Advances in Microsurgical Treatment Options to Optimize Autologous Free Flap Breast Reconstruction
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
4.1. Alternative Donor Site Options for Microsurgical Breast Reconstruction
4.2. Neurotization of Free Flaps for Breast Reconstruction
4.3. Microsurgical Treatment Modalities for Breast Cancer-Related Lymphedema
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, E.I. Latest advancements in autologous breast reconstruction. Plast. Reconstr. Surg. 2021, 147, 111e–122e. [Google Scholar] [CrossRef] [PubMed]
- Temple, C.L.; Tse, R.; Bettger-Hahn, M.; MacDermid, J.; Gan, B.S.; Ross, D.C. Sensibility following innervated free TRAM flap for breast reconstruction. Plast. Reconstr. Surg. 2006, 117, 2119–2127. [Google Scholar] [CrossRef] [PubMed]
- Temple, C.L.F.; Ross, D.C.; Kim, S.; Tse, R.; Bettger-Hahn, M.; Gan, B.S.; MacDermid, J. Sensibility following innervated free TRAM flap for breast reconstruction: Part II. Innervation improved patient-rated quality of life. Plast. Reconstr. Surg. 2009, 124, 1419–1425. [Google Scholar] [CrossRef] [PubMed]
- Beugels, J.; Cornelissen, A.J.M.; van Kuijk, S.M.J.; Lataster, A.; Heuts, E.M.; Piatkowski, A.; Tuinder, S.M. Sensory recovery of the breast following innerveated and noninnervated DIEP flap breast reconstruction. Plast. Reconstr. Surg. 2019, 144, 178e–188e. [Google Scholar] [CrossRef]
- Chang, E.I.; Ibrahim, A.; Liu, J.; Robe, C.; Suami, H.; Hanasono, M.M.; Nguyen, A.T. Optimizing quality of life for patients with breast cancer-related lymphedema: A prospective study combining DIEP flap breast reconstruction and lymphedema surgery. Plast. Reconstr. Surg. 2020, 145, 676e–685e. [Google Scholar] [CrossRef]
- Johnson, A.R.; Fleishman, A.; Granoff, M.D.; Shillue, K.; Houlihan, M.J.; Sharma, R.; Kansal, K.J.; Teller, P.; James, T.A.; Lee, B.T.; et al. Evaluating the impact of immediate lymphatic reconstruction for the surgical prevention of lymphedema. Plast. Reconstr. Surg. 2021, 147, 373e–381e. [Google Scholar] [CrossRef]
- Nahabedian, M.Y.; Patel, K. Autologous flap breast reconstruction: Surgical algorithm and patient selection. J. Surg. Oncol. 2016, 113, 865–874. [Google Scholar] [CrossRef]
- Allen, R.J.; Tucker, C., Jr. Superior gluteal artery perforator free flap for breast reconstruction. Plast. Reconstr. Surg. 1995, 95, 1207–1212. [Google Scholar] [CrossRef]
- LoTempio, M.M.; Allen, R.J. Breast reconstruction with SGAP and IGAP flaps. Plast. Reconstr. Surg. 2010, 126, 393–401. [Google Scholar] [CrossRef]
- Martineau, J.; Kalbermatten, D.F.; Oranges, C.M. Safety and efficacy of superior gluteal artery perforator (SGAP) flap in autologous breast reconstruction: Systematic review and meta-analysis. Cancers 2022, 14, 4420. [Google Scholar] [CrossRef]
- Zoccali, G.; Mughal, M.; Giwa, L.; Roblin, P.; Farhadi, J. Breast reconstruction with superior gluteal artery perforator free flap: 8 years of experience. J. Plast. Reconstr. Aesthet. Surg. 2019, 72, 1623–1631. [Google Scholar] [CrossRef] [PubMed]
- Guerra, A.B.; Soueid, N.; Metzinger, S.E.; Levine, J.; Bidros, R.S.; Erhard, H.; Allen, R.J. Simultaneous bilateral breast reconstruction with superior gluteal artery perforator (SGAP) flaps. Ann. Plast. Surg. 2004, 53, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Werdin, F.; Peek, A.; Martin, N.C.; Baumeister, S. Superior gluteal artery perforator in bilateral breast reconstruction. Ann. Plast. Surg. 2010, 64, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Baumeister, S.; Werdin, F.; Peek, A. The SGAP: Rare exception or second choice in autologous breast reconstruction? J. Reconstr. Microsurg. 2010, 26, 251–258. [Google Scholar] [CrossRef]
- Yaghoubia, A.; Boyd, J.B. The SGAP flap in breast reconstruction: Backup or first choice? Plast. Reconstr. Surg. 2011, 128, 29e–31e. [Google Scholar] [CrossRef]
- Stillaert, F.B.J.L.; Opsomer, D.; Blondeel, P.N.; Van Landuyt, K. The lumbar artery perforator flap in breast reconstruction. Plast. Reconstr. Surg. 2023, 151, 41–44. [Google Scholar] [CrossRef]
- Peters, K.T.; Blondeel, P.N.; Lobo, F.; van Landuyt, K. Early experience with the free lumbar artery perforator flap for breast reconstruction. J. Plast. Reconstr. Aesthetic Surg. 2015, 68, 1112–1119. [Google Scholar] [CrossRef]
- Opsomer, D.; Stillaert, F.; Blondeel, P.; Van Landuyt, K. The lumbar artery perforator flap in autologous breast reconstruction: Initial experience with 100 cases. Plast. Reconstr. Surg. 2018, 142, 1e–8e. [Google Scholar] [CrossRef]
- Opsomer, D.; Vyncke, T.; Ryx, M.; Van Landuyt, K.; Blondeel, P.; Stillaert, F. Donor site morbidity after lumbar artery perforator flap breast reconstruction. J. Reconstr. Microsurg. 2022, 38, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Van Cleven, S.; Claes, K.; Vanlander, A.; Van Landuyt, K.; Berrevoet, F. Incisional lumbar hernia after the use of a lumbar artery perforator flap for breast reconstruction. Acta Chir. Belg. 2020, 120, 274–278. [Google Scholar] [CrossRef]
- Dayan, J.H.; Allen, R.J., Jr. Lower extremity free flaps for breast reconstruction. Plast. Reconstr. Surg. 2017, 140, 77S–86S. [Google Scholar] [CrossRef] [PubMed]
- Arnez, Z.M.; Pogorelec, D.; Planinsek, F.; Ahcan, U. Breast reconstruction by the free transverse gracilis (TUG) flap. Br. J. Plast. Surg. 2004, 57, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Fansa, H.; Schirmer, S.; Warnecke, I.C.; Cervelli, A.; Frerichs, O. The transverse myocutaneous gracilis muscle flap: A fast and reliable method for breast reconstruction. Plast. Reconstr. Surg. 2008, 122, 1326–1333. [Google Scholar] [CrossRef] [PubMed]
- Cohen, Z.; Azoury, S.C.; Matros, E.; Nelson, J.A.; Allen, R.J., Jr. Modern approaches to alternative flap-based breast reconstruction: Profunda artery perforator flap. Clin. Plast. Surg. 2023, 50, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Haddock, N.; Nagarkar, P.; Teotia, S.S. Versatility of the profunda artery perforator flap: Creative uses in breast reconstruction. Plast. Reconstr. Surg. 2017, 139, 606e–612e. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, K.K.; Graziano, F.D.; Nelson, J.A.; Allen, R.J., Jr. Alternative donor sites in autologous breast reconstruction: A clinical practice review of the PAP flap. Gland Surg. 2023, 12, 516–526. [Google Scholar] [CrossRef]
- Borrelli, M.R.; Spake, C.S.L.; Rao, V.; Sinha, V.; Crozier, J.W.; Basta, M.N.; Lee, G.K.; Kwan, D.K.; Nazerali, R. A systematic review and meta-analysis comparing the clinical outcomes of profunda artery perforator versus gracilis thigh flap as a second choice for autologous breast reconstruction. Ann. Plast. Surg. 2023, 90 (Suppl. S3), S256–S267. [Google Scholar] [CrossRef]
- Jessica, A.S.; Zhao, J.; Mackey, S.; Blackburn, A.V. Transverse upper gracilis flap breast reconstruction: A 5-year consecutive case series of patient-reported outcomes. Plast. Reconstr. Surg. 2022, 150, 258–268. [Google Scholar] [CrossRef]
- Atzeni, M.; Salzillo, R.; Haywood, R.; Persichetti, P.; Figus, A. Breast reconstruction using the profunda artery perforator (PAP) flap: Technical refinements and evolution, outcomes, and patient satisfaction based on 116 consecutive flaps. J. Plast. Reconstr. Aesthet. Surg. 2022, 75, 1617–1624. [Google Scholar] [CrossRef]
- Murphy, D.C.; Razzano, S.; Wade, R.G.; Haywood, R.M.; Figus, A. Inferior gluteal artery perforator (IGAP) flap versus profunda artery perforator (PAP) flap as an alternative option for free autologous breast reconstruction. J. Plast. Reconstr. Aesthet. Surg. 2022, 75, 1100–1107. [Google Scholar] [CrossRef]
- Chang, E.I.; Kronowitz, S.J. Dual-pedicle flap for unilateral autologous breast reconstruction revisited: Evolution and optimization of flap design over 15 years. Plast. Reconstr. Surg. 2016, 137, 1372–1380. [Google Scholar] [CrossRef] [PubMed]
- Ali, R.S.; Garrido, A.; Ramakirshnan, V. Stacked free hemi-DIEP flaps: A method of autologous breast reconstruction in a patient with midline abdominal scarring. Br. J. Plast. Surg. 2002, 55, 351–353. [Google Scholar] [CrossRef] [PubMed]
- Beugels, J.; Vasile, J.V.; Tuinder, S.M.H.; Delatte, S.J.; St-Hilaire, H.; Allen, R.J.; Levine, J.L. The stacked hemiabdominal extended perforator flap for autologous breast reconstruction. Plast. Reconstr. Surg. 2018, 142, 1424–1434. [Google Scholar] [CrossRef]
- Haddock, N.T.; Teotia, S.S. Modern approaches to alternative flap-based breast reconstruction: Stacked flaps. Clin. Plast. Surg. 2023, 50, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Rozen, W.M.; Patel, N.G.; Ramakrishnan, V.V. Increasing options in autologous microsurgical breast reconstruction: Four free flaps for stacked bilateral breast reconstruction. Gland. Surg. 2016, 5, 255–260. [Google Scholar] [PubMed]
- Mayo, J.L.; Allen, R.J.; Sadeghi, A. Four-flap breast reconstruction: Bilateral stacked DIEP and PAP flaps. Plast. Reconstr. Surg.-Glob. Open 2015, 3, e383. [Google Scholar] [CrossRef]
- Haddock, N.T.; Cho, M.J.; Teotia, S.S. Comparative analysis of single versus stacked free flap breast reconstruction: A single-center experience. Plast. Reconstr. Surg. 2019, 144, 369e–377e. [Google Scholar] [CrossRef]
- Salibin, A.A.; Nolan, I.T.; Bekisz, J.M.; Frey, J.D.; Karp, N.S.; Choi, M.; Levine, J.P.; Thanik, V.D. A systematic review and meta-analysis of microvascular stacked and conjoined-flap breast reconstruction. J. Reconstr. Microsurg. 2021, 37, 631–642. [Google Scholar] [CrossRef]
- Vartanian, E.D.; Lo, A.Y.; Hershenhouse, K.S.; Jacob, L.; Patel, K.M. The role of neurotization in autologous breast reconstruction: Can reconstruction restore breast sensation? J. Surg. Oncol. 2021, 123, 1215–1231. [Google Scholar] [CrossRef]
- Glassman, G.E.; Al-Kassis, S.; Assi, P.E.; Rust, S.J.; Perdikis, B.; Pollins, A.C.; Patrinely, J.R.; Forte, A.J.; Thayer, W.P.; Perdikis, G. Anatomoic comparison of recipient nerves for deep inferior epigastric perforator flap neurotization: A randomized controlled study. Ann. Plast. Surg. 2022, 88, 641–646. [Google Scholar] [CrossRef]
- O’Neill, R.C.; Spiegel, A.J. Modern approaches to breast neurotization. Clin. Plast. Surg. 2023, 50, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Weissler, J.M.; Koltz, P.F.; Carney, M.J.; Serletti, J.M.; Wu, L.C. Sifting through the evidence: A comprehensive review and analysis of neurotization in breast reconstruction. Plast. Reconstr. Surg. 2018, 141, 550–565. [Google Scholar] [CrossRef] [PubMed]
- Chou, J.; Hyland, C.J.; Goldberg, T.K.; Broyles, J.M. Is nerve coaptation associated with improved sensation after microvascular breast reconstruction? A systematic review. Microsurgery 2023, 43, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Santenelli, F.; Longo, B.; Angelini, M.; Laporta, R.; Paolini, G. Prospective computerized analyses of sensibility in breast reconstruction with non-innervated DIEP flap. Plast. Reconstr. Surg. 2011, 127, 1790–1795. [Google Scholar] [CrossRef] [PubMed]
- Djohan, R.; Scomacao, I.; Duraes, E.F.R.; Knackstedt, R.; Mangan, R.; Schwarz, G. Sensory restoration in abdominally based free flaps for breast reconstruction using nerve allograft. Plast. Reconstr. Surg. 2023, 151, 25–33. [Google Scholar] [CrossRef]
- Dayan, J.H.; Allen, R.J., Jr. Neurotized diagonal profunda artery perforator flaps for breast reconstruction. Plast. Reconstr. Surg.-Glob. Open 2019, 7, e2463. [Google Scholar] [CrossRef]
- DiSipio, T.; Rye, S.; Newman, B.; Hayes, S. Incidence of unilateral arm lymphedema after breast cancer: A systematic review and meta-analysis. Lancet Oncol. 2013, 14, 500–515. [Google Scholar] [CrossRef]
- Tsai, R.J.; Dennis, L.K.; Lynch, C.F.; Snetselaar, L.G.; Zamba, G.K.; Scott-Connor, C. The risk of developing arm lymphedema among breast cancer survivors: A meta-analysis of treatment factors. Ann. Surg. Oncol. 2009, 16, 1959–1972. [Google Scholar] [CrossRef]
- Koelmeyer, L.A.; Gaitatzis, K.; Dietrich, M.S.; Shah, C.S.; Boyages, J.; McLaughlin, S.A.; Taback, B.; Stolldorf, D.P.; Elder, E.; Hughes, T.M.; et al. Risk factors for breast cancer-related lymphedema in patients undergoing 3 years of prospective surveillance and intervention. Cancer 2022, 128, 3408–3415. [Google Scholar] [CrossRef]
- Naoum, G.E.; Roberts, S.; Brunelle, C.L.; Shui, A.M.; Salama, L.; Daniell, K.; Gillespie, T.; Bucci, L.; Smith, B.L.; Ho, A.Y.; et al. Quantifying the impact of axillary surgery and nodal irradiation on breast cancer-related lymphedema and local tumor control: Long term results from a prospective screening trial. J. Clin. Oncol. 2020, 38, 3430–3438. [Google Scholar] [CrossRef]
- Campisi, C.; Bellini, C.; Campisi, C.; Accogli, S.; Bonioli, E.; Boccardo, F. Microsurgery for lymphedema: Clinical research and long-term results. Microsurgery 2010, 30, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.K.; Chang, D.W. Vascularized lymph node transfer and lymphovenous bypass: Novel treatment strategies for symptomatic lymphedema. J. Surg. Oncol. 2016, 113, 932–939. [Google Scholar] [CrossRef]
- Lin, W.C.; Safa, B.; Buntic, R.F. Approach to lymphedema management. Semin. Plast. Surg. 2022, 36, 260–273. [Google Scholar] [CrossRef]
- Donahue, P.M.; MacKenzie, A.; Filipovic, A.; Koelmeyer, L. Advances in the prevention and treatment of breast cancer-related lymphedema. Breast Cancer Res. Treat. 2023, 200, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.T.; Chang, E.I.; Suami, H.; Chang, D.W. An algorithmic approach to simultaneous vascularized lymph node transfer with microvascular breast reconstruction. Ann. Surg. Oncol. 2015, 22, 2919–2924. [Google Scholar] [CrossRef]
- Chang, E.I.; Masia, J.; Smith, M.L. Combining autologous breast reconstruction and vascularized lymph node transfer. Semin. Plast. Surg. 2018, 32, 36–41. [Google Scholar]
- Steinbacher, J.; Tinhofer, I.E.; Meng, S.; Reissig, L.F.; Placheta, E.; Roka-Palkovits, J.; Rath, T.; Cheng, M.H.; Weninger, W.J.; Tzou, C.H. The surgical anatomy of the supraclavicular lymph node flap: A basis for the free vascularized lymph node transfer. J. Surg. Oncol. 2017, 115, 60–62. [Google Scholar] [CrossRef]
- Maldonado, A.A.; Chen, R.; Chang, D.W. The use of supraclavicular free flap with vascularized lymph node transfer for treatment of lymphedema: A prospective study of 100 consecutive cases. J. Surg. Oncol. 2017, 115, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Tzou, C.H.; Meng, S.; Ines, T.; Reissig, L.; Pichler, U.; Steinbacher, J.; Pona, I.; Poka-Palkovits, J.; Rath, T.; Weninger, W.J.; et al. Surgical anatomy of the vascularized submental lymph node flap: Anatomic study of correlation of submental artery perforators and quantity of submental lymph node. J. Surg. Oncol. 2017, 115, 54–59. [Google Scholar] [CrossRef]
- Cheng, M.H.; Lin, C.Y.; Patel, K.M. A prospective clinical assessment of anatomic variability of the submental vascularized lymph node flap. J. Surg. Oncol. 2017, 115, 43–47. [Google Scholar] [CrossRef]
- Coriddi, M.; Wee, C.; Meyerson, J.; Eiferman, D.; Skoracki, R. Vascularized jejunal mesenteric lymph node transfer: A novel surgical treatment for extremity lymphedema. J. Am. Coll. Surg. 2017, 225, 650–657. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.T.; Suami, H. Laparoscopic free omental lymphatic flap for the treatment of lymphedema. Plast. Reconstr. Surg. 2015, 136, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.Y.; Allen, R.J., Jr.; Wu, T.J.; Cheng, M.H. Greater omentual lymph node flap for upper limb lymphedema with lymph nodes-depleted patient. Plast. Reconstr. Surg.-Glob. Open 2017, 5, e1288. [Google Scholar] [PubMed]
- Pons, G.; Abdelfattah, U.; Sarria, J.; Duch, J.; Masia, J. Reverse lymph node mapping using indocyanine green lymphography: A step forward in minimizing donor site morbidity in vascularized lymph node transfer. Plast. Reconstr. Surg. 2021, 147, 207e–212e. [Google Scholar] [CrossRef]
- Raju, A.; Chang, D.W. Vascularized lymph node transfer for treatment of lymphedema: A comprehensive literature review. Ann. Surg. 2015, 261, 1013–1023. [Google Scholar] [CrossRef]
- Ito, R.; Suami, H. Overview of lymph node transfer for lymphedema treatment. Plast. Reconstr. Surg. 2014, 134, 548–556. [Google Scholar] [CrossRef]
- Pappalardo, M.; Patel, K.; Cheng, M.H. Vascularized lymph node transfer for treatment of extremity lymphedema: An overview of current controversies regarding donor sites, recipient sites, and outcomes. J. Surg. Oncol. 2018, 117, 1420–1431. [Google Scholar] [CrossRef]
- Scaglioni, M.F.; Arvanitakis, M.; Chen, Y.C.; Giovanoli, P.; Yang, J.C.-S.; Chang, E.I. Comprehensive review of vascularized lymph node transfers for lymphedema: Outcomes and complications. Microsurgery 2018, 38, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Maruccia, M.; Giudice, G.; Ciudad, P.; Manrique, O.J.; Cazzato, G.; Chen, H.C.; Elia, R. Lymph node transfer and neolymphangiogenesis: From theory to evidence. Plast. Reconstr. Surg. 2023, 152, 904e–912e. [Google Scholar]
- Garza, R.M.; Chang, D.W. Lymphovenous bypass for the treatment of lymphedema. J. Surg. Oncol. 2018, 118, 743–749. [Google Scholar] [CrossRef]
- Suami, H.; Chang, D.; Skoracki, R.; Yamada, K.; Kimata, Y. Using indocyanine green fluorescent lymphography to demonstrate lymphatic architecture. J. Lymphoedema 2012, 7, 25–29. [Google Scholar]
- van Heumen, S.; Riksen, J.J.; Bramer, W.M.; van Soest, G.; Vasilic, D. Imaging of the lymphatic vessels for surgical planning: A systematic review. Ann. Surg. Oncol. 2023, 30, 462–479. [Google Scholar] [CrossRef] [PubMed]
- Cowan, R.; Mann, G.; Salibian, A.A. Ultrasound in microsurgery: Current applications and new frontiers. J. Clin. Med. 2024, 13, 3412. [Google Scholar] [CrossRef] [PubMed]
- Pons, G.; Clavero, J.A.; Alomar, X.; Rodriquez-Bauza, E.; Tom, L.K.; Masia, J. Preopertive planning of lymphaticovenous anastomosis: The use of magnetic resonance lymphangiography as a complement to indocyanine green lymphography. J. Plast. Reconstr. Aesthet. Surg. 2019, 72, 884–891. [Google Scholar] [CrossRef]
- Zeltzer, A.A.; Brussard, C.; Koning, M.; De Baerdemaeker, R.; Hendrickx, B.; de Mey Hamdi, M.J. MR lymphography in patients with upper limb lymphedema: The GPS for feasility and surgical planning for lympho-venous bypass. J. Surg. Oncol. 2018, 118, 407–415. [Google Scholar] [CrossRef]
- Visconti, G.; Hayashi, A.; Bianchi, A.; Tartaglione, G.; Bartoletti, R.; Salgarello, M. Lymphaticovenular anastomosis for advanced-stage peripheral lymphedema: Expanding indication and introducing the hand/foot sign. J. Plast. Reconstr. Aesthet. Surg. 2022, 75, 2153–2163. [Google Scholar] [CrossRef]
- Agarwal, S.; Garza, R.M.; Chang, D.W. Lymphatic Microsurgical Preventive Healing Approach (LYMPHA) for the prevention of secondary lymphedema. Breast J. 2020, 26, 721–724. [Google Scholar] [CrossRef]
- Granoff, M.D.; Fleishman, A.; Shillue, K.; Johnson, A.R.; Ross, J.; Lee, B.T.; Teller, P.; James, T.A.; Singhal, D. A 4-year institutional experience of immediate lymphatic reconstruction. Plast. Reconstr. Surg. 2023, 152, 773e–778e. [Google Scholar] [CrossRef]
- Coriddi, M.; Dayan, J.; Bloomfield, E.; McGrath, L.; Diwan, R.; Monge, J.; Gutierrez, J.; Brown, S.; Boe, L.; Mehrara, B. Efficacy of immediate lymphatic reconstruction to decrease incidence of breast cancer-related lymphedema: Preliminary results of randomized controlled trial. Ann. Surg. 2023, 278, 630–637. [Google Scholar] [CrossRef]
- Levy, A.S.; Murphy, A.I.; Ishtihar, S.; Peysakhovich, A.; Taback, B.; Grant, R.T.; Ascherman, J.A.; Feldman, S.; Rohde, C.H. Lymphatic microsurgical preventive healing approach for the primary prevention of lymphedema: A 4-year follow-up. Plast. Reconstr. Surg. 2023, 151, 413–420. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, E.I. Advances in Microsurgical Treatment Options to Optimize Autologous Free Flap Breast Reconstruction. J. Clin. Med. 2024, 13, 5672. https://doi.org/10.3390/jcm13195672
Chang EI. Advances in Microsurgical Treatment Options to Optimize Autologous Free Flap Breast Reconstruction. Journal of Clinical Medicine. 2024; 13(19):5672. https://doi.org/10.3390/jcm13195672
Chicago/Turabian StyleChang, Eric I. 2024. "Advances in Microsurgical Treatment Options to Optimize Autologous Free Flap Breast Reconstruction" Journal of Clinical Medicine 13, no. 19: 5672. https://doi.org/10.3390/jcm13195672
APA StyleChang, E. I. (2024). Advances in Microsurgical Treatment Options to Optimize Autologous Free Flap Breast Reconstruction. Journal of Clinical Medicine, 13(19), 5672. https://doi.org/10.3390/jcm13195672