non-Inferiority of Sutureless Aortic Valve Replacement in the TAVR Era: David versus Goliath. Life 2022, 12, 979. [Google Scholar] [CrossRef]
- Al-Maisary, S.; Farag, M.; Gussinklo, W.H.T.; Kremer, J.; Pleger, S.T.; Leuschner, F.; Karck, M.; Szabo, G.; Arif, R. Are Sutureless and Rapid-Deployment Aortic Valves a Serious Alternative to TA-TAVI? A Matched-Pairs Analysis. J. Clin. Med. 2021, 10, 3072. [Google Scholar] [CrossRef]
- Barili, F.; Freemantle, N.; Musumeci, F.; Martin, B.; Anselmi, A.; Rinaldi, M.; Kaul, S.; Rodriguez-Roda, J.; Di Mauro, M.; Folliguet, T.; et al. Five-year outcomes in trials comparing transcatheter aortic valve implantation versus surgical aortic valve replacement: A pooled meta-analysis of reconstructed time-to-event data. Eur. J. Cardiothorac. Surg. 2022, 61, 977–987. [Google Scholar] [CrossRef]
- Barili, F.; Freemantle, N.; Casado, A.P.; Rinaldi, M.; Folliguet, T.; Musumeci, F.; Gerosa, G.; Parolari, A. Mortality in trials on transcatheter aortic valve implantation versus surgical aortic valve replacement: A pooled meta-analysis of Kaplan–Meier-derived individual patient data. Eur. J. Cardio-Thoracic Surg. 2020, 58, 221–229. [Google Scholar] [CrossRef]
- Kim, K.S.; Makhdoum, A.; Koziarz, A.; Gupta, S.; Alsagheir, A.; Pandey, A.; Reza, S.; Um, K.; Teoh, K.; Alhazzani, W.; et al. Outcomes of sutureless aortic valve replacement versus conventional aortic valve replacement and transcatheter aortic valve replacement, updated systematic review, and meta-analysis. J. Card Surg. 2021, 236, 4734–4742. [Google Scholar] [CrossRef] [PubMed]
- D’onofrio, A.; Fabozzo, A.; Gerosa, G. Comparison of hemodynamic and clinical outcomes of transcatheter and sutureless aortic bioprostheses: How to make the right choice in intermediate risk patients. Ann. Cardiothorac. Surg. 2017, 6, 510–515. [Google Scholar] [CrossRef]
- Almeida, A.S.; Ceron, R.O.; Anschau, F.; de Oliveira, J.B.; Leão Neto, T.C.; Rode, J.; Rey, R.A.W.; Lira, K.B.; Delvaux, R.S.; de Souza, R.O.R.R. Conventional Versus Minimally Invasive Aortic Valve Replacement Surgery: A Systematic Review, Meta-Analysis, and MetaRegression. Innovations 2022, 17, 3–13. [Google Scholar]
- Angelini, G.D.; Reeves, B.C.; Culliford, L.A.; Maishman, R.; Rogers, C.A.; Anastasiadis, K.; Antonitsis, P.; Argiriadou, H.; Carrel, T.; Keller, D.; et al. Conventional versus minimally invasive extra-corporeal circulation in patients undergoing cardiac surgery: A randomized controlled trial (COMICS). Perfusion 2024. [Google Scholar] [CrossRef] [PubMed]
- Doyle, M.P.; Woldendorp, K.; Ng, M.; Vallely, M.P.; Wilson, M.K.; Yan, T.D.; Bannon, P.G. Minimally-invasive versus transcatheter aortic valve implantation: Systematic review with meta-analysis of propensity-matched studies. J. Thorac. Dis. 2021, 13, 1671–1683. [Google Scholar] [CrossRef] [PubMed]
- Im, J.E.; Jung, E.Y.; Lee, S.S.; Min, H.-K. Right anterior mini-thoracotomy aortic valve replacement versus transcatheter aortic valve implantation in octogenarians: A single center experience: A retrospective study. Yeungnam Univ. J. Med. 2024, 41, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Cribier, A. The development of transcatheter aortic valve replacement (TAVR). Glob. Cardiol. Sci. Pract. 2017, 2016, e201632. [Google Scholar] [CrossRef] [PubMed]
- Ler, A.; Ying, Y.J.; Sazzad, F.; Choong, A.M.T.L.; Kofidis, T. Structural durability of early-generation Transcatheter aortic valve replacement valves compared with surgical aortic valve replacement valves in heart valve surgery: A systematic review and meta-analysis. J. Cardiothorac. Surg. 2020, 15, 127. [Google Scholar] [CrossRef]
- Pollari, F.; Mamdooh, H.; Hitzl, W.; Grossmann, I.; Vogt, F.; Fischlein, T. Ten years’ experience with the sutureless aortic valve replacement: Incidence and predictors for survival and valve durability at follow-up. Eur. J. Cardio-Thoracic Surg. 2022, 63, ezac572. [Google Scholar] [CrossRef]
- Szecel, D.; Eurlings, R.; Rega, F.; Verbrugghe, P.; Meuris, B. Perceval Sutureless Aortic Valve Implantation: Midterm Outcomes. Ann. Thorac. Surg. 2020, 111, 1331–1337. [Google Scholar] [CrossRef]
- Werner, P.; Coti, I.; Kaider, A.; Gritsch, J.; Mach, M.; Kocher, A.; Laufer, G.; Andreas, M. Long-term durability after surgical aortic valve replacement with the Trifecta and the Intuity valve—A comparative analysis. Eur. J. Cardio-Thoracic Surg. 2022, 61, 416–424. [Google Scholar] [CrossRef]
Study/Year | Study Period | Type of Study | Study Size | Risk Class | Peak and Mean Transvalvular Gradients (Mean ± SD) mmHg | Perivalvular Leaks | Pace-Maker Implantation |
---|---|---|---|---|---|---|---|
Muneretto C. et al., 2020 [54] | 2008–2015 | retrospective study | Sutureless: 481 patients TAVR: 486 patients | intermediate risk | Peak Sutureless: 23.2 ± 9.3 Mean Sutureless: 11.1 ± 5.7 Peak TAVR: 22.9 ± 8.4 Mean TAVR: 10.6 ± 4.9 | Grade > II Sutureless: 5 patients TAVR: 36 patients | Sutureless: 29 patients TAVR: 60 patients |
Muneretto C. et al., 2015 [55] | 2007–2014 | observational, retrospective multicenter cohort study | Postmatching Sutureless: 204 patients TAVR: 204 patients | Intermediate to high risk | Peak Sutureless: 19.52 ± 12.45 Mean Sutureless: 10.8 ± 6.8 Peak TAVR: 14.34 ± 7.5 Mean TAVR: 7.6 ± 4.2 | Grade > II Sutureless: 4 patients TAVR: 18 patients | Sutureless: 20 patients TAVR: 30 patients |
Vilalta V. et al., 2021 [56] | 2011–2020 | retrospective study | Postmatching Sutureless: 171 patients TAVR: 171 patients | low risk | Mean Sutureless: 49.4 ± 16.4 Mean TAVR: 46.0 ± 17.2 | Moderate-severe Sutureless: 1/159 patients TAVR: 1/94 patients | Sutureless: 23 patients TAVR: 34 patients |
Kamperidis V. et al, 2015 [57] | 2007–2013 | retrospective study | Postmatching Sutureless: 40 patients TAVR: 40 patients | High risk | Mean Sutureless: 10.72 ± 4.01 Mean TAVR: 8.14 ± 4.21 | Grade > II Sutureless: 2 patients TAVR: 9 patients | Sutureless: 1 patient TAVR: 3 patients |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asta, L.; Sbrigata, A.; Pisano, C. Sutureless Aortic Prosthesis Valves versus Transcatheter Aortic Valve Implantation in Intermediate Risk Patients with Severe Aortic Stenosis: A Literature Review. J. Clin. Med. 2024, 13, 5592. https://doi.org/10.3390/jcm13185592
Asta L, Sbrigata A, Pisano C. Sutureless Aortic Prosthesis Valves versus Transcatheter Aortic Valve Implantation in Intermediate Risk Patients with Severe Aortic Stenosis: A Literature Review. Journal of Clinical Medicine. 2024; 13(18):5592. https://doi.org/10.3390/jcm13185592
Chicago/Turabian StyleAsta, Laura, Adriana Sbrigata, and Calogera Pisano. 2024. "Sutureless Aortic Prosthesis Valves versus Transcatheter Aortic Valve Implantation in Intermediate Risk Patients with Severe Aortic Stenosis: A Literature Review" Journal of Clinical Medicine 13, no. 18: 5592. https://doi.org/10.3390/jcm13185592
APA StyleAsta, L., Sbrigata, A., & Pisano, C. (2024). Sutureless Aortic Prosthesis Valves versus Transcatheter Aortic Valve Implantation in Intermediate Risk Patients with Severe Aortic Stenosis: A Literature Review. Journal of Clinical Medicine, 13(18), 5592. https://doi.org/10.3390/jcm13185592