Placental Gene Therapy for Fetal Growth Restriction and Preeclampsia: Preclinical Studies and Prospects for Clinical Application
Abstract
:1. Introduction
2. Targeting the Placenta for Gene Delivery
3. Placental Physiology and Placental Insufficiency
4. Placental Insufficiency in FGR
5. Vectors for Placental Gene Therapy
6. IGF-1 and Placental Insufficiency
7. Placental Gene Therapy with Ad-IGF-1
8. Alternative Biomarkers for Potential Therapy Targets and Other Mechanisms and Vectors for Treating PI with Placental Gene Therapy
9. Placenta Gene Therapy for Preeclampsia
10. Initial Challenges and Limitations with Placental Gene Therapy
11. Ethical and Political Considerations for Placental Gene Therapy
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aiuti, A.; Slavin, S.; Aker, M.; Ficara, F.; Deola, S.; Mortellaro, A.; Morecki, S.; Andolfi, G.; Tabucchi, A.; Carlucci, F.; et al. Correction of ADA-SCID by Stem Cell Gene Therapy Combined with Nonmyeloablative Conditioning. Science 2002, 296, 2410–2413. [Google Scholar] [CrossRef] [PubMed]
- Hacein-Bey-Abina, S.; Von Kalle, C.; Schmidt, M.; McCormack, M.P.; Wulffraat, N.; Leboulch, P.; Lim, A.; Osborne, C.S.; Pawliuk, R.; Morillon, E.; et al. LMO2-Associated Clonal T Cell Proliferation in Two Patients after Gene Therapy for SCID-X1. Science 2003, 302, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Berges, B.K.; Yellayi, S.; Karolewski, B.A.; Miselis, R.R.; Wolfe, J.H.; Fraser, N.W. Widespread correction of lysosomal storage in the mucopolysaccharidosis type VII mouse brain with a herpes simplex virus type 1 vector expressing beta-glucuronidase. Mol. Ther. 2006, 13, 859–869. [Google Scholar] [CrossRef] [PubMed]
- Ellinwood, N.M.; Vite, C.H.; Haskins, M.E. Gene therapy for lysosomal storage diseases: The lessons and promise of animal models. J. Gene Med. 2004, 6, 481–506. [Google Scholar] [CrossRef] [PubMed]
- Massaro, G.; Geard, A.F.; Liu, W.; Coombe-Tennant, O.; Waddington, S.N.; Baruteau, J.; Gissen, P.; Rahim, A.A. Gene Therapy for Lysosomal Storage Disorders: Ongoing Studies and Clinical Development. Biomolecules 2021, 11, 611. [Google Scholar] [CrossRef] [PubMed]
- A Davies, L.; Varathalingam, A.; Painter, H.; E Lawton, A.; Sumner-Jones, S.G.; A Nunez-Alonso, G.; Chan, M.; Munkonge, F.; Alton, E.W.; Hyde, S.C.; et al. Adenovirus-mediated In Utero Expression of CFTR Does Not Improve Survival of CFTR Knockout Mice. Mol. Ther. 2008, 16, 812–818. [Google Scholar] [CrossRef]
- Keswani, S.G.; Crombleholme, T.M. Gene transfer to the tracheobronchial tree: Implications for fetal gene therapy for cystic fibrosis. Semin. Pediatr. Surg. 2004, 13, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Larson, J.E.; Morrow, S.L.; Happel, L.; Sharp, J.F.; Cohen, J.C. Reversal of cystic fibrosis phenotype in mice by gene therapy in utero. Lancet. 1997, 349, 619–620. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-A.; Cho, A.; Huang, E.N.; Xu, Y.; Quach, H.; Hu, J.; Wong, A.P. Gene therapy for cystic fibrosis: New tools for precision medicine. J. Transl. Med. 2021, 19, 452. [Google Scholar] [CrossRef]
- Sui, H.; Xu, X.; Su, Y.; Gong, Z.; Yao, M.; Liu, X.; Zhang, T.; Jiang, Z.; Bai, T.; Wang, J.; et al. Gene therapy for cystic fibrosis: Challenges and prospects. Front. Pharmacol. 2022, 13, 1015926. [Google Scholar] [CrossRef]
- Dejneka, N.S.; Surace, E.M.; Aleman, T.S.; Cideciyan, A.V.; Lyubarsky, A.; Savchenko, A.; Redmond, T.; Tang, W.; Wei, Z.; Rex, T.S.; et al. In Utero Gene Therapy Rescues Vision in a Murine Model of Congenital Blindness. Mol. Ther. 2004, 9, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Hassall, M.M.; Barnard, A.R.; MacLaren, R.E. Gene Therapy for Color Blindness. Yale J. Biol. Med. 2017, 90, 543–551. [Google Scholar] [PubMed] [PubMed Central]
- Collins, F.S.; Gottlieb, S. The Next Phase of Human Gene-Therapy Oversight. N. Engl. J. Med. 2019, 380, 402. [Google Scholar] [CrossRef] [PubMed]
- Zanjani, E.D.; Anderson, W.F. Prospects for in utero human gene therapy. Science 1999, 285, 2084–2088. [Google Scholar] [CrossRef] [PubMed]
- Staff, A.C. An introduction to gene therapy and its potential prenatal use. Acta Obstet. Gynecol. Scand. 2001, 80, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Kirschstein, R.L. Notice of Action Under the NIH Guidelines for Research Involving Recombinant DNA Molecules (NIH Guide-lines). Federal Register: National Institute of Health; 2000. Available online: https://www.federalregister.gov/documents/2001/01/05/01-337/office-of-biotechnology-activities-recombinant-dna-research-action-under-the-guidelines (accessed on 20 July 2024).
- Couzin, J. RAC confronts in utero gene therapy proposals. Science 1998, 282, 27. [Google Scholar] [CrossRef] [PubMed]
- Almeida-Porada, G.; Waddington, S.N.; Chan, J.K.Y.; Peranteau, W.H.; MacKenzie, T.; Porada, C.D. In Utero Gene Therapy Consensus Statement from the IFeTIS. Mol. Ther. 2019, 27, 705–707. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Abuhamad, A.; Martins, J.G.; Biggio, J.R. Diagnosis and management of fetal growth restriction: The SMFM guideline and comparison with the ISUOG guideline. Ultrasound Obstet. Gynecol. 2021, 57, 880–883. [Google Scholar] [CrossRef] [PubMed]
- Ghidini, A. Idiopathic fetal growth restriction: A pathophysiologic approach. Obstet. Gynecol. Surv. 1996, 51, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Jauniaux, E. Pathophysiology of placental-derived fetal growth restriction. Am. J. Obstet. Gynecol. 2018, 218 (Suppl. 2), S745–S761. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, E.; Hula, N.; Spaans, F.; Cooke, C.M.; Davidge, S.T. Placenta-targeted treatment strategies: An opportunity to impact fetal development and improve offspring health later in life. Pharmacol. Res. 2020, 157, 104836. [Google Scholar] [CrossRef] [PubMed]
- Kapila, V.; Chaudhry, K. Physiology, Placenta; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Herrick, E.J.; Bordoni, B. Embryology, Placenta; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Wardinger, J.E.; Ambati, S. Placental Insufficiency; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Brett, K.E.; Ferraro, Z.M.; Yockell-Lelievre, J.; Gruslin, A.; Adamo, K.B. Maternal-fetal nutrient transport in pregnancy pathologies: The role of the placenta. Int. J. Mol. Sci. 2014, 15, 16153–16185. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gagnon, R. Placental insufficiency and its consequences. Eur. J. Obstet. Gynecol. Reprod. Biol. 2003, 110 (Suppl. S1), S99–S107. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Fowden, A.L. The placenta: A multifaceted, transient organ. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140066. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Malhotra, A.; Allison, B.J.; Castillo-Melendez, M.; Jenkin, G.; Polglase, G.R.; Miller, S.L. Neonatal Morbidities of Fetal Growth Restriction: Pathophysiology and Impact. Front. Endocrinol. 2019, 10, 55. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gumina, D.L.; Su, E.J. Mechanistic insights into the development of severe fetal growth restriction. Clin. Sci. 2023, 137, 679–695. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dall’Asta, A.; Brunelli, V.; Prefumo, F.; Frusca, T.; Lees, C.C. Early onset fetal growth restriction. Matern Health Neonatol. Perinatol. 2017, 3, 2. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Amelio, G.S.; Provitera, L.; Raffaeli, G.; Tripodi, M.; Amodeo, I.; Gulden, S.; Cortesi, V.; Manzoni, F.; Cervellini, G.; Tomaselli, A.; et al. Endothelial dysfunction in preterm infants: The hidden legacy of uteroplacental pathologies. Front. Pediatr. 2022, 10, 1041919. [Google Scholar] [CrossRef]
- Su, E.J. Role of the fetoplacental endothelium in fetal growth restriction with abnormal umbilical artery Doppler velocimetry. Am. J. Obstet. Gynecol. 2015, 213 (Suppl. S4), S123–S130. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Palanki, R.; Peranteau, W.H.; Mitchell, M.J. Delivery technologies for in utero gene therapy. Adv. Drug Deliv. Rev. 2021, 169, 51–62. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Waddington, S.N.; Kramer, M.G.; Hernandez-Alcoceba, R.; Buckley, S.M.; Themis, M.; Coutelle, C.; Prieto, J. In Utero gene therapy: Current challenges and perspectives. Mol. Ther. 2005, 11, 661–676. [Google Scholar] [CrossRef] [PubMed]
- Bulcha, J.T.; Wang, Y.; Ma, H.; Tai, P.W.L.; Gao, G. Viral vector platforms within the gene therapy landscape. Signal Transduct. Target. Ther. 2021, 6, 53. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Massaro, G.; Mattar, C.N.Z.; Wong, A.M.S.; Sirka, E.; Buckley, S.M.K.; Herbert, B.R.; Karlsson, S.; Perocheau, D.P.; Burke, D.; Heales, S.; et al. Fetal gene therapy for neurodegenerative disease of infants. Nat. Med. 2018, 24, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Peddi, N.C.; Marasandra Ramesh, H.; Gude, S.S.; Gude, S.S.; Vuppalapati, S. Intrauterine Fetal Gene Therapy: Is That the Future and Is That Future Now? Cureus 2022, 14, e22521. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, C.; Samulski, R.J. Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet. 2020, 21, 255–272. [Google Scholar] [CrossRef] [PubMed]
- Zufferey, R.; Dull, T.; Mandel, R.J.; Bukovsky, A.; Quiroz, D.; Naldini, L.; Trono, D. Self-Inactivating Lentivirus Vector for Safe and Efficient In Vivo Gene Delivery. J. Virol. 1998, 72, 9873–9880. [Google Scholar] [CrossRef]
- Zhou, S.; Mody, D.; DeRavin, S.S.; Hauer, J.; Lu, T.; Ma, Z.; Abina, S.H.-B.; Gray, J.T.; Greene, M.R.; Cavazzana-Calvo, M.; et al. A self-inactivating lentiviral vector for SCID-X1 gene therapy that does not activate LMO2 expression in human T cells. Blood 2010, 116, 900–908. [Google Scholar] [CrossRef]
- Tarantal, A.F.; O’ROurke, J.P.; Case, S.S.; Newbound, G.C.; Li, J.; Lee, C.I.; Baskin, C.R.; Kohn, D.B.; Bunnell, B.A. Rhesus Monkey Model for Fetal Gene Transfer: Studies with Retroviral- Based Vector Systems. Mol. Ther. 2001, 3, 128–138. [Google Scholar] [CrossRef]
- Waddington, S.N.; A Mitrophanous, K.; Ellard, F.M.; Buckley, S.M.K.; Nivsarkar, M.; Lawrence, L.; Cook, H.T.; Al-Allaf, F.; Bigger, B.; Kingsman, S.M.; et al. Long-term transgene expression by administration of a lentivirus-based vector to the fetal circulation of immuno-competent mice. Gene Ther. 2003, 10, 1234–1240. [Google Scholar] [CrossRef]
- Davenport, B.N.; Wilson, R.L.; Williams, A.A.; Jones, H.N. Placental Nanoparticle-mediated IGF1 Gene Therapy Corrects Fetal Growth Restriction in a Guinea Pig Model. bioRxiv 2024. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rai, R.; Alwani, S.; Badea, I. Polymeric Nanoparticles in Gene Therapy: New Avenues of Design and Optimization for Delivery Applications. Polymers 2019, 11, 745. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Huang, L. Lipid nanoparticles for gene delivery. Adv. Genet. 2014, 88, 13–36. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Doudna, J.A.; Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346, 1258096. [Google Scholar] [CrossRef] [PubMed]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Katz, A.B.; Keswani, S.G.; Habli, M.; Lim, F.Y.; Zoltick, P.W.; Midrio, P.; Kozin, E.D.; Herlyn, M.; Crombleholme, T.M. Placental gene transfer: Transgene screening in mice for trophic effects on the placenta. Am. J. Obstet. Gynecol. 2009, 201, 499.e1–499.e8. [Google Scholar] [CrossRef]
- Hattori, K.; Dias, S.; Heissig, B.; Hackett, N.R.; Lyden, D.; Tateno, M.; Hicklin, D.J.; Zhu, Z.; Witte, L.; Crystal, R.G.; et al. Vascular Endothelial Growth Factor and Angiopoietin-1 Stimulate Postnatal Hematopoiesis by Recruitment of Vasculogenic and Hematopoietic Stem Cells. J. Exp. Med. 2001, 193, 1005–1014. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, F.; Li, J.; Chen, L.; Mao, Y.-F.; Li, Q.-B.; Nie, C.-Y.; Lin, C.; Xiao, J. IGF-1 inhibits inflammation and accelerates angiogenesis via Ras/PI3K/IKK/NF-κB signaling pathways to promote wound healing. Eur. J. Pharm. Sci. 2024, 200, 106847. [Google Scholar] [CrossRef]
- Bach, L.A. Endothelial cells and the IGF system. J. Mol. Endocrinol. 2015, 54, R1–R13. [Google Scholar] [CrossRef] [PubMed]
- Hellstrom, A.; Perruzzi, C.; Ju, M.; Engström, E.; Hård, A.-L.; Liu, J.-L.; Albertsson-Wikland, K.; Carlsson, B.; Niklasson, A.; Sjödell, L.; et al. Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: Direct correlation with clinical retinopathy of prematurity. Proc. Natl. Acad. Sci. USA 2001, 98, 5804–5808. [Google Scholar] [CrossRef]
- Martin-Estal, I.; de la Garza, R.G.; Castilla-Cortazar, I. Intrauterine Growth Retardation (IUGR) as a Novel Condition of Insulin-Like Growth Factor-1 (IGF-1) Deficiency. Rev. Physiol. Biochem. Pharmacol. 2016, 170, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Davenport, B.N.; Wilson, R.L.; Jones, H.N. Interventions for placental insufficiency and fetal growth restriction. Placenta 2022, 125, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.P.; Baker, J.; Perkins, A.S.; Robertson, E.J.; Efstratiadis, A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 1993, 75, 59–72. [Google Scholar] [CrossRef] [PubMed]
- de Vrijer, B.; Davidsen, M.L.; Wilkening, R.B.; Anthony, R.V.; Regnault, T.R. Altered placental and fetal expression of IGFs and IGF-binding proteins associated with intrauterine growth restriction in fetal sheep during early and mid-pregnancy. Pediatr. Res. 2006, 60, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Roberts, C.T.; Owens, J.A.; Sferruzzi-Perri, A.N. Distinct actions of insulin-like growth factors (IGFs) on placental development and fetal growth: Lessons from mice and guinea pigs. Placenta 2008, 29 (Suppl. SA), S42–S47. [Google Scholar] [CrossRef] [PubMed]
- Balaram, S.K.; Agrawal, D.K.; Edwards, J.D. Insulin like growth factor-1 activates nuclear factor-kappaB and increases transcription of the intercellular adhesion molecule-1 gene in endothelial cells. Cardiovasc. Surg. 1999, 7, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Che, W.; Lerner-Marmarosh, N.; Huang, Q.; Osawa, M.; Ohta, S.; Yoshizumi, M.; Glassman, M.; Lee, J.-D.; Yan, C.; Berk, B.C.; et al. Insulin-Like Growth Factor-1 Enhances Inflammatory Responses in Endothelial Cells. Circ. Res. 2002, 90, 1222–1230. [Google Scholar] [CrossRef]
- Bertrand, F.; Atfi, A.; Cadoret, A.; L’ALlemain, G.; Robin, H.; Lascols, O.; Capeau, J.; Cherqui, G. A Role for Nuclear Factor κB in the Antiapoptotic Function of Insulin. Cell Biol. Metab. 1998, 273, 2931–2938. [Google Scholar] [CrossRef]
- Jeay, S.; Sonenshein, G.E.; Kelly, P.A.; Postel-Vinay, M.C.; Baixeras, E. Growth hormone exerts antiapoptotic and proliferative effects through two different pathways involving nuclear factor-kappaB and phosphatidylinositol 3-kinase. Endocrinology 2001, 142, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Mitsiades, C.S.; Mitsiades, N.; Poulaki, V.; Schlossman, R.; Akiyama, M.; Chauhan, D.; Hideshima, T.; Treon, S.P.; Munshi, N.C.; Richardson, P.G.; et al. Activation of NF-κB and upregulation of intracellular anti-apoptotic proteins via the IGF-1/Akt signaling in human multiple myeloma cells: Therapeutic implications. Oncogene 2002, 21, 5673–5683. [Google Scholar] [CrossRef]
- Iosef, C.; Alastalo, T.-P.; Hou, Y.; Chen, C.; Adams, E.S.; Lyu, S.-C.; Cornfield, D.N.; Alvira, C.M. Inhibiting NF-κB in the developing lung disrupts angiogenesis and alveolarization. Am. J. Physiol. Cell. Mol. Physiol. 2012, 302, L1023–L1036. [Google Scholar] [CrossRef]
- Rao, S.; Liu, M.; Iosef, C.; Knutsen, C.; Alvira, C.M. Endothelial-specific loss of IKKbeta disrupts pulmonary endothelial angiogenesis and impairs postnatal lung growth. Am. J. Physiol. Lung Cell. Mol. Physiol. 2023, 325, L299–L313. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dodson, R.B.; Powers, K.N.; Gien, J.; Rozance, P.J.; Seedorf, G.J.; Astling, D.; Jones, K.L.; Crombleholme, T.M.; Abman, S.H.; Alvira, C.M. Intrauterine growth restriction decreases NF-κB signaling in fetal pulmonary artery endothelial cells of fetal sheep. Am. J. Physiol. Cell. Mol. Physiol. 2018, 315, L348–L359. [Google Scholar] [CrossRef] [PubMed]
- Ashida, N.; SenBanerjee, S.; Kodama, S.; Foo, S.Y.; Coggins, M.; Spencer, J.A.; Zamiri, P.; Shen, D.; Li, L.; Sciuto, T.; et al. IKKβ regulates essential functions of the vascular endothelium through kinase-dependent and -independent pathways. Nat. Commun. 2011, 2, 318. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.N.; Crombleholme, T.; Habli, M. Adenoviral-mediated placental gene transfer of IGF-1 corrects placental insufficiency via enhanced placental glucose transport mechanisms. PLoS ONE 2013, 8, e74632. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Keswani, S.G.; Balaji, S.; Katz, A.B.; King, A.; Omar, K.; Habli, M.; Klanke, C.; Crombleholme, T.M. Intraplacental Gene Therapy with Ad-IGF-1 Corrects Naturally Occurring Rabbit Model of Intrauterine Growth Restriction. Hum. Gene Ther. 2015, 26, 172–182. [Google Scholar] [CrossRef]
- Harkness, U.F.; Parvadia, J.; Vaikunth, S.; Marwan, M.; Maldonado, A.; Uzvolgyi, E.; Kalinowska, B.; Alaee, D.; Crombleholme, T. Placental gene transfer of IGF-1 corrects placental insufficiency. J. Am. Coll. Surg. 2005, 201, S43. [Google Scholar] [CrossRef]
- Habli, M.; Jones, H.; Aronow, B.; Omar, K.; Crombleholme, T.M. Recapitulation of characteristics of human placental vascular insufficiency in a novel mouse model. Placenta 2013, 34, 1150–1158. [Google Scholar] [CrossRef] [PubMed]
- Omar, K.; Muglia, L.; Habli, M. Adenoviral-mediated placental gene transfer of igf-1 corrects placental insufficiency via restoring placental endothelial progenitor cells. Placenta 2014, 35, 1. [Google Scholar] [CrossRef]
- Sohlström, A.; Katsman, A.; Kind, K.L.; Roberts, C.T.; Owens, P.C.; Robinson, J.S.; Owens, J.A. Food restriction alters pregnancy-associated changes in IGF and IGFBP in the guinea pig. Am. J. Physiol. Metab. 1998, 274, E410–E416. [Google Scholar] [CrossRef]
- Regnault, T.; Orbus, R.; de Vrijer, B.; Davidsen, M.; Galan, H.; Wilkening, R.; Anthony, R. Placental Expression of VEGF, PlGF and their Receptors in a Model of Placental Insufficiency—Intrauterine Growth Restriction (PI-IUGR). Placenta 2002, 23, 132–144. [Google Scholar] [CrossRef]
- David, A.L.; Torondel, B.; Zachary, I.; Wigley, V.; A Nader, K.; Mehta, V.; Buckley, S.M.K.; Cook, T.; Boyd, M.; Rodeck, C.H.; et al. Local delivery of VEGF adenovirus to the uterine artery increases vasorelaxation and uterine blood flow in the pregnant sheep. Gene Ther. 2008, 15, 1344–1350. [Google Scholar] [CrossRef] [PubMed]
- Mehta, V.; Abi-Nader, K.N.; Peebles, D.M.; Benjamin, E.; Wigley, V.; Torondel, B.; Filippi, E.; Shaw, S.W.; Boyd, M.; Martin, J.; et al. Long-term increase in uterine blood flow is achieved by local overexpression of VEGF-A165 in the uterine arteries of pregnant sheep. Gene Ther. 2011, 19, 925–935. [Google Scholar] [CrossRef]
- Desforges, M.; Rogue, A.; Pearson, N.; Rossi, C.; Olearo, E.; Forster, R.; Lees, M.; Sebire, N.J.; Greenwood, S.L.; Sibley, C.P.; et al. In Vitro Human Placental Studies to Support Adenovirus-Mediated VEGF-DΔNΔC Maternal Gene Therapy for the Treatment of Severe Early-Onset Fetal Growth Restriction. Hum. Gene Ther. Clin. Dev. 2018, 29, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.L.; Stephens, K.K.; Jones, H.N. Placental nanoparticle gene therapy normalizes gene expression changes in the fetal liver associated with fetal growth restriction in a fetal sex-specific manner. J. Dev. Orig. Health Dis. 2023, 14, 325–332. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ellah, N.A.; Taylor, L.; Troja, W.; Owens, K.; Ayres, N.; Pauletti, G.; Jones, H. Development of Non-Viral, Trophoblast-Specific Gene Delivery for Placental Therapy. PLoS ONE 2015, 10, e0140879. [Google Scholar] [CrossRef]
- Chau, K.; Welsh, M.; Makris, A.; Hennessy, A. Progress in preeclampsia: The contribution of animal models. J. Hum. Hypertens. 2022, 36, 705–710. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karrar, S.A.; Martingano, D.J.; Hong, P.L. Preeclampsia; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- ACOG Committee on Obstetric Practice. ACOG practice bulletin. Diagnosis and management of preeclampsia and eclampsia. Number 33, January 2002. Obs. Gynecol. 2002, 99, 159–167. [Google Scholar]
- Sun, F.; Peers de Nieuwburgh, M.; Hubinont, C.; Debieve, F.; Colson, A. Gene therapy in preeclampsia: The dawn of a new era. Hypertens. Pregnancy 2024, 43, 2358761. [Google Scholar] [CrossRef] [PubMed]
- Redman, C.W.G.; Staff, A.C.; Roberts, J.M. Syncytiotrophoblast stress in preeclampsia: The convergence point for multiple pathways. Am. J. Obstet. Gynecol. 2022, 226 (Suppl. S2), S907–S927. [Google Scholar] [CrossRef] [PubMed]
- Stepan, H.; Herraiz, I.; Schlembach, D.; Verlohren, S.; Brennecke, S.; Chantraine, F.; Klein, E.; Lapaire, O.; Llurba, E.; Ramoni, A.; et al. Implementation of the sFlt-1/PlGF ratio for prediction and diagnosis of pre-eclampsia in singleton pregnancy: Implications for clinical practice. Ultrasound Obstet. Gynecol. 2015, 45, 241–246. [Google Scholar] [CrossRef]
- Thadhani, R.; Hagmann, H.; Schaarschmidt, W.; Roth, B.; Cingoez, T.; Karumanchi, S.A.; Wenger, J.; Lucchesi, K.J.; Tamez, H.; Lindner, T.; et al. Removal of Soluble Fms-Like Tyrosine Kinase-1 by Dextran Sulfate Apheresis in Preeclampsia. J. Am. Soc. Nephrol. 2016, 27, 903–913. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhang, Y.; Ma, J.Y.; Kapoun, A.M.; Shao, Q.; Kerr, I.; Lam, A.; O’Young, G.; Sannajust, F.; Stathis, P.; et al. Recombinant Vascular Endothelial Growth Factor 121 Attenuates Hypertension and Improves Kidney Damage in a Rat Model of Preeclampsia. Hypertension 2007, 50, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.H.; Gessler, D.J.; Zhan, W.; Gallagher, T.L.; Gao, G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct. Target. Ther. 2024, 9, 78. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McGovern, N.; Shin, A.; Low, G.; Low, D.; Duan, K.; Yao, L.J.; Msallam, R.; Low, I.; Shadan, N.B.; Sumatoh, H.R.; et al. Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2. Nature 2017, 546, 662–666. [Google Scholar] [CrossRef] [PubMed]
- Shanahan, M.A.; Aagaard, K.M.; McCullough, L.B.; Chervenak, F.A.; Shamshirsaz, A.A. Society for Maternal-Fetal Medicine Special Statement: Beyond the scalpel: In utero fetal gene therapy and curative medicine. Am. J. Obstet. Gynecol. 2021, 225, B9–B18. [Google Scholar] [CrossRef]
- Mattar, C.N.; Waddington, S.N.; Biswas, A.; Davidoff, A.M.; Choolani, M.; Chan, J.K.; Nathwani, A.C. The case for intrauterine gene therapy. Best Pract. Res. Clin. Obstet. Gynaecol. 2012, 26, 697–709. [Google Scholar] [CrossRef]
- David, A.A. R Placenta Gene Therapy. Obstet. Gynacology Reprod. Med. 2009, 19, 296–298. [Google Scholar] [CrossRef]
- Brown, J.E.H.; Koenig, B.A. Ethical, Legal, and Social Implications of Fetal Gene Therapy. Clin. Obstet. Gynecol. 2021, 64, 933–940. [Google Scholar] [CrossRef] [PubMed]
- David, A.L.; Waddington, S.N. Candidate diseases for prenatal gene therapy. Methods Mol. Biol. 2012, 891, 9–39. [Google Scholar] [CrossRef] [PubMed]
- David, A.L.; Peebles, D. Gene therapy for the fetus: Is there a future? Best Pract Res. Clin. Obstet. Gynaecol. 2008, 22, 203–218. [Google Scholar] [CrossRef] [PubMed]
- David, A.L. Ethical and Regulatory Considerations of Placental Therapeutics. Clin. Ther. 2021, 43, 297–307. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majumder, S.; Moriarty, K.L.; Lee, Y.; Crombleholme, T.M. Placental Gene Therapy for Fetal Growth Restriction and Preeclampsia: Preclinical Studies and Prospects for Clinical Application. J. Clin. Med. 2024, 13, 5647. https://doi.org/10.3390/jcm13185647
Majumder S, Moriarty KL, Lee Y, Crombleholme TM. Placental Gene Therapy for Fetal Growth Restriction and Preeclampsia: Preclinical Studies and Prospects for Clinical Application. Journal of Clinical Medicine. 2024; 13(18):5647. https://doi.org/10.3390/jcm13185647
Chicago/Turabian StyleMajumder, Sanjukta, Kristen Lee Moriarty, Youngmok Lee, and Timothy M. Crombleholme. 2024. "Placental Gene Therapy for Fetal Growth Restriction and Preeclampsia: Preclinical Studies and Prospects for Clinical Application" Journal of Clinical Medicine 13, no. 18: 5647. https://doi.org/10.3390/jcm13185647
APA StyleMajumder, S., Moriarty, K. L., Lee, Y., & Crombleholme, T. M. (2024). Placental Gene Therapy for Fetal Growth Restriction and Preeclampsia: Preclinical Studies and Prospects for Clinical Application. Journal of Clinical Medicine, 13(18), 5647. https://doi.org/10.3390/jcm13185647