Comorbid Hypothyroidism and Low-Alanine Aminotransferase-Associated Sarcopenia Associated with Shortened Survival: A Retrospective Study of 16,827 Patients over a 21-Year Period
Abstract
:Simple Summary
Abstract
1. Background
1.1. Sarcopenia and Frailty Negatively Impact the Longevity of the Mid-Life and Elderly Population
1.2. Hypothyroidism Is Potentially Associated with Sarcopenia and Frailty
1.3. Low ALT Values Serve as a Biomarker for Sarcopenia and Frailty
1.4. Aim of the Current Study
2. Patients and Methods
2.1. Study Population
2.2. Biomarker Measurements
2.3. Statistical Analysis
3. Results
3.1. Univariate Analysis
3.2. Multivariate Analysis
4. Discussion
5. Conclusions
Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M157. Available online: https://pubmed.ncbi.nlm.nih.gov/11253156/ (accessed on 29 January 2024). [CrossRef] [PubMed]
- Ajibawo, T.; Okunowo, O. Higher Hospital Frailty Risk Score Is an Independent Predictor of In-Hospital Mortality in Hospitalized Older Adults with Obstructive Sleep Apnea. Geriatrics 2022, 7, 127. Available online: https://pubmed.ncbi.nlm.nih.gov/36412616/ (accessed on 15 December 2022). [CrossRef] [PubMed]
- Kamijo, Y.; Kanda, E.; Ishibashi, Y.; Yoshida, M. Sarcopenia and Frailty in PD: Impact on Mortality, Malnutrition, and Inflammation. Perit. Dial. Int. 2018, 38, 447–454. [Google Scholar] [CrossRef]
- Tanaka, T.; Takahashi, K.; Hirano, H.; Kikutani, T.; Watanabe, Y.; Ohara, Y.; Furuya, H.; Tetsuo, T.; Akishita, M.; Iijima, K. Oral Frailty as a Risk Factor for Physical Frailty and Mortality in Community-Dwelling Elderly. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 1661–1667. Available online: https://pubmed.ncbi.nlm.nih.gov/29161342/ (accessed on 15 December 2022). [CrossRef]
- Hanlon, P.; Nicholl, B.I.; Jani, B.D.; Lee, D.; McQueenie, R.; Mair, F.S. Frailty and pre-frailty in middle-aged and older adults and its association with multimorbidity and mortality: A prospective analysis of 493,737 UK Biobank participants. Lancet Public Health 2018, 3, e323–e332. Available online: https://pubmed.ncbi.nlm.nih.gov/29908859/ (accessed on 15 December 2022). [CrossRef]
- Dent, E.; Morley, J.E.; Cruz-Jentoft, A.J.; Woodhouse, L.; Rodríguez-Mañas, L.; Fried, L.P.; Woo, J.; Aprahamian, I.; Sanford, A.; Lundy, J.; et al. Physical Frailty: ICFSR International Clinical Practice Guidelines for Identification and Management. J. Nutr. Health Aging 2019, 23, 771. [Google Scholar] [CrossRef]
- Virgini, V.S.; Rodondi, N.; Cawthon, P.M.; Harrison, S.L.; Hoffman, A.R.; Orwoll, E.S.; Ensrud, K.E.; Bauer, D.C.; Osteoporotic Fractures in Men (MrOS) Research Group. Subclinical Thyroid Dysfunction and Frailty among Older Men. J. Clin. Endocrinol. Metab. 2015, 100, 4524–4532. Available online: https://pubmed.ncbi.nlm.nih.gov/26495751/ (accessed on 10 December 2022). [CrossRef] [PubMed]
- Abdel-Rahman, E.M.; Mansour, W.; Holley, J.L. Hypothesis: Thyroid Hormone Abnormalities and Frailty in Elderly Patients with Chronic Kidney Disease: A Hypothesis. Semin. Dial. 2010, 23, 317–323. Available online: https://onlinelibrary-wiley-com.sheba.idm.oclc.org/doi/full/10.1111/j.1525-139X.2010.00736.x (accessed on 10 December 2022). [CrossRef]
- Segev, A.; Itelman, E.; Avaky, C.; Negru, L.; Shenhav-Saltzman, G.; Grupper, A.; Wasserstrum, Y.; Segal, G. Low ALT Levels Associated with Poor Outcomes in 8700 Hospitalized Heart Failure Patients. J. Clin. Med. 2020, 9, 3185. [Google Scholar] [CrossRef]
- Vespasiani-Gentilucci, U.; de Vincentis, A.; Ferrucci, L.; Bandinelli, S.; Antonelli Incalzi, R.; Picardi, A. Low Alanine Aminotransferase Levels in the Elderly Population: Frailty, Disability, Sarcopenia, and Reduced Survival. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 925–930. [Google Scholar] [CrossRef]
- Weber, Y.; Epstein, D.; Miller, A.; Segal, G.; Berger, G. Association of Low Alanine Aminotransferase Values with Extubation Failure in Adult Critically Ill Patients: A Retrospective Cohort Study. J. Clin. Med. 2021, 10, 3282. [Google Scholar] [CrossRef] [PubMed]
- Portal, D.; Melamed, G.; Segal, G.; Itelman, E. Sarcopenia as Manifested by L3SMI Is Associated with Increased Long-Term Mortality amongst Internal Medicine Patients—A Prospective Cohort Study. J. Clin. Med. 2022, 11, 3500. [Google Scholar] [CrossRef] [PubMed]
- Irina, G.; Refaela, C.; Adi, B.; Avia, D.; Liron, H.; Chen, A.; Gad, S. Low Blood ALT Activity and High FRAIL Questionnaire Scores Correlate with Increased Mortality and with Each Other. A Prospective Study in the Internal Medicine Department. J. Clin. Med. 2018, 7, 386. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Okumura, Y.; Nagashima, K.; Fukamachi, D.; Yokoyama, K.; Matsumoto, N.; Tachibana, E.; Kuronuma, K.; Oiwa, K.; Matsumoto, M.; et al. Low alanine aminotransferase levels are independently associated with mortality risk in patients with atrial fibrillation. Sci. Rep. 2022, 12, 12183. [Google Scholar] [CrossRef]
- Mendoza, A.; Hollenberg, A.N. New Insights into Thyroid Hormone Action. Pharmacol. Ther. 2017, 173, 135. [Google Scholar] [CrossRef] [PubMed]
- Peeters, R.P. Thyroid Function and Longevity: New Insights into an Old Dilemma. Available online: https://academic.oup.com/jcem/article/94/12/4658/2596319 (accessed on 3 February 2024).
- Rodondi, N.; Den Elzen, W.P.; Bauer, D.C.; Cappola, A.R.; Razvi, S.; Walsh, J.P.; Åsvold, B.O.; Iervasi, G.; Imaizumi, M.; Collet, T.H.; et al. Subclinical hypothyroidism and the risk of coronary heart disease and mortality. JAMA 2010, 304, 1365–1374. [Google Scholar] [CrossRef]
- Inoue, K.; Ritz, B.; Brent, G.A.; Ebrahimi, R.; Rhee, C.M.; Leung, A.M. Association of Subclinical Hypothyroidism and Cardiovascular Disease with Mortality. JAMA Netw. Open. 2020, 3, e1920745. [Google Scholar] [CrossRef]
- Kalra, S.; Unnikrishnan, A.; Sahay, R. The global burden of thyroid disease. Thyroid. Res. Pract. 2013, 10, 89. Available online: https://journals.lww.com/trap/fulltext/2013/10030/the_global_burden_of_thyroid_disease.1.aspx (accessed on 29 January 2024). [CrossRef]
- Ettleson, M.D.; Papaleontiou, M. Evaluating health outcomes in the treatment of hypothyroidism. Front. Endocrinol. 2022, 13, 1026262. Available online: https://pubmed.ncbi.nlm.nih.gov/36329885/ (accessed on 29 January 2024). [CrossRef]
- Lee, Y.J.; Kim, M.H.; Lim, D.J.; Lee, J.M.; Chang, S.A.; Lee, J. Exploring the Association between Thyroid Function and Frailty: Insights from Representative Korean Data. Endocrinol. Metab. 2023, 38, 729–738. Available online: https://pubmed.ncbi.nlm.nih.gov/37915301/ (accessed on 29 January 2024). [CrossRef]
- Uliel, N.; Segal, G.; Perri, A.; Turpashvili, N.; Kassif Lerner, R.; Itelman, E. Low ALT, a marker of sarcopenia and frailty, is associated with shortened survival amongst myelodysplastic syndrome patients: A retrospective study. Medicine 2023, 102, e33659. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.M.; Moon, J.S.; Yoon, J.S.; Won, K.C.; Lee, H.W. Low alanine aminotransferase levels predict low muscle strength in older patients with diabetes: A nationwide cross-sectional study in Korea. Geriatr. Gerontol. Int. 2020, 20, 271–276. [Google Scholar] [CrossRef] [PubMed]
Total Cohort n = 16,827 | ALT ≥ 12, TSH < 6 n = 14,045 | ALT < 12, TSH < 6 n = 2056 | ALT ≥ 12, TSH ≥ 6 n = 598 | ALT < 12, TSH ≥ 6 n = 128 | p Value | |
---|---|---|---|---|---|---|
Demographics | ||||||
Age (years) (IQR) | 56.9 (46.5–64) | 57 (47–63.9) | 55 (41.8–63.8) | 59 (50.3–64.8) | 56.2 (45.5–64.3) | <0.001 |
Male, n (%) | 9507 (56.5) | 8394 (59.8) | 821 (39) | 249 (41.6) | 43 (33.6) | <0.001 |
Comorbidities | ||||||
Hypertension, n (%) | 5479 (32.6) | 4687 (33.4) | 586 (28.5) | 172 (28.8) | 34 (26.6) | <0.001 |
IHD, n (%) | 3325 (19.8) | 2933 (20.9) | 272 (13.2) | 108 (18.1) | 12 (9.4) | <0.001 |
Dyslipidemia, n (%) | 2417 (14.4) | 2125 (15.1) | 208 (10.1) | 73 (12.2) | 11 (8.6) | <0.001 |
COPD, n (%) | 831 (4.9) | 675 (4.8) | 114 (5.5) | 30 (5) | 12 (9.4) | 0.057 |
CKD, n (%) | 1051 (6.4) | 775 (5.6) | 194 (9.7) | 55 (9.4) | 27 (21.4) | <0.001 |
Diabetes, n (%) | 3589 (21.3) | 3004 (21.4) | 433 (21.1) | 124 (20.7) | 28 (21.9) | 0.96 |
Malignancy, n (%) | 2966 (17.6) | 2386 (17) | 405 (19.7) | 139 (23.2) | 36 (28.1) | <0.001 |
Stroke, n (%) | 2639 (15.7) | 2233 (15.9) | 313 (15.2) | 80 (13.4) | 13 (10.2) | 0.1 |
Dementia, n (%) | 255 (1.5) | 202 (1.4) | 44 (2.1) | 6 (1) | 3 (2.3) | 0.056 |
Laboratory parameters | ||||||
Albumin (g/dL); (Mean ± SD) | 3.8 ± 0.5 | 3.8 ± 0.5 | 3.6 ± 0.5 | 3.6 ± 0.6 | 3.4 ± 0.6 | <0.001 |
Creatinine (mg/dL); (Mean ± SD) | 0.9 ± 0.6 | 0.94 ± 0.5 | 1 ± 1 | 1 ± 0.7 | 1.3 ± 1.1 | <0.001 |
Patients Grouping | Months | p Value |
---|---|---|
Reference group (ALT > 12, TSH < 6) | 54.19 ± 0.14 | <0.001 |
Group 1 (ALT > 12, TSH > 6) | 47.35 ± 0.94 | |
Group 2 (ALT < 12, TSH < 6) | 51.48 ± 0.42 | |
Group 3 (ALT < 12, TSH > 6) | 39.32 ± 2.26 | |
Whole cohort | 53.5 ± 0.13 |
Patient Characteristics | Hazard Ratio | p Value |
---|---|---|
Group 1 (ALT > 12 IU/L, TSH > 6 MIU/L) | 1.71 [1.44–2.04] | <0.001 |
Group 2 (ALT > 12 IU/L, TSH > 6 MIU/L) | 1.39 [1.24–1.56] | <0.001 |
Group 3 (ALT > 12 IU/L, TSH < 6 MIU/L) | 3.6 [2.75–4.71] | <0.001 |
Age (years) | 1.04 [1.03–1.05] | <0.001 |
Gender (male) | 0.85 [0.78–0.93] | <0.001 |
Hypertension | 0.7 [0.64–0.77] | <0.001 |
Ischemic heart disease | 0.82 [0.73–0.92] | <0.001 |
Dyslipidemia | 0.64 [0.56–0.73] | <0.001 |
Chronic obstructive pulmonary disease | 1.34 [1.16–1.54] | <0.001 |
Chronic kidney disease | 2.53 [2.25–2.83] | <0.001 |
Diabetes mellitus | 1.37 [1.25–1.51] | <0.001 |
Malignancy | 4.12 [3.79–4.48] | <0.001 |
Stroke | 0.79 [0.7–0.89] | <0.001 |
Dementia | 1.89 [1.53–2.35] | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segal, O.; Khoury, R.; Vaisman, A.; Segal, G. Comorbid Hypothyroidism and Low-Alanine Aminotransferase-Associated Sarcopenia Associated with Shortened Survival: A Retrospective Study of 16,827 Patients over a 21-Year Period. J. Clin. Med. 2024, 13, 5838. https://doi.org/10.3390/jcm13195838
Segal O, Khoury R, Vaisman A, Segal G. Comorbid Hypothyroidism and Low-Alanine Aminotransferase-Associated Sarcopenia Associated with Shortened Survival: A Retrospective Study of 16,827 Patients over a 21-Year Period. Journal of Clinical Medicine. 2024; 13(19):5838. https://doi.org/10.3390/jcm13195838
Chicago/Turabian StyleSegal, Omer, Rabia Khoury, Adva Vaisman, and Gad Segal. 2024. "Comorbid Hypothyroidism and Low-Alanine Aminotransferase-Associated Sarcopenia Associated with Shortened Survival: A Retrospective Study of 16,827 Patients over a 21-Year Period" Journal of Clinical Medicine 13, no. 19: 5838. https://doi.org/10.3390/jcm13195838
APA StyleSegal, O., Khoury, R., Vaisman, A., & Segal, G. (2024). Comorbid Hypothyroidism and Low-Alanine Aminotransferase-Associated Sarcopenia Associated with Shortened Survival: A Retrospective Study of 16,827 Patients over a 21-Year Period. Journal of Clinical Medicine, 13(19), 5838. https://doi.org/10.3390/jcm13195838