Effectiveness of Treating Obstructive Sleep Apnea by Surgeries and Continuous Positive Airway Pressure: Evaluation Using Objective Sleep Parameters and Patient-Reported Outcomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Study Design
2.2. Outcome Measurement
2.2.1. Objective Sleep Parameters
2.2.2. Subjective Sleep Parameters (PROs)
2.2.3. Covariates
2.2.4. Follow-Up Time
2.3. Statistical Analysis
3. Results
3.1. Study Cohort
3.2. Mixed-Effect Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Benjafield, A.V.; Ayas, N.T.; Eastwood, P.R.; Heinzer, R.; Ip, M.S.M.; Morrell, M.J.; Nunez, C.M.; Patel, S.R.; Penzel, T.; Pépin, J.-L.; et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir. Med. 2019, 7, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Lyons, M.M.; Bhatt, N.Y.; Pack, A.I.; Magalang, U.J. Global burden of sleep-disordered breathing and its implications. Respirology 2020, 25, 690–702. [Google Scholar] [CrossRef] [PubMed]
- Lavalle, S.; Masiello, E.; Iannella, G.; Magliulo, G.; Pace, A.; Lechien, J.R.; Calvo-Henriquez, C.; Cocuzza, S.; Parisi, F.M.; Favier, V.; et al. Unraveling the Complexities of Oxidative Stress and Inflammation Biomarkers in Obstructive Sleep Apnea Syndrome: A Comprehensive Review. Life 2024, 14, 425. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ouyang, Y.; Wang, Z.; Zhao, G.; Liu, L.; Bi, Y. Obstructive sleep apnea and risk of cardiovascular disease and all-cause mortality: A meta-analysis of prospective cohort studies. Int. J. Cardiol. 2013, 169, 207–214. [Google Scholar] [CrossRef]
- Martinez-Garcia, M.A.; Campos-Rodriguez, F.; Barbé, F.; Gozal, D.; Agustí, A. Precision medicine in obstructive sleep apnoea. Lancet Respir. Med. 2019, 7, 456–464. [Google Scholar] [CrossRef]
- Knauert, M.; Naik, S.; Gillespie, M.B.; Kryger, M. Clinical consequences and economic costs of untreated obstructive sleep apnea syndrome. World J. Otorhinolaryngol.-Head Neck Surg. 2015, 1, 17–27. [Google Scholar] [CrossRef]
- Patil, S.P.; Ayappa, I.A.; Caples, S.M.; Kimoff, R.J.; Patel, S.R.; Harrod, C.G. Treatment of adult obstructive sleep apnea with positive airway pressure: An American Academy of Sleep Medicine clinical practice guideline. J. Clin. Sleep Med. 2019, 15, 335–343. [Google Scholar] [CrossRef]
- Rotenberg, B.W.; Murariu, D.; Pang, K.P. Trends in CPAP adherence over twenty years of data collection: A flattened curve. J. Otolaryngol.-Head Neck Surg. 2016, 45, 43. [Google Scholar] [CrossRef]
- Kent, D.; Stanley, J.; Aurora, R.N.; Levine, C.G.; Gottlieb, D.J.; Spann, M.D.; Torre, C.A.; Green, K.; Harrod, C.G. Referral of adults with obstructive sleep apnea for surgical consultation: An American Academy of Sleep Medicine systematic review, meta-analysis, and GRADE assessment. J. Clin. Sleep Med. 2021, 17, 2507–2531. [Google Scholar] [CrossRef]
- Certal, V.; Nishino, N.; Camacho, M.; Capasso, R. Reviewing the systematic reviews in OSA surgery. Otolaryngol.-Head Neck Surg. 2013, 149, 817–829. [Google Scholar] [CrossRef]
- MacKay, S.; Carney, A.S.; Catcheside, P.G.; Chai-Coetzer, C.L.; Chia, M.; Cistulli, P.A.; Hodge, J.C.; Jones, A.; Kaambwa, B.; Lewis, R.; et al. Effect of multilevel upper airway surgery vs medical management on the apnea-hypopnea index and patient-reported daytime sleepiness among patients with moderate or severe obstructive sleep apnea: The SAMS randomized clinical trial. JAMA 2020, 324, 1168–1179. [Google Scholar] [CrossRef] [PubMed]
- Browaldh, N.; Nerfeldt, P.; Lysdahl, M.; Bring, J.; Friberg, D. SKUP3 randomised controlled trial: Polysomnographic results after uvulopalatopharyngoplasty in selected patients with obstructive sleep apnoea. Thorax 2013, 68, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Kim, E.J.; Kim, Y.S.; Kim, T.H.; Choi, J.; Kwon, S.Y.; Lee, H.M.; Lee, S.H.; Lee, S.H. Effectiveness of nasal surgery alone on sleep quality, architecture, position, and sleep-disordered breathing in obstructive sleep apnea syndrome with nasal obstruction. Am. J. Rhinol. Allergy 2011, 25, 338–341. [Google Scholar] [CrossRef]
- Rosvall, B.R.; Chin, C.J. Is uvulopalatopharyngoplasty effective in obstructive sleep apnea? Laryngoscope 2017, 127, 2201–2202. [Google Scholar] [CrossRef] [PubMed]
- Verse, T.; Maurer, J.T.; Pirsig, W. Effect of nasal surgery on sleep-related breathing disorders. Laryngoscope 2002, 112, 64–68. [Google Scholar] [CrossRef]
- Pack, A.I.; Magalang, U.J.; Singh, B.; Kuna, S.T.; Keenan, B.T.; Maislin, G. Randomized clinical trials of cardiovascular disease in obstructive sleep apnea: Understanding and overcoming bias. Sleep 2021, 44, zsaa229. [Google Scholar] [CrossRef] [PubMed]
- Real-World Data: Assessing Electronic Health Records and Medical Claims Data to Support Regulatory Decision-Making for Drug and Biological Products Draft Guidance for Industry. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/real-world-data-assessing-electronic-health-records-and-medical-claims-data-support-regulatory (accessed on 4 December 2021).
- Zinchuk, A.; Yaggi, H.K. Phenotypic subtypes of OSA: A challenge and opportunity for precision medicine. Chest 2020, 157, 403–420. [Google Scholar] [CrossRef]
- Continuous Positive Airway Pressure (CPAP) Devices, Accessories, & Therapy. 2024. Available online: https://www.medicare.gov/coverage/continuous-positive-airway-pressure-devices (accessed on 15 March 2024).
- Billings, M.E.; Kapur, V.K. Medicare long-term CPAP coverage policy: A cost-utility analysis. J. Clin. Sleep Med. 2013, 9, 1023–1029. [Google Scholar] [CrossRef]
- 0 Respiratory Equipment and Supplies Benefits List. 2024. Available online: https://www.sac-isc.gc.ca/eng/1585323161648/1585323186650#s8-2-1 (accessed on 15 March 2024).
- Guest, J.F.; Helter, M.T.; Morga, A.; Stradling, J.R. Cost-effectiveness of using continuous positive airway pressure in the treatment of severe obstructive sleep apnoea/hypopnoea syndrome in the UK. Thorax 2008, 63, 860–865. [Google Scholar] [CrossRef]
- Nakamura, H.; Kanemura, T.; Takara, C.; Tsukayama, A.; Tohyama, K.; Matsumoto, T.; Iseki, K. A retrospective analysis of 4000 patients with obstructive sleep apnea in Okinawa, Japan. Sleep Biol. Rhythm. 2009, 7, 103–112. [Google Scholar] [CrossRef]
- Carberry, J.C.; Amatoury, J.; Eckert, D.J. Personalized management approach for OSA. Chest 2018, 153, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, T.; Huang, W.; Zhang, J.; Zou, J.; Guan, J.; Yi, H.; Yin, S. Differences in physiological endotypes between non-positional and positional obstructive sleep apnea: Results from Shanghai Sleep Health Study cohort. Chest 2024, 166, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Hilbert, J.; Yaggi, H.K. Patient-centered care in obstructive sleep apnea: A vision for the future. Sleep Med. Rev. 2018, 37, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Riley, R.W.; Powell, N.B.; Guilleminault, C. Obstructive sleep apnea syndrome: A surgical protocol for dynamic upper airway reconstruction. J. Oral Maxillofac. Surg. 1993, 51, 742–747. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Y.-C.; Awad, M.; Riley, R.; Capasso, R. The role of the revised stanford protocol in today’s precision medicine. Sleep Med. Clin. 2019, 14, 99–107. [Google Scholar] [CrossRef]
- Liu, S.Y.-C.; Riley, R.W.; Yu, M.S. Surgical algorithm for obstructive sleep apnea: An update. Clin. Exp. Otorhinolaryngol. 2020, 13, 215. [Google Scholar] [CrossRef]
- Li, H.-Y. Palatal surgery for obstructive sleep apnea: From ablation to reconstruction. Sleep Med. Clin. 2019, 14, 51–58. [Google Scholar] [CrossRef]
- Ruehland, W.R.; Rochford, P.D.; O’dOnoghue, F.J.; Pierce, R.J.; Singh, P.; Thornton, A.T. The new AASM criteria for scoring hypopneas: Impact on the apnea hypopnea index. Sleep 2009, 32, 150–157. [Google Scholar] [CrossRef]
- Gliklich, R.E.; Wang, P.-C. Validation of the snore outcomes survey for patients with sleep-disordered breathing. Arch. Otolaryngol.-Head Neck Surg. 2002, 128, 819–824. [Google Scholar] [CrossRef]
- Chen, N.; Li, H.; Gliklich, R.E.; Chu, C.; Liang, S.; Wang, P. Validation assessment of the Chinese version of the Snore Outcomes Survey. Qual. Life Res. 2002, 11, 601–607. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.; Wang, J.; Huang, P.; Chien, Y.; Chiu, C.; Lin, C. Integrating domain knowledge with machine learning to detect obstructive sleep apnea: Snore as a significant bio-feature. J. Sleep Res. 2022, 31, e13487. [Google Scholar] [CrossRef] [PubMed]
- Thiese, M.S.; Ronna, B.; Ott, U. P value interpretations and considerations. J. Thorac. Dis. 2016, 8, E928–E931. [Google Scholar] [CrossRef] [PubMed]
- Adult Obstructive Sleep Apnea Task Force of the American Academy of Sleep Medicine. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J. Clin. Sleep Med. 2009, 5, 263–276. [Google Scholar] [CrossRef]
- He, M.; Yin, G.; Zhan, S.; Xu, J.; Cao, X.; Li, J.; Ye, J. Long-term efficacy of uvulopalatopharyngoplasty among adult patients with obstructive sleep apnea: A systematic review and meta-analysis. Otolaryngol.-Head Neck Surg. 2019, 161, 401–411. [Google Scholar] [CrossRef] [PubMed]
- Sundman, J.; Browaldh, N.; Fehrm, J.; Friberg, D. Eight-Year Follow-up of Modified Uvulopalatopharyngoplasty in Patients With Obstructive Sleep Apnea. Laryngoscope 2021, 131, E307–E313. [Google Scholar] [CrossRef] [PubMed]
- Pinczel, A.J.; Woods, C.M.; Catcheside, P.G.; Woodman, R.J.; Carney, A.S.; Chai-Coetzer, C.L.; Chia, M.; Cistulli, P.A.; Hodge, J.-C.; Jones, A.; et al. Sleep apnea multi-level surgery trial: Long-term observational outcomes. Sleep 2024, 47, zsad218. [Google Scholar] [CrossRef] [PubMed]
- Caples, S.M.; Rowley, J.A.; Prinsell, J.R.; Pallanch, J.F.; Elamin, M.B.; Katz, S.G.; Harwick, J.D. Surgical modifications of the upper airway for obstructive sleep apnea in adults: A systematic review and meta-analysis. Sleep 2010, 33, 1396–1407. [Google Scholar] [CrossRef]
- Stuck, B.A.; Ravesloot, M.J.; Eschenhagen, T.; de Vet, H.; Sommer, J.U. Uvulopalatopharyngoplasty with or without tonsillectomy in the treatment of adult obstructive sleep apnea–A systematic review. Sleep Med. 2018, 50, 152–165. [Google Scholar] [CrossRef] [PubMed]
- Woods, C.M.; Gunawardena, I.; Chia, M.; Vowles, N.J.; Ullah, S.; Robinson, S.; Carney, A.S. Long-term quality-of-life outcomes following treatment for adult obstructive sleep apnoea: Comparison of upper airway surgery, continuous positive airway pressure and mandibular advancement splints. Clin. Otolaryngol. 2016, 41, 762–770. [Google Scholar] [CrossRef]
- Tschopp, S.; Tschopp, K. Tonsil size and outcome of uvulopalatopharyngoplasty with tonsillectomy in obstructive sleep apnea. Laryngoscope 2019, 129, E449–E454. [Google Scholar] [CrossRef]
- Koay, C.B.; Freeland, A.P.; Stradling, J.R. Short-and long-term outcomes of uvulopalatopharyngoplasty for snoring. Clin. Otolaryngol. Allied Sci. 1995, 20, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Levin, B.C.; Becker, G.D. Uvulopalatopharyngoplasty for snoring: Long-term results. Laryngoscope 1994, 104, 1150–1152. [Google Scholar] [CrossRef] [PubMed]
- Fairbanks, D.N. Snoring: Surgical vs. nonsurgical management. Laryngoscope 1984, 94, 1188–1192. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Tripuraneni, P.; Gulati, A.; Stephens, E.M.; Nguyen, D.; Durr, M.L.; Chang, J.L. Patient-defined goals for obstructive sleep apnea treatment. Otolaryngol.-Head Neck Surg. 2022, 167, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Case, S.M.; O’Leary, J.; Kim, N.; Tinetti, M.E.; Fried, T.R. Older adults’ recognition of trade-offs in healthcare decision-making. J. Am. Geriatr. Soc. 2015, 63, 1658–1662. [Google Scholar] [CrossRef] [PubMed]
- Renoux, C.; Azoulay, L.; Suissa, S. Biases in evaluating the safety and effectiveness of drugs for the treatment of COVID-19: Designing real-world evidence studies. Am. J. Epidemiol. 2021, 190, 1452–1456. [Google Scholar] [CrossRef]
- Duce, B.; Milosavljevic, J.; Hukins, C. The 2012 AASM respiratory event criteria increase the incidence of hypopneas in an adult sleep center population. J. Clin. Sleep Med. 2015, 11, 1425–1431. [Google Scholar] [CrossRef]
UPPP Surgery a (N = 42) | Palatal Plus Nasal Surgery (N = 171) | CPAP b (N = 127) | No Intervention (N = 108) | p-Value | |
---|---|---|---|---|---|
Age (mean [SD]) †‡§¶# | 44.0 (9.7) | 46.3 (11.3) | 51.9 (12.2) | 50.8 (13.4) | <0.001 |
Female (No. [%]) # | 9 (21) | 29 (17) | 12 (9) | 30 (27) | 0.003 |
BMI (mean [SD]) *§# | 29.6 (5) | 26.9 (3.8) | 29.8 (5.5) | 28 (5.2) | <0.001 |
BMI < 25 (No. [%]) §# | 9 (21) | 51 (30) | 24 (19) | 33 (31) | <0.001 |
25 ≤ BMI < 30 (No. [%]) | 16 (38) | 90 (53) | 51 (40) | 52 (48) | |
BMI ≥ 30 (No. [%]) | 17 (41) | 30 (18) | 52 (41) | 23 (21) | |
Comorbidities | |||||
Hypertension § | 18 (43) | 58 (34) | 71 (56) | 46 (43) | 0.002 |
Diabetes § | 4 (9) | 7 (4) | 23 (18) | 13 (12) | 0.001 |
Myocardial infarction | 0 (0) | 4 (2) | 3 (2) | 3 (3) | 0.773 |
GERD f | 0 (0) | 2 (1) | 3 (2) | 6 (6) | 0.388 |
Objective evaluation | |||||
AHI (per hour) c (mean [SD]) *†§# | 53.1 (25.0) | 39.1 (18.4) | 66.0 (20.9) | 44.0 (21.6) | <0.001 |
Minimum SpO2 (%, mean [SD]) †§# | 72.9 (11.3) | 74.5 (11.5) | 66.7 (13.5) | 74.8 (11.7) | <0.001 |
Sleep efficiency (%, mean [SD]) | 82.0 (12.6) | 85.6 (9.0) | 82.2 (12.0) | 82.1 (12.6) | 0.019 |
Patient-reported outcomes | |||||
Self-reported snoring (SOS d questionnaire, mean [SD]) ¶# | 43.9 (13.2) | 43.4 (13.7) | 45 (14.3) | 50.2 (15.0) | 0.001 |
Hypersomnia (ESS e questionnaire, mean [SD]) | 9.9 (4.4) | 10.6 (4.3) | 10.8 (4.8) | 9.9 (5.1) | 0.394 |
Objective Sleep Parameters | Subjective Sleep Parameters | ||||
---|---|---|---|---|---|
Fixed Effect a | AHI d | Minimum SpO2 | Sleep Efficiency | Self-Reported Snoring (SOS e Questionnaire) | Hypersomnia (ESS f Questionnaire) |
Treatment (ref: no treatment) | |||||
UPPP surgery b | −14.59 (−22.36, −6.82) *** | 3.87 (0.12, 7.62) * | 5.98 (1.28,10.69) * | 25.97 (19.18, 32.75) *** | −3.53 (−5.32, −1.74) *** |
Palatal plus nasal surgery | −5.98 (−9.56, −2.40) ** | 3.38 (1.66, 5.09) *** | 1.61 (−0.58, 3.81) | 22.23 (19.05, 25.40) *** | −1.62 (−2.44, −0.79) *** |
CPAP c use at home | −4.74 (−8.69, −0.79) * | 3.96 (2.08, 5.85) *** | 0.15 (−2.28, 2.58) | 13.39 (9.87, 16.92) *** | −1.29 (−2.20, −0.37) ** |
Follow-up time (per month) | 0.02 (−0.11, 0.16) | 0.06 (−0.001, 0.13) | −0.004(−0.08,0.00) | 0.23 (0.11, 0.34) *** | −0.005 (−0.04, 0.03) |
Interaction with post-treatment time g (per month) | |||||
UPPP surgery | −0.03 (−0.76, 0.70) | 0.01 (−0.34, 0.36) | −0.25 (−0.70, 0.19) | −0.79 (−1.42, −0.15) * | 0.04 (−0.13, 0.21) |
Palatal plus nasal surgery | −0.17 (−0.44, 0.11) | −0.10 (−0.23, 0.03) | −0.04 (−0.20, 0.13) | −0.58 (−0.82, −0.34) *** | 0.03 (−0.04, 0.09) |
CPAP use at home | 0.12 (−0.10, 0.32) | −0.003 (−0.10, 0.10) | −0.10 (−0.23, 0.03) | −0.41 (−0.59, −0.22) *** | 0.03 (−0.02, 0.08) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, Y.-C.; Wang, J.-D.; Chang, S.-M.; Chiu, C.-J.; Chien, Y.-W.; Lin, C.-Y. Effectiveness of Treating Obstructive Sleep Apnea by Surgeries and Continuous Positive Airway Pressure: Evaluation Using Objective Sleep Parameters and Patient-Reported Outcomes. J. Clin. Med. 2024, 13, 5748. https://doi.org/10.3390/jcm13195748
Hsu Y-C, Wang J-D, Chang S-M, Chiu C-J, Chien Y-W, Lin C-Y. Effectiveness of Treating Obstructive Sleep Apnea by Surgeries and Continuous Positive Airway Pressure: Evaluation Using Objective Sleep Parameters and Patient-Reported Outcomes. Journal of Clinical Medicine. 2024; 13(19):5748. https://doi.org/10.3390/jcm13195748
Chicago/Turabian StyleHsu, Yu-Ching, Jung-Der Wang, Sheng-Mao Chang, Ching-Ju Chiu, Yu-Wen Chien, and Cheng-Yu Lin. 2024. "Effectiveness of Treating Obstructive Sleep Apnea by Surgeries and Continuous Positive Airway Pressure: Evaluation Using Objective Sleep Parameters and Patient-Reported Outcomes" Journal of Clinical Medicine 13, no. 19: 5748. https://doi.org/10.3390/jcm13195748
APA StyleHsu, Y. -C., Wang, J. -D., Chang, S. -M., Chiu, C. -J., Chien, Y. -W., & Lin, C. -Y. (2024). Effectiveness of Treating Obstructive Sleep Apnea by Surgeries and Continuous Positive Airway Pressure: Evaluation Using Objective Sleep Parameters and Patient-Reported Outcomes. Journal of Clinical Medicine, 13(19), 5748. https://doi.org/10.3390/jcm13195748