Impact of Comorbid Polycystic Ovary Syndrome on Clinical and Laboratory Parameters in Female Adolescents with Metabolic Dysfunction-Associated Steatotic Liver Disease: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Transient Elastography
2.3. PCOS Screening
2.4. Clinical Characteristics
2.5. Laboratory Parameters
2.6. Screening for Other Causes of Hyperandrogenism and Menstrual Irregularities
2.7. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Laboratory Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Purwar, A.; Nagpure, S. Insulin resistance in polycystic ovarian syndrome. Cureus 2022, 14, e30351. [Google Scholar] [CrossRef] [PubMed]
- Witchel, S.F.; Oberfield, S.; Rosenfield, R.L.; Codner, E.; Bonny, A.; Ibáñez, L.; Pena, A.; Horikawa, R.; Gomez-Lobo, V.; Joel, D.; et al. The diagnosis of polycystic ovary syndrome during adolescence. Horm. Res. Paediatr. 2015, 83, 376–389. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S. Nonalcoholic fatty liver disease in children and adolescents. Clin. Exp. Pediatr. 2024, 67, 90–91. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, W.L.; Noon, S.L.; Schwimmer, J.B. Recent advances in the epidemiology of nonalcoholic fatty liver disease in children. Pediatr. Obes. 2021, 16, e12849. [Google Scholar] [CrossRef]
- Klepper, C.; Crimmins, N.A.; Orkin, S.; Sun, Q.; Fei, L.; Xanthakos, S.; Mouzaki, M. Nonalcoholic fatty liver disease in young children with obesity. Child Obes. 2023, 19, 179–185. [Google Scholar] [CrossRef]
- Ko, J.S. New perspectives in pediatric nonalcoholic fatty liver disease: Epidemiology, genetics, diagnosis, and natural history. Pediatr. Gastroenterol. Hepatol. Nutr. 2019, 22, 501–510. [Google Scholar] [CrossRef]
- Di Sessa, A.; Cirillo, G.; Guarino, S.; Marzuillo, P.; Miraglia Del Giudice, E. Pediatric non-alcoholic fatty liver disease: Current perspectives on diagnosis and management. Pediatr. Health Med. Ther. 2019, 10, 89–97. [Google Scholar] [CrossRef]
- Salva-Pastor, N.; Chávez-Tapia, N.C.; Uribe, M.; Nuño-Lámbarri, N. Understanding the association of polycystic ovary syndrome and non-alcoholic fatty liver disease. J. Steroid Biochem. Mol. Biol. 2019, 194, 105445. [Google Scholar] [CrossRef] [PubMed]
- Manzano-Nunez, R.; Santana-Dominguez, M.; Rivera-Esteban, J.; Sabiote, C.; Sena, E.; Bañares, J.; Tacke, F.; Pericàs, J.M. Non-alcoholic fatty liver disease in patients with polycystic ovary syndrome: A systematic review, meta-analysis, and meta-regression. J. Clin. Med. 2023, 12, 856. [Google Scholar] [CrossRef]
- Yao, K.; Zheng, H.; Peng, H. Association between polycystic ovary syndrome and risk of non-alcoholic fatty liver disease: A meta-analysis. Endokrynol. Pol. 2023, 74, 520–527. [Google Scholar] [CrossRef]
- Shengir, M.; Chen, T.; Guadagno, E.; Ramanakumar, A.V.; Ghali, P.; Deschenes, M.; Wong, P.; Krishnamurthy, S.; Sebastiani, G. Non-alcoholic fatty liver disease in premenopausal women with polycystic ovary syndrome: A systematic review and meta-analysis. JGH Open 2021, 5, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yao, X.Y.; Shi, R.X.; Liu, S.F.; Wang, X.Y. A potential link between polycystic ovary syndrome and non-alcoholic fatty liver disease: An update meta-analysis. Reprod. Health 2018, 15, 77. [Google Scholar] [CrossRef]
- Rocha, A.L.L.; Faria, L.C.; Guimarães, T.C.M.; Moreira, G.V.; Cândido, A.L.; Couto, C.A.; Reis, F.M. Non-alcoholic fatty liver disease in women with polycystic ovary syndrome: Systematic review and meta-analysis. J. Endocrinol. Investig. 2017, 40, 1279–1288. [Google Scholar] [CrossRef]
- Michaliszyn, S.F.; Lee, S.; Tfayli, H.; Arslanian, S. Polycystic ovary syndrome and nonalcoholic fatty liver in obese adolescents: Association with metabolic risk profile. Fertil. Steril. 2013, 100, 1745–1751. [Google Scholar] [CrossRef] [PubMed]
- Ayonrinde, O.T.; Adams, L.A.; Doherty, D.A.; Mori, T.A.; Beilin, L.J.; Oddy, W.H.; Hickey, M.; Sloboda, D.M.; Olynyk, J.K.; Hart, R. Adverse metabolic phenotype of adolescent girls with non-alcoholic fatty liver disease plus polycystic ovary syndrome compared with other girls and boys. J. Gastroenterol. Hepatol. 2016, 31, 980–987. [Google Scholar] [CrossRef] [PubMed]
- Carreau, A.M.; Pyle, L.; Garcia-Reyes, Y.; Rahat, H.; Vigers, T.; Jensen, T.; Scherzinger, A.; Nadeau, K.J.; Cree-Green, M. Clinical prediction score of nonalcoholic fatty liver disease in adolescent girls with polycystic ovary syndrome (PCOS-HS index). Clin. Endocrinol. 2019, 91, 544–552. [Google Scholar] [CrossRef]
- de Zegher, F.; Diaz, M.; Ibañez, L. From adolescent PCOS to adult MAFLD: Opposing effects of randomised interventions. BMJ Open Gastroenterol. 2021, 8, e000574. [Google Scholar] [CrossRef]
- Urbano, F.; Chiarito, M.; Lattanzio, C.; Messa, A.; Ferrante, M.; Francavilla, M.; Mehmeti, I.; Lassandro, G.; Giordano, P.; Faienza, M.F. Sex hormone-binding globulin (SHBG) reduction: The alarm bell for the risk of non-alcoholic fatty liver disease in adolescents with polycystic ovary syndrome. Children 2022, 9, 1748. [Google Scholar] [CrossRef] [PubMed]
- Giannouli, A.; Efthymiou, V.; Konidari, M.; Mani, I.; Aravantinos, L.; Dourakis, S.P.; Antoniou, A.; Deligeoroglou, E.; Bacopoulou, F. The burden of non-alcoholic fatty liver disease in adolescents with polycystic ovary syndrome: A case-control study. J. Clin. Med. 2023, 12, 557. [Google Scholar] [CrossRef]
- Kara, O.; Arsoy, H.A.; Keskin, M. Relationship between nonalcoholic fatty liver disease and hyperandrogenemia in adolescents with polycystic ovary syndrome. Clin. Exp. Pediatr. 2023, 66, 395–402. [Google Scholar] [CrossRef]
- Ibáñez, L.; Oberfield, S.E.; Witchel, S.; Auchus, R.J.; Chang, R.J.; Codner, E.; Dabadghao, P.; Darendeliler, F.; Elbarbary, N.S.; Gambineri, A.; et al. An international consortium update: Pathophysiology, diagnosis, and treatment of polycystic ovarian syndrome in adolescence. Horm. Res. Paediatr. 2017, 88, 371–395. [Google Scholar] [CrossRef] [PubMed]
- Teede, H.J.; Tay, C.T.; Laven, J.J.E.; Dokras, A.; Moran, L.J.; Piltonen, T.T.; Costello, M.F.; Boivin, J.; Redman, L.M.; Boyle, J.A.; et al. Recommendations From the 2023 International Evidence-based Guideline for the Assessment and Management of Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2023, 108, 2447–2469. [Google Scholar] [CrossRef] [PubMed]
- Patel-Sanchez, N.; Perito, E.; Tsai, P.; Raymond-Flesch, M.; Lodish, M.; Sarkar, M. Prevalence of nonalcoholic fatty liver disease increased with type 2 diabetes mellitus in overweight/obese youth with polycystic ovary syndrome. J. Pediatr. Endocrinol. Metab. 2023, 36, 441–446. [Google Scholar] [CrossRef]
- Desai, N.K.; Harney, S.; Raza, R.; Al-Ibraheemi, A.; Shillingford, N.; Mitchell, P.D.; Jonas, M.M. Comparison of controlled attenuation parameter and liver biopsy to assess hepatic steatosis in pediatric patients. J. Pediatr. 2016, 173, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Rios, R.S.; Boursier, J.; Anty, R.; Chan, W.K.; George, J.; Yilmaz, Y.; Wong, V.W.; Fan, J.; Dufour, J.F.; et al. Hepatocyte apoptosis fragment product cytokeratin-18 M30 level and non-alcoholic steatohepatitis risk diagnosis: An international registry study. Chin. Med. J. 2023, 136, 341–350. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Eren, F.; Yonal, O.; Kurt, R.; Aktas, B.; Celikel, C.A.; Ozdogan, O.; Imeryuz, N.; Kalayci, C.; Avsar, E. Increased serum FGF21 levels in patients with nonalcoholic fatty liver disease. Eur. J. Clin. Investig. 2010, 40, 887–892. [Google Scholar] [CrossRef]
- Tucker, B.; Li, H.; Long, X.; Rye, K.A.; Ong, K.L. Fibroblast growth factor 21 in non-alcoholic fatty liver disease. Metabolism 2019, 101, 153994. [Google Scholar] [CrossRef]
- Ross, R.; Neeland, I.J.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; Cuevas, A.; Hu, F.B.; et al. Waist circumference as a vital sign in clinical practice: A consensus statement from the IAS and ICCR working group on visceral obesity. Nat. Rev. Endocrinol. 2020, 16, 177–189. [Google Scholar] [CrossRef]
- Aarestrup, J.; Pedersen, D.C.; Thomas, P.E.; Glintborg, D.; Holm, J.C.; Bjerregaard, L.G.; Baker, J.L. Birthweight, childhood body mass index, height and growth, and risk of polycystic ovary syndrome. Obes. Facts 2021, 14, 283–290. [Google Scholar] [CrossRef]
- Radu, A.M.; Carsote, M.; Dumitrascu, M.C.; Sandru, F. Acanthosis nigricans: Pointer of endocrine entities. Diagnostics 2022, 12, 2519. [Google Scholar] [CrossRef]
- Fu, J.; Zhao, Y.; Wang, T.; Zhang, Q.; Xiao, X. Acanthosis nigricans in a Chinese girl with FGFR3 K650 T mutation: A case report and literature review. BMC Med. Genet. 2019, 20, 8. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, M.; Morimoto, N.; Shimizu, A.; Toyoshima, T.; Yokoyama, Y.; Ishikawa, O. Familial acanthosis nigricans with the FGFR3 mutation: Differences of pigmentation between male and female patients. J. Dermatol. 2018, 45, 1357–1361. [Google Scholar] [CrossRef] [PubMed]
- Devarbhavi, P.; Telang, L.; Vastrad, B.; Tengli, A.; Vastrad, C.; Kotturshetti, I. Identification of key pathways and genes in polycystic ovary syndrome via integrated bioinformatics analysis and prediction of small therapeutic molecules. Reprod. Biol. Endocrinol. 2021, 19, 31. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Yuan, Y.; Che, Z.; Tan, X.; Wu, B.; Wang, C.; Xu, C.; Xiao, J. The hepatoprotective and hepatotoxic roles of sex and sex-related hormones. Front. Immunol. 2022, 13, 939631. [Google Scholar] [CrossRef]
- Kolesnikova, L.I.; Kolesnikov, S.I.; Darenskaya, M.A.; Grebenkina, L.A.; Nikitina, O.A.; Lazareva, L.M.; Suturina, L.V.; Danusevich, I.N.; Druzhinina, E.B.; Semendyaev, A.A. Activity of LPO processes in women with polycystic ovarian syndrome and infertility. Bull. Exp. Biol. Med. 2017, 162, 320–322. [Google Scholar] [CrossRef]
- Soto, A.; Spongberg, C.; Martinino, A.; Giovinazzo, F. Exploring the multifaceted landscape of MASLD: A comprehensive synthesis of recent studies, from pathophysiology to organoids and beyond. Biomedicines 2024, 12, 397. [Google Scholar] [CrossRef]
- Krishnan, A.; Muthusami, S. Hormonal alterations in PCOS and its influence on bone metabolism. J. Endocrinol. 2017, 232, R99–R113. [Google Scholar] [CrossRef]
- Du, Y.; Li, F.; Li, S.; Ding, L.; Liu, M. Causal relationship between polycystic ovary syndrome and chronic kidney disease: A Mendelian randomization study. Front. Endocrinol. 2023, 14, 1120119. [Google Scholar] [CrossRef]
Variable | Absence of Comorbid PCOS (n = 26) | Presence of Comorbid PCOS (n = 19) | p | ||
---|---|---|---|---|---|
Mean ± SD | Median (Min–Max) | Mean ± SD | Median (Min–Max) | ||
Age, years | 15.13 ± 1.5 | 14.85 (12.4–17.7) | 15.85 ± 1.37 | 15.9 (13.7–18) | 0.107 |
Weight, kg | 81.45 ± 18.6 | 82.0 (45–118) | 108.56 ± 22.63 | 108.0 (84–147) | 0.039 * |
Weight-SDS, kg | 2.84 ± 2.12 | 2.70 (0–7) | 3.38 ± 1.13 | 3.40 (2–5) | 0.069 * |
Height, cm | 161.76 ± 6.69 | 162.0 (149–175) | 159.50 ± 5.89 | 160.0 (149–170) | 0.004 |
Height-SDS | 0.25 ± 1.25 | 0.20 (−2 to −3) | 0.10 ± 0.97 | 0.10 (−1 to −2) | 0.016 |
BMI, kg/m2 | 31.80 ± 6.77 | 31.0 (22–45) | 34.02 ± 4.18 | 34.0 (26–45) | 0.083 |
BMI-SDS, kg/m2 | 2.62 ± 1.75 | 2.50 (0–6) | 2.80 ± 1.05 | 2.80 (1–4) | 0.290 * |
SBP, mmHg | 122.46 ± 12.75 | 122.0 (100–150) | 110.00 ± 15.00 | 110.0 (90–140) | 0.786 * |
SBP-SDS, mmHg | 1.23 ± 1.13 | 1.20 (0–4) | 0.10 ± 1.31 | 0.10 (−2 to −3) | 0.747 |
DBP, mmHg | 79.99 ± 11.87 | 80.0 (60–100) | 70.00 ± 10.00 | 70.0 (50–90) | 0.727 * |
DBP-SDS, mmHg | 1.32 ± 0.96 | 1.30 (0–3) | 0.50 ± 0.70 | 0.50 (0–2) | 0.497 * |
WC, cm | 100.63 ± 19.00 | 101.0 (75–130) | 108.56 ± 22.63 | 108.0 (85–150) | 0.02 |
BMI category, n (%) Normal weight Overweight Obesity | 7 (26.9) 2 (7.7) 17 (65.4) | 3 (15.8) 1 (5.3) 15 (78.9) | 0.609 | ||
Metabolic syndrome, n (%) | 9 (34.6) | 8 (42.1) | 0.609 | ||
Acanthosis nigricans, n (%) | 9 (34.6) | 13 (68.4) | 0.025 |
Variable | Absence of Comorbid PCOS (n = 26) | Presence of Comorbid PCOS (n = 19) | p | ||
---|---|---|---|---|---|
Mean ± SD | Median (Min–Max) | Mean ± SD | Median (Min–Max) | ||
WBC per µL | 9696 ± 2393 | 9700 (5000–15,000) | 7500 ± 2500 | 7500 (5000–10,000) | 0.489 |
Hemoglobin, g/dL | 13.48 ± 1.10 | 13.5 (12–16) | 12.00 ± 1.50 | 12.0 (10–14) | 0.052 |
Platelets, ×103/µL | 364 ± 80 | 365 (150–550) | 350 ± 100 | 350 (250–450) | 0.099 |
MPV, fL | 10.04 ± 1.12 | 10.0 (8–12) | 9.50 ± 1.00 | 9.5 (8–11) | 0.125 |
FBG, mg/dL | 91.98 ± 9.39 | 92.0 (75–110) | 85.00 ± 10.00 | 85.0 (70–100) | 0.585 |
Insulin, μIU/mL | 48.04 ± 29.67 | 48.0 (10–90) | 30.00 ± 15.00 | 30.0 (15–45) | 0.730 * |
HOMA-IR | 11.01 ± 7.17 | 11.0 (2–25) | 5.00 ± 3.00 | 5.0 (2–10) | 0.629 * |
AST, U/L | 19.80 ± 6.16 | 20.0 (10–30) | 17.00 ± 5.00 | 17.0 (10–25) | 0.027 * |
ALT, U/L | 23.15 ± 10.27 | 23.0 (10–45) | 21.00 ± 7.00 | 21.0 (15–30) | 0.008 * |
GGT, U/L | 16.98 ± 5.19 | 17.0 (10–25) | 15.00 ± 5.00 | 15.0 (10–20) | 0.034 |
ALP, U/L | 151.96 ± 65.03 | 152.0 (80–300) | 80.00 ± 30.00 | 80.0 (50–110) | 0.100 * |
Uric acid, mg/dL | 5.29 ± 1.32 | 5.3 (3–8) | 4.50 ± 1.00 | 4.5 (3.5–5.5) | 0.640 |
Calcium, mg/dL | 9.68 ± 0.47 | 9.7 (9–10) | 9.30 ± 0.20 | 9.3 (9–9.5) | 0.826 |
Phosphorus, mg/dL | 4.56 ± 0.57 | 4.6 (4–5) | 3.80 ± 0.50 | 3.8 (3.5–4) | 0.016 |
Vitamin D, ng/mL | 11.99 ± 4.37 | 12.0 (5–20) | 6.00 ± 2.00 | 6.0 (4–8) | 0.241 * |
Total cholesterol, mg/dL | 171.33 ± 28.24 | 171.0 (120–220) | 160.00 ± 20.00 | 160.0 (140–180) | 0.088 |
Triglycerides, mg/dL | 151.03 ± 59.96 | 151.0 (90–210) | 170.00 ± 40.00 | 170.0 (130–210) | 0.946 |
LDL cholesterol, mg/dL | 96.36 ± 25.15 | 96.0 (70–120) | 85.00 ± 15.00 | 85.0 (70–100) | 0.080 |
HDL cholesterol, mg/dL | 47.19 ± 12.94 | 45.5 (28–81) | 49.91 ± 11.75 | 48 (32–80) | 0.475 |
Ferritin, ng/mL | 37.08 ± 24.15 | 32 (3–84) | 44.37 ± 26.47 | 42 (4–111) | 0.342 |
Total testosterone, ng/dL | N/A | N/A | 51.52 ± 19.29 | 52 (20.50–90.30) | N/A |
Free testosterone, pg/mL | N/A | N/A | 2.63 ±1.25 | 2.50 (0.49–5.20) | N/A |
DHEA-S, µg/dL | N/A | N/A | 329.54 ± 111.56 | 369.5 (93–464) | N/A |
17-OHPG, ng/mL | N/A | N/A | 0.58 ± 0.49 | 0.43 (0.07–1.8) | N/A |
Androstenedione, ng/dL | N/A | N/A | 1.54 ± 0.61 | 1.5 (0.46–2.61) | N/A |
TSH, mIU/L | 2.60 ± 1.58 | 2.30 (1–7.2) | 2.98 ± 1.58 | 2.43 (1.4–9.1) | 0.290 * |
fT4, ng/dL | 1.13 ± 0.14 | 1.12 (0.82–1.4) | 1.08 ± 0.18 | 1.04 (0.83–1.66) | 0.089 * |
CK-18, ng/mL | 1.08 ± 1.22 | 0.46 (0.10–5.47) | 0.53 ± 0.45 | 0.39 (0.17–1.57) | 0.363 * |
FGF-21, pg/mL | 15.74 ± 22.68 | 8.8 (0–95.3) | 5.96 ± 4.37 | 4.35 (2.4–14.1) | 0.161 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keskin, M.; Arsoy, H.A.; Kara, O.; Sarandol, E.; Koca, N.; Yilmaz, Y. Impact of Comorbid Polycystic Ovary Syndrome on Clinical and Laboratory Parameters in Female Adolescents with Metabolic Dysfunction-Associated Steatotic Liver Disease: A Cross-Sectional Study. J. Clin. Med. 2024, 13, 5885. https://doi.org/10.3390/jcm13195885
Keskin M, Arsoy HA, Kara O, Sarandol E, Koca N, Yilmaz Y. Impact of Comorbid Polycystic Ovary Syndrome on Clinical and Laboratory Parameters in Female Adolescents with Metabolic Dysfunction-Associated Steatotic Liver Disease: A Cross-Sectional Study. Journal of Clinical Medicine. 2024; 13(19):5885. https://doi.org/10.3390/jcm13195885
Chicago/Turabian StyleKeskin, Murat, Hanife Aysegul Arsoy, Ozlem Kara, Emre Sarandol, Nizameddin Koca, and Yusuf Yilmaz. 2024. "Impact of Comorbid Polycystic Ovary Syndrome on Clinical and Laboratory Parameters in Female Adolescents with Metabolic Dysfunction-Associated Steatotic Liver Disease: A Cross-Sectional Study" Journal of Clinical Medicine 13, no. 19: 5885. https://doi.org/10.3390/jcm13195885
APA StyleKeskin, M., Arsoy, H. A., Kara, O., Sarandol, E., Koca, N., & Yilmaz, Y. (2024). Impact of Comorbid Polycystic Ovary Syndrome on Clinical and Laboratory Parameters in Female Adolescents with Metabolic Dysfunction-Associated Steatotic Liver Disease: A Cross-Sectional Study. Journal of Clinical Medicine, 13(19), 5885. https://doi.org/10.3390/jcm13195885