Transvaginal Natural Orifice Transluminal Endoscopic Surgery (vNOTES) in Urogynecological Surgery: A Systematic Review
Abstract
:1. Introduction
2. Evidence Acquisition
2.1. Information Sources, Search Strategy, and Selection Process
2.2. Inclusion and Exclusion Criteria
2.3. Data Collection Process and Data Items
2.4. Reporting Bias Assessment
3. Evidence Synthesis
3.1. Study Selection
3.2. Study Characteristics
3.3. Surgical Outcomes
3.3.1. Intra- and Perioperative Data
3.3.2. Anatomical and Functional Outcomes
3.3.3. Complications
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yoshiki, N. Review of transvaginal natural orifice transluminal endoscopic surgery in gynecology. Gynecol. Minim. Invasive Ther. 2017, 6, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Santos, B.F.; Hungness, E.S. Natural orifice translumenal endoscopic surgery: Progress in humans since white paper. World J. Gastroenterol. 2011, 17, 1655–1665. [Google Scholar] [CrossRef]
- Li, C.B.; Hua, K.Q. Transvaginal natural orifice transluminal endoscopic surgery (vNOTES) in gynecologic surgeries: A systematic review. Asian J. Surg. 2020, 43, 44–51. [Google Scholar] [CrossRef]
- Farah, S.; Albaini, O.; Al Jardali, M.; Daccache, A.; Jallad, K. The Feasibility and Safety of vNOTES Hysterectomy and Uterosacral Ligament Suspension: A Case Series. J. Minim. Invasive Gynecol. 2023, 30, 414–417. [Google Scholar] [CrossRef]
- Karkia, R.; Giacchino, T.; Taylor, J.; Ghaffar, A.; Gupta, A.; Kovoor, E. Hysterectomy and Adenextomy via transvaginal natural orifice transluminal endoscopic surgery (vNOTES): A UK perspective with a case series of 33 patients. Eur. J. Obstet. Gynecol. Reprod. Biol. 2019, 242, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Zorron, R.; Maggioni, L.C.; Pombo, L.; Oliveira, A.L.; Carvalho, G.L.; Filgueiras, M. NOTES transvaginal cholecystectomy: Preliminary clinical application. Surg. Endosc. 2008, 22, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Ketenci Gencer, F.; Salman, S.; Kumbasar, S.; Bacak, H.B.; Khatib, O.; Kaya, C.; Yildiz, E.; Coskun, E.S. Lateral suspension with V-NOTES for the treatment of pelvic organ prolapse with the Salman-Ketenci Gencer technique. Int. Urogynecol. J. 2023, 34, 1583–1591. [Google Scholar] [CrossRef]
- Lowenstein, L.; Baekelandt, J.; Paz, Y.; Lauterbach, R.; Matanes, E. Transvaginal Natural Orifice Transluminal Endoscopic Hysterectomy and Apical Suspension of the Vaginal Cuff to the Uterosacral Ligament. J. Minim. Invasive Gynecol. 2019, 26, 1015. [Google Scholar] [CrossRef]
- Liu, T.; Chen, Y.; Wang, X. Transvaginal salpingo-oophorectomy with gasless laparoscopy—An optional pure natural orifice transluminal endoscopic surgery. Ginekol. Pol. 2020, 91, 1–5. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Aharoni, S.; Matanes, E.; Lauterbach, R.; Mor, O.; Weiner, Z.; Lowenstein, L. Transvaginal natural orifice transluminal endoscopic versus conventional vaginal hysterectomy with uterosacral ligament suspension for apical compartment prolapse. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 260, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Chen, Y.; Wang, X.; Li, J.; Yang, C.; Yuan, F.; Hua, K.; Hu, C. Mesh Exposure and Prolapse Recurrence Following Transvaginal Natural Orifice Transluminal Endoscopic Surgery for Sacrocolpopexy: Over 24 Months of Follow-up Data. J. Minim. Invasive Gynecol. 2022, 29, 1317–1322. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Chen, Y.; Wang, X.; Li, J.; Hua, K.; Hu, C. Transvaginal natural orifice transluminal endoscopic surgery for uterosacral ligament suspension: Pilot study of 35 cases of severe pelvic organ prolapse. BMC Surg. 2021, 21, 286. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Feng, D.; Gu, D.X.; Lin, Y.; Gong, Z.; Liu, D.; Zhang, Q.; Li, Y.; Huang, L.; He, L. Transvaginal natural orifice transluminal endoscopic surgery in gynecological procedure: Experience of a Women’s and Children’s Medical Center from China. J. Obstet. Gynaecol. Res. 2022, 48, 2926–2934. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Yu, J.; Li, Y.; Gong, Z.-L.; Feng, D.; He, L.; Lin, Y.-H. Transvaginal natural orifice transluminal endoscopic surgery versus conventional vaginal surgery for sacrospinous ligament fixation of apical compartment prolapse: A retrospective analysis. BMC Surg. 2023, 23, 24. [Google Scholar] [CrossRef]
- Lauterbach, R.; Gruenwald, I.; Matanes, E.; Matar, K.; Weiner, Z.; Lowenstein, L. The impact of vaginal hysterectomy and uterosacral ligament suspension on vaginal elasticity and sexual function. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 258, 29–32. [Google Scholar] [CrossRef]
- Wang, X.; Arikawa, K.; Li, J.; Hua, K.; Chen, Y. Transvaginal natural orifice transluminal endoscopic surgery for presacral–uterosacral ligament compound suspension in apical compartment prolapse. Int. Urogynecol. J. 2023, 34, 301–304. [Google Scholar] [CrossRef]
- Qin, Z.; Dong, Z.; Tang, H.; Zhang, S.; Wang, H.; Bao, M.; Wei, W.; Shi, R.; Chen, J.; Xia, B. A preliminary clinical report of transvaginal natural orifice transluminal endoscopic Sacrospinous Ligament Fixation in the treatment of moderate and severe pelvic organ prolapse. Front. Surg. 2022, 9, 931691. [Google Scholar] [CrossRef]
- Lowenstein, L.; Matanes, E.; Lauterbach, R.; Mor, O.; Burke, Y.Z.; Weiner, Z.; Baekelandt, J. Feasibility and Learning Curve of Transvaginal Natural Orifice Transluminal Endoscopic Surgery for Hysterectomy and Uterosacral Ligament Suspension in Apical Compartment Prolapse. Female Pelvic Med. Reconstr. Surg. 2021, 27, e171–e176. [Google Scholar] [CrossRef]
- Liu, J.; Kohn, J.; Fu, H.; Guan, Z.; Guan, X. Transvaginal Natural Orifice Transluminal Endoscopic Surgery for Sacrocolpopexy: A Pilot Study of 26 Cases. J. Minim. Invasive Gynecol. 2019, 26, 748–753. [Google Scholar] [CrossRef]
- Satava, R.M. Identification and reduction of surgical error using simulation. Minim. Invasive Ther. Allied Technol. 2005, 14, 257–261. [Google Scholar] [CrossRef]
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of Surgical Complications. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Aharony, S.M.; Lam, O.; Corcos, J. Evaluation of lower urinary tract symptoms in multiple sclerosis patients: Review of the literature and current guidelines. Can. Urol. Assoc. J. 2017, 11, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Yen, C.F.; Wu, K.Y.; Han, C.M.; Lee, C.L. Hysterectomy via transvaginal natural orifice transluminal endoscopic surgery (NOTES): Feasibility of an innovative approach. Taiwan. J. Obstet. Gynecol. 2012, 51, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Barber, M.D.; Visco, A.G.; Weidner, A.C.; Amundsen, C.L.; Bump, R.C. Bilateral uterosacral ligament vaginal vault suspension with site-specific endopelvic fascia defect repair for treatment of pelvic organ prolapse. Am. J. Obstet. Gynecol. 2000, 183, 1402–1411. [Google Scholar] [CrossRef] [PubMed]
- Costantini, E.; Brubaker, L.; Cervigni, M.; Matthews, C.A.; O’reilly, B.A.; Rizk, D.; Giannitsas, K.; Maher, C.F. Sacrocolpopexy for pelvic organ prolapse: Evidence-based review and recommendations. Eur. J. Obstet. Gynecol. Reprod. Biol. 2016, 205, 60–65. [Google Scholar] [CrossRef]
- Campagna, G.; Panico, G.; Lombisani, A.; Vacca, L.; Caramazza, D.; Scambia, G.; Ercoli, A. Laparoscopic uterosacral ligament suspension: A comprehensive, systematic literature review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2022, 277, 57–70. [Google Scholar] [CrossRef]
- Campagna, G.; Vacca, L.; Panico, G.; Caramazza, D.; Lombisani, A.; Scambia, G.; Ercoli, A. Laparoscopic lateral suspension for pelvic organ prolapse: A systematic literature review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 264, 318–329. [Google Scholar] [CrossRef]
- Johnson, N.; Lethaby, A.; Farquhar, C.; Garry, R.; Barlow, D. Surgical approaches to hysterectomy for benign gynaecological disease. In The Cochrane Database of Systematic Reviews; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2002. [Google Scholar] [CrossRef]
- Mothes, A.R.; Schlachetzki, A.; Nicolaus, K.; Vorwergk, J.; Lehmann, T.; Radosa, M.P.; Mothes, H.K.; Runnebaum, I.B. LAVH superior to TVH when concomitant salpingo-oophorectomy is intended in prolapse hysterectomy: A comparative cohort study. Arch. Gynecol. Obstet. 2018, 298, 1131–1137. [Google Scholar] [CrossRef]
- Erickson, B.K.; Conner, M.G.; Landen, C.N. The role of the fallopian tube in the origin of ovarian cancer. Am. J. Obstet. Gynecol. 2013, 209, 409–414. [Google Scholar] [CrossRef]
- Kindelberger, D.W.; Lee, Y.; Miron, A.; Hirsch, M.S.; Feltmate, C.; Medeiros, F.; Callahan, M.J.; Garner, E.O.; Gordon, R.W.; Birch, C.; et al. Intraepithelial Carcinoma of the Fimbria and Pelvic Serous Carcinoma: Evidence for a Causal Relationship. Am. J. Surg. Pathol. 2007, 31, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Chohan, L.; Richardson, D.L. ACOG Committee Opinion No. 774: Opportunistic Salpingectomy as a Strategy for Epithelial Ovarian Cancer Prevention. Obstet. Gynecol. 2019, 133, e279–e284. [Google Scholar] [CrossRef]
- Antosh, D.D.; High, R.; Brown, H.W.; Oliphant, S.S.; Abed, H.; Philip, N.; Grimes, C.L. Feasibility of prophylactic salpingectomy during vaginal hysterectomy. Am. J. Obstet. Gynecol. 2017, 217, 605.e1–605.e5. [Google Scholar] [CrossRef] [PubMed]
- Robert, M.; Cenaiko, D.; Sepandj, J.; Iwanicki, S. Success and Complications of Salpingectomy at the Time of Vaginal Hysterectomy. J. Minim. Invasive Gynecol. 2015, 22, 864–869. [Google Scholar] [CrossRef]
- Nygaard, I.E.; McCreery, R.; Brubaker, L.; Connolly, A.; Cundiff, G.; Weber, A.M.; Zyczynski, H. Abdominal Sacrocolpopexy: A Comprehensive Review. Obstet. Gynecol. 2004, 104, 805–823. [Google Scholar] [CrossRef]
- Bensinger, G.; Lind, L.; Lesser, M.; Guess, M.; Winkler, H.A. Abdominal sacral suspensions: Analysis of complications using permanent mesh. Am. J. Obstet. Gynecol. 2005, 193, 2094–2098. [Google Scholar] [CrossRef]
- Tan-Kim, J.; Menefee, S.A.; Luber, K.M.; Nager, C.W.; Lukacz, E.S. Prevalence and risk factors for mesh erosion after laparoscopic-assisted sacrocolpopexy. Int. Urogynecol. J. 2011, 22, 205–212. [Google Scholar] [CrossRef]
- Kapurubandara, S.; Lowenstein, L.; Salvay, H.; Herijgers, A.; King, J.; Baekelandt, J. Consensus on safe implementation of vaginal natural orifice transluminal endoscopic surgery (vNOTES). Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 263, 216–222. [Google Scholar] [CrossRef]
- Lerner, V.T.; May, G.; Iglesia, C.B. Vaginal Natural Orifice Transluminal Endoscopic Surgery Revolution: The Next Frontier in Gynecologic Minimally Invasive Surgery. JSLS 2023, 27, e2022.00082. [Google Scholar] [CrossRef]
- Unger, C.A.; Walters, M.D.; Ridgeway, B.; Jelovsek, J.E.; Barber, M.D.; Paraiso, M.F. Incidence of adverse events after uterosacral colpopexy for uterovaginal and posthysterectomy vault prolapse. Am. J. Obstet. Gynecol. 2015, 212, 603.e1–603.e7. [Google Scholar] [CrossRef]
- Houlihan, S.; Kim-Fine, S.; Birch, C.; Tang, S.; Brennand, E.A. Uterosacral vault suspension (USLS) at the time of hysterectomy: Laparoscopic versus vaginal approach. Int. Urogynecol. J. 2019, 30, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Delgado, S.; Liu, J.; Guan, Z.; Guan, X. Robot-assisted transvaginal natural orifice transluminal endoscopic surgery for management of endometriosis: A pilot study of 33 cases. J. Minim. Invasive Gynecol. 2021, 28, 2060–2066. [Google Scholar] [CrossRef] [PubMed]
- Abou Zeinab, M.; Kaviani, A.; Ferguson, E.; Beksac, A.T.; Schwen, Z.; Gill, B.; Bajic, P.; Ulchaker, J.; Eltemamy, M.; Kaouk, J. Single-port transvesical versus open simple prostatectomy: A perioperative comparative study. Prostate Cancer Prostatic Dis. 2023, 26, 538–542. [Google Scholar] [CrossRef]
- Härkki-Siren, P.; Sjöberg, J. Evaluation and the learning curve of the first one hundred laparoscopic hysterectomies. Acta Obstet. Gynecol. Scand. 1995, 74, 638–641. [Google Scholar] [CrossRef] [PubMed]
- Altgassen, C.; Michels, W.; Schneider, A. Learning laparoscopic-assisted hysterectomy. Obstet. Gynecol. 2004, 104, 308–313. [Google Scholar] [CrossRef]
- Mäkinen, J.; Johansson, J.; Tomás, C.; Tomás, E.; Heinonen, P.K.; Laatikainen, T.; Kauko, M.; Heikkinen, A.-M.; Sjöberg, J. Morbidity of 10 110 hysterectomies by type of approach. Hum. Reprod. 2001, 16, 1473–1478. [Google Scholar] [CrossRef]
- Bojahr, B.; Raatz, D.; Schonleber, G.; Abri, C.; Ohlinger, R. Perioperative complication rate in 1706 patients after a standardized laparoscopic supracervical hysterectomy technique. J. Minim. Invasive Gynecol. 2006, 13, 183–189. [Google Scholar] [CrossRef]
- Woelk, J.L.; Casiano, E.R.; Weaver, A.L.; Gostout, B.S.; Trabuco, E.C.; Gebhart, J.B. The learning curve of robotic hysterectomy. Obstet. Gynecol. 2013, 121, 87–95. [Google Scholar] [CrossRef]
- Orlando, M.S.; Greenberg, C.C.; Pavuluri Quamme, S.R.; Yee, A.; Faerber, A.E.; King, C.R. Surgical coaching in obstetrics and gynecology: An evidence-based strategy to elevate surgical education and promote lifelong learning. Am. J. Obstet. Gynecol. 2022, 227, 51–56. [Google Scholar] [CrossRef]
- Puerto Nino, A.K.; Garcia Perez, V.; Secco, S.; De Nunzio, C.; Lombardo, R.; Tikkinen, K.A.O.; Elterman, D.S. Can ChatGPT provide high-quality patient information on malelower urinary tract symptoms suggestive of benign prostate enlargement? Prostate Cancer Prostatic Dis. 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Geretto, P.; Lombardo, R.; Albisinni, S.; Turchi, B.; Campi, R.; DE Cillis, S.; Vacca, L.; Pelizzari, L.; Gallo, M.L.; Sampogna, G.; et al. Quality of information andappropriateness of ChatGPT outputs for neuro-urology. Minerva Urol. Nephrol. 2024, 76, 138–140. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, R.; Gallo, G.; Stira, J.; Turchi, B.; Santoro, G.; Riolo, S.; Romagnoli, M.; Cicione, A.; Tema, G.; Pastore, A.; et al. Quality of information and appropriateness of Open AI outputs for prostate cancer. Prostate Cancer Prostatic Dis. 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, R.; Cicione, A.; Santoro, G.; De Nunzio, C. ChatGPT in prostate cancer:myth or reality? Prostate Cancer Prostatic Dis. 2024, 27, 9–10. [Google Scholar] [CrossRef] [PubMed]
Study | Institution | Design | Number of Patients | Age (Years) Mean ± SD (Range)/Median | Postmenopausal Status, n (%) | Parity n (%) Mean/Median | Previous Hysterectomy n (%) | Previous Pelvic Surgery, n (%) | Previous POP Surgery, n (%) |
---|---|---|---|---|---|---|---|---|---|
Liu et al., 2018 [9] | Guangzhou Medical University, China | Retrospective | 26 | 62.6 ± 7.3 (47–82) | n/a | >1 23 (100) | 1 (4) | 2 (8) | 0 |
Lautherbach et al., 2020 [16] | Rambam Health Care Campus, Israel | Prospective | 23 | 56.5 ± 7.7 | n/a | n/a | 0 | 0 | 0 |
Lowenstein et al., 2019 [8] | Rambam Health Care Campus, Israel AND Imelda Hospital, Belgium | Prospective | 35 | 55 (40–81) | n/a | 4 (1–6) | 0 | 10 (28.5%) | n/a |
Aharoni et al., 2021 [11] | Rambam Health Care Campus, Israel | Retrospective | 65 | 59.93 ± 12.0 | n/a | 3.4 ± 1.7 | 0 | 14 (20) | n/a |
Lu Z. et al., 2021 [13] | Hospital of Fudan University, China | Retrospective | 35 | 53.7 ± 11.4 | n/a | 1.6 ± 0.8 | 1 (3) | n/a | 1 (3) |
Lu Z. et al., 2022 [12] | Hospital of Fudan University, China | Retrospective | 55 | 54 | 35 (63.6) | =1 40 (72.7) =2 14 (25.5) =3 1 (1.8) | 0 | n/a | 1 (1.8) |
Farah et al., 2022 [4] | Lebanese American University Medical Center, Beirut | Prospective | 23 | 56.7 ± 8.9 | n/a | 3 (2–3) | 0 | n/a | n/a |
Wang X. 2022 [17] | Hospital of Fudan University, China | Prospective | 15 | 60.67 (46–69) | 12 (80) | 1.23 (1–3) | 0 | 1 (6.7) | n/a |
Qin et al., 2022 [18] | Changzhou No.2 People’s Hospital, China | Prospective | 18 | 62.61 ± 10.26 | n/a | 2.00 ± 0.77 | n/a | n/a | 0 |
Huang L. et al., 2022 [14] | Chengdu Women’s and Children’s Central Hospital, China | Retrospective | 51 | n/a | n/a |
>1 51 (100) | n/a | n/a | n/a |
Huang L. et al., 2023 [15] | Chengdu Women’s and Children’s Central Hospital, China | Retrospective | 31 | 61.42 ± 8.969 | 24 (77.4) | 3.81 ± 1.515 | 0 | n/a | 0 |
Ketenci Gencer et al., 2023 [7] | Istanbul Gaziosmanpasa Training and Research Hospital, Turkey | Prospective | 37 | 57.7 ± 6.3 | n/a | 3.7 ± 1.8 | 2 (5.4) | 5 (13.5) | 3 (8.1) |
Study | N | Type of Surgery | Concomitant Anti-Incontinence Procedure, n (%) | Concomitant Anterior Colporrhaphy, n (%) | Concomitant Hysterectomy, n (%) | Concomitant Posterior Colporrhaphy, n (%) | Operative Time (min), Mean ± SD (Range)/Median | Blood Loss (mL), Mean ± SD (Range)/Median | Conversion Rate, n (%) | Hospital Stay (Days), Mean ± SD (Range) Median |
---|---|---|---|---|---|---|---|---|---|---|
Liu et al., 2018 [9] | 26 | SCP | 0 | 0 | 25 (96) | 0 | 189.74 ± 45.1 | 30.87 ± 20.8 | 3 (12) LPS | 4.0 ± 1.6 |
Lautherbach et al., 2020 [16] | 23 | USLS | 0 | 0 | 23 (100) | 0 | n/a | n/a | n/a | n/a |
Lowenstein et al., 2019 [8] | 35 | USLS | 4 (11) TVT-O | 2 (6) | 35 (100) | 1 (3) | 113 (89–233) | 30 (20–200) | 2 (1–3) | |
Aharoni et al., 2021 [11] | 65 | USLS | 9 (13) TVT-O | 13 (20) | 65 (100) | 12 (18) | 141.4 ± 29.6 | 58 ± 68 | 0 | 3 (2–4) |
Lu Z. et al., 2021 [13] | 35 | USLS | 3 (8.5) MUS 2 (6) urethral folding | 24 (69) | 20 (57) | 24 (69) | 111.7 ± 39.4 | 67.9 ± 35.8 | 0 | 3.7 ± 1.1 |
Lu Z. et al., 2022 [12] | 55 | SCP | 6 (10.9) | 24 (43.6) | 55 (100) | 35 (63.6) | 115.5 ± 18.4 | 86.2 ± 48.1 | 0 | 4.1 ± 1.4 |
Farah et al., 2022 [4] | 23 | USLS | 0 | 20 (87) | 23 (100) | 20 (87) | 85.2 ± 55.6 | 1 (4.3) vaginal | 1.1 ± 0.3 | |
Wang X. 2022 [17] | 15 | USLS+ ALLS | 0 | 15 (100) | 15 (100) | 13 (86.7) | 103.6 (65–166) | 82 (50–200) | 0 | 2 (2–4) |
Qin et al., 2022 [17] | 18 | SSLS | 0 | n/a | 14 (78) | n/a | 192.78 ± 38.81 | 134.44 ± 111.21 | 0 | 7.94 (5–13) |
Huang L. et al., 2022 [14] | 51 | 12 (23) SCP 38 (74) SSLS 1 (2) USLS | n/a | n/a | n/a | n/a | 59.58 ± 10.65 63.55 ± 9.12 52 | 147.50 ± 155.75 103.95 ± 138.22 100 | 0 | 5.58 ± 2.81 4.89 ± 1.18 7 |
Huang L. et al., 2023 [15] | 31 | SSLS | 0 | 19 (61.3) | 31 (100) | 11 (35.5) | 136.58 ± 37.39 | 82.52 ± 28.56 | 0 | 4.81 ± 1.25 |
Ketenci Gencer et al., 2023 [7] | 37 | LS | 1 (2.7) TVT-O | 3 (8.1) | 18 (48.6) | n/a | 60.3 ± 20.4 | 170.54 ± 117.11 | 3 (8.1) vaginal | n/a |
Study | N | PreOP POP-Q Points Mean ± SD/Median Stage (Range) or n (%) | PostOP POP-Q Stage | De Novo SUI, n (%) | De Novo Constipation n (%) | De Novo Dyspareunia n (%) | Anatomical Success Rate (%) | Quality of Life Questionnaires | POP Recurrence n (%) | Reoperation Rate, n (%) | FUP (Months), Mean ± SD/Median (Range) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Definition | Success Rate % | Type of Questionnaires—Preoperative Scores | Postoperative Scores | ||||||||||
Liu et al., 2018 [9] | 26 | ≥stage 2 26 (100) Aa 1.4 ± 1.7 C 2.2 ± 1.9 | Aa −1.85 ±0.6 C −6.1 ± 0.7 | n/a | n/a | n/a | n/a | 96 | PFIQ-7 163.1 ± 46.2 | 18.4 ± 29.3 | 0 | 0 | 3 (3–14) |
Lautherbach et al., 2020 [16] | 23 | 3 (3–4) | 0 (0–1) | n/a | n/a | n/a | n/a | n/a | FSFI Total 22.17 ± 1.62 Desire 3.87 ± 0.63 Arousal 3.72 ± 0.73 Lubrication 3.95 ± 0.66 Orgasm 3.02 ± 0.68 Satisfaction 3.44 ± 0.75 Pain 4.17 ± 0.25 | 28.66 ± 1.51 5.33 ± 0.52 5.48 ± 0.65 (p < 0.008) 4.46 ± 0.64 3.66 ± 0.63 5.42 ± 0.82 (p < 0.004) 4.31 ± 0.34 | 0 | 0 | 12 |
Lowenstein et al., 2019 [8] | 35 | Stage 3 (2–4) Stage II 4 (11) Stage III 25 (71) Stage IV 6 (17) | Stage 0–1 35 (100) | n/a | n/a | n/a | n/a | n/a | PFDI-20 Total 45 (26–54) POP subscale 53 (32–59) | 6 (0–34) p < 0.005 2 (0–11) p < 0.005 | 0 | 0 | 3 |
Aharoni et al., 2021 [11] | 65 | Stage II 32 (49) Stage III 31 (48) Stage IV 2 (3) | n/a | 0 | n/a | n/a | n/a | n/a | n/a | n/a | n/a | 0 | n/a |
Lu Z. et al., 2021 [13] | 35 | Stage III 33 (94.3) Stage IV 2 (5.7) Aa +0.6 ± 1.7 Ba +1.9 ± 2.2 C +1.5 ± 2.2 Ap −1.4 ± 1.0 Bp −1.1 ± 1.4 TVL +7.4 ±0.5 | Aa −2.9 ± 0.2 Ba −2.9 ± 0.3 C −6.9 ± 0.9 Ap −3.0 ± 0.1 Bp −2.9 ± 0.1 TVL +7.2 ± 0.4 | 2 (6) | 1 (3) | 0 | POP-Q < −1 cm | 100 | POPDI-6 9.9 ± 3.5 CRADI-8 2.5 ± 3.0 UDI-6 7.5 ± 4.4 Total PFDI-20 19.9 ± 6.7 | 0.9 ± 1.9 (p < 0.000) 0.7 ± 2.1 (p < 0.047) 1.6 ± 2.8 (p < 0.000) 3.2 ± 5.4 (p < 0.000) | 0 | 0 | 3.9 ± 3.8 (1–13) |
Lu Z. et al., 2022 [12] | 55 | Stage II 13 (23.6) Stage III 41 (74.5) Stage IV 1 (1.8) Aa 0.39 ±1.48 Ba 1.45 ±1.69 C 1.71 ± 2.52 p −1.75 ±1.13 Bp −1.14 ±1.74 TVL 6.87 ±1.39 | Aa −2.86 ± 0.52 Ba −2.86 ±0.52 C −6.78 ±0.71 Ap −2.93 ± 0.33 Bp −2.93 ± 0.33 TVL 7.76 ± 0.72 | n/a | n/a | n/a | POP-Q ≥ stage Il and any retreatment | 52 (94.5) | n/a | n/a | 3 (5.5) | 0 | 35.5 ± 7.6 (24–46) |
Farah et al., 2022 [4] | 23 | Stage I 1 (4) Stage II 6 (27) Stage III 15 (65) Stage IV 1 (4) | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | 0 | 0 | 6 weeks |
Wang X. 2022 [17] | 15 | Stage II 2 (13.3%) Stage III 13 (80%) Stage IV 1 (6.7%) Aa 1.07 ± 1.28. Ba 2.07 ± 1.58 C 2.40 ± 1.45 Ap 0.07 ± 1.39 Bp 0.26 ± 1.94 TVL 7.13 ± 0.35 | Aa −2.93 ± 0.26 Ba −2.80 ± 0.41 C −7.13 ± 0.35 Ap −2.93 ± 0.26 Bp −2.87 ± 0.37 TVL 7.27 ± 0.46 | n/a | n/a | n/a | n/a | n/a | POPDI-6 5.14 ± 3.37 CRADI-8 4.57 ± 3.65 UDI-6 5.57 ± 4.68 PFDI-20 18.50 ± 10.61 | 1.14 ± 1.17 (p < 0.000) 1.5 ± 1.29 (p < 0.001) 1.14 ± 1.46 (p < 0.000) 3.79 ± 2.55 (p < 0.000) | 0 | 0 | 9.93 (9–12) |
Qin et al., 2022 [18] | 18 | Aa 1.00 ± 1.00 Ba 2.31 ± 1.19 C 5.19 ± 2.18 Ap 0.86 ± 0.97 Bp 1.64 ± 1.08 TVL 8.72 ± 0.46 | Aa −2.17 ± 0.45 Ba −2.52 ± 0.17 C −7 ± 0.41 Ap −2.32 ± 0.20 Bp −2.55 ± 0.23 TVL 7.31 ± 0.57 | n/a | n/a | n/a | n/a | n/a | n/a | n/a | 0 | 0 | 6 |
Huang L. et al., 2022 [14] | 51 | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a | n/a |
Huang L. et al., 2023 [15] | 31 | Stage I 2 (6.5) Stage II 7 (22.6) Stage III 21 (67.7) Stage IV 1 (3.2) | n/a | n/a | n/a | n/a | POP-Q stage ≤ I | 74.2 | n/a | PFIQ-7 23.20 ± 8.32 UIQ-7 11.06 ± 6.55 POPIQ-7 5.99 ± 2.45 CRAIQ-7 6.14 ± 3.06 PFDI-20 47.88 ± 11.67 UDI-6 19.35 ± 4.51 POPDI-6 13.31 ± 4.22 CRADI-8 15.22 ± 4.25 | 8 (25.8) | n/a | 12 |
Ketenci Gencer et al., 2023 [7] | 37 | Stage ≥ 3 37 (100) Aa 2.17 ± 0.67 Ba 1.88 ± 0.87 Ap 1.37 ± 0.61 Bp 1.58 ± 1.17 C 3.83 ± 1.0003 D 3 ± 1.13 TVL 7.35 ± 0.99 | Aa −1.32 ± 1.66 Ba −0.75 ± 2.246 Ap −1.71 ± 1.5 Bp −1.41 ± 2.11 C −5.78 ± 4.18 D −6.35 ± 3.54 TVL 7.56 ± 1.32 | 1 (2.7) | 5 (13.5) | 0 | n/a | n/a | PISQ-12 Behavioral factor 5.94 ± 1.99 Physical factor 2.72 ± 2.16 Partner-related factor 4.54 ± 2.34 Total 13.13 ± 3.6 | 9.59 ± 1.88 8.67 ± 4.74 7.48 ± 3.02 25.89 ± 5.96 p value <0.001 for all items | 5 (13.5) | 5 (13.5) | 6 |
Study | N | Overall Complication Rate n, (%) | Intraoperative Complication Rate, n (%) Satava Classification | Postoperative Complication Rate, n (%) Clavien–Dindo Classification | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 1 | 2 | 3a | 3b | 4 | 5 | |||
Liu et al. 2018 [9] | 26 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Lautherbach et al., 2020 [16] | 23 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Lowenstein et al., 2019 [8] | 35 | 1 (3) postoperative | 0 | 0 | 0 | 0 | 1 (3) ileus treated conservatively | 0 | 0 | 0 | 0 |
Aharoni et al., 2021 [11] | 65 | 4 (6) intraoperative 2 (3) postoperative | 1 (1) intra-abdominal bleeding | 1 (1) vaginal bleeding 2 (3) cystotomy | 0 | 0 | 1 (1) infection, 1 (1) hematoma | 0 | 0 | 0 | 0 |
Lu Z. et al., 2021 [13] | 35 | 0 | 0 | 0 | 0 | 1 (1) urinary retention | 1 (3) infection | 0 | 0 | 0 | 0 |
Lu Z. et al., 2022 [12] | 55 | 5 (9) postoperative 3 (5.5) mesh exposure after 1 year | 0 | 0 | 0 | 2 (3.6) urinary retention | 2 (3.6) urinary tract infection, 1 (1.8) hematoma | 0 | 0 | 0 | 0 |
Farah et al., 2022 [4] | 23 | 1 (4) intraoperative 1 (4) postoperative | 1 (4.3) ureteral kinging | 0 | 0 | 1 (4) urinary retention | 0 | 0 | 0 | 0 | 0 |
Wang X. 2022 [17] | 15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Qin et al., 2022 [18] | 18 | 2 (11) postoperative | 0 | 0 | 0 | 0 | 1 (5) dull pain, 1 (5) lumbosacral swelling | 0 | 0 | 0 | 0 |
Huang L. et al., 2022 [14] | 51 | 10 (19.6) postoperative | n/a | n/a | n/a | n/a | n/a | n/a | 1 (8.3) * mesh exposure | n/a | n/a |
Huang L. et al., 2023 [15] | 31 | 5 (16.1) postoperative 23 (74.2) BUTTOCK PAIN REPORTED at 1 year | 0 | 0 | 0 | 5 (16.1) not specified | 0 | 0 | 0 | 0 | 0 |
Ketenci Gencer et al., 2023 [7] | 37 | 20 (54.1) | 0 | 3 (8.1) bladder injury 1 (2.7) epigastric vessel injury | 0 | 0 | 1 (2.7) pelvic pain, 5 (13.5) constipation, 3 (5.4) urinary tract infection, 3 (8.1) insertion pain, 2 (5.4) vaginal hematoma, 1 (2.7) mesh erosion treat with estrogens, 2 (5.4) vaginitis | 0 | 1 (2.7) mesh erosion surgically removed | 0 | 0 |
Study | Bias Due to Confounding | Bias in Selection of Participants into the Study | Bias in Classification of Interventions | Bias Due to Deviations from Intended Intervention | Bias Due to Missing Data | Bias in Measurement of Outcomes | Bias in Selection of the Reported Results | Overall Bias |
---|---|---|---|---|---|---|---|---|
Liu et al., 2018 [9] | ||||||||
Lautherbach et al., 2020 [16] | ||||||||
Lowenstein et al., 2019 [8] | ||||||||
Aharoni et al., 2021 [11] | ||||||||
Lu Z. et al., 2021 [13] | ||||||||
Lu Z. et al., 2022 [12] | ||||||||
Farah et al., 2022 [4] | ||||||||
Wang X. 2022 [17] | ||||||||
Qin et al., 2022 [18] | ||||||||
Huang L. et al., 2022 [14] | ||||||||
Huang L. et al., 2023 [15] | ||||||||
Ketenci Gencer et al., 2023 [7] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vacca, L.; Rosato, E.; Lombardo, R.; Geretto, P.; Albisinni, S.; Campi, R.; De Cillis, S.; Pelizzari, L.; Gallo, M.L.; Sampogna, G.; et al. Transvaginal Natural Orifice Transluminal Endoscopic Surgery (vNOTES) in Urogynecological Surgery: A Systematic Review. J. Clin. Med. 2024, 13, 5707. https://doi.org/10.3390/jcm13195707
Vacca L, Rosato E, Lombardo R, Geretto P, Albisinni S, Campi R, De Cillis S, Pelizzari L, Gallo ML, Sampogna G, et al. Transvaginal Natural Orifice Transluminal Endoscopic Surgery (vNOTES) in Urogynecological Surgery: A Systematic Review. Journal of Clinical Medicine. 2024; 13(19):5707. https://doi.org/10.3390/jcm13195707
Chicago/Turabian StyleVacca, Lorenzo, Eleonora Rosato, Riccardo Lombardo, Paolo Geretto, Simone Albisinni, Riccardo Campi, Sabrina De Cillis, Laura Pelizzari, Maria Lucia Gallo, Gianluca Sampogna, and et al. 2024. "Transvaginal Natural Orifice Transluminal Endoscopic Surgery (vNOTES) in Urogynecological Surgery: A Systematic Review" Journal of Clinical Medicine 13, no. 19: 5707. https://doi.org/10.3390/jcm13195707
APA StyleVacca, L., Rosato, E., Lombardo, R., Geretto, P., Albisinni, S., Campi, R., De Cillis, S., Pelizzari, L., Gallo, M. L., Sampogna, G., Lombisani, A., Campagna, G., Giammo, A., Li Marzi, V., De Nunzio, C., & Young Research Group of the Italian Society of Urodynamics. (2024). Transvaginal Natural Orifice Transluminal Endoscopic Surgery (vNOTES) in Urogynecological Surgery: A Systematic Review. Journal of Clinical Medicine, 13(19), 5707. https://doi.org/10.3390/jcm13195707