Alternative Factors in Possible Involvement of Coronary Microvascular Dysfunction in Older Patients with HFpEF
Abstract
:1. Introduction
2. Methods
2.1. Study Subjects
2.2. Data Collection and Follow-Up/Clinical Outcome
2.3. Patient Laboratory Data and Echocardiography Examination
2.4. Patient and Public Involvement
2.5. Statistical Analysis
3. Results
3.1. Clinical and Laboratory Characteristics of Patients with HFpEF with and without LVH
3.2. Differences in Clinical Characteristics of Patients with HFpEF between Low and High dBP
3.3. Significance of a Comprehensive Diastolic Index, Ed/Ea, in Patients with HFpEF
3.4. Prognostic Analysis for All-Cause Mortality
4. Discussion
4.1. Involvement of LVH
4.2. Involvement of dBP
4.3. Comprehensive Diastolic Function
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Vrints, C.; Andreotti, F.; Koskinas, K.C.; Rossello, X.; Adamo, M.; Ainslie, J.; Banning, A.P.; Budaj, A.; Buechel, R.R.; Chiariello, G.A.; et al. 2024 ESC Guidelines for the Management of Chronic Coronary Syndromes. Eur. Heart J. 2024, 45, 3415–3537. [Google Scholar] [CrossRef] [PubMed]
- Del Buono, M.G.; Montone, R.A.; Camilli, M.; Carbone, S.; Narula, J.; Lavie, C.J.; Niccoli, G.; Crea, F. Coronary microvascular dysfunction across the spectrum of cardiovascular diseases: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2021, 78, 1352–1371. [Google Scholar] [CrossRef] [PubMed]
- Vancheri, F.; Longo, G.; Vancheri, S.; Henein, M. Coronary microvascular dysfunction. J. Clin. Med. 2020, 9, 2880. [Google Scholar] [CrossRef]
- Dryer, K.; Gajjar, M.; Narang, N.; Lee, M.; Paul, J.; Shah, A.P.; Nathan, S.; Butler, J.; Davidson, C.J.; Fearon, W.F.; et al. Coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. Am. J. Physiol. Heart Circ. Physiol. 2018, 314, H1033–H1042. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.J.; Lam, C.S.P.; Svedlund, S.; Saraste, A.; Hage, C.; Tan, R.S.; Beussink-Nelson, L.; Faxén, U.L.; Fermer, M.L.; Broberg, M.A.; et al. Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur. Heart J. 2018, 39, 3439–3450. [Google Scholar] [CrossRef]
- Yang, J.H.; Obokata, M.; Reddy, Y.N.V.; Redfield, M.M.; Lerman, A.; Borlaug, B.A. Endothelium-dependent and independent coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. Eur. J. Heart Fail. 2020, 22, 432–441. [Google Scholar] [CrossRef]
- Ahmad, A.; Corban, M.T.; Toya, T.; Verbrugge, F.H.; Sara, J.D.; Lerman, L.O.; Borlaug, B.A.; Lerman, A. Coronary microvascular dysfunction is associated with exertional haemodynamic abnormalities in patients with heart failure with preserved ejection fraction. Eur. J. Heart Fail. 2021, 23, 765–772. [Google Scholar] [CrossRef]
- Hage, C.; Svedlund, S.; Saraste, A.; Faxén, U.L.; Benson, L.; Fermer, M.L.; Gan, L.-M.; Shah, S.J.; Lam, C.S.P.; Lund, L.H.; et al. Association of coronary microvascular dysfunction with heart failure hospitalizations and mortality in heart failure with preserved ejection fraction: A follow-up in the PROMIS-HFpEF study. J. Card. Fail. 2020, 26, 1016–1021. [Google Scholar] [CrossRef]
- Hoshida, S.; Watanabe, T.; Shinoda, Y.; Minamisaka, T.; Fukuoka, H.; Inui, H.; Ueno, K.; Yamada, T.; Uematsu, M.; Yasumura, Y.; et al. Considerable scatter in the relationship between left atrial volume and pressure in heart failure with preserved left ventricular ejection fraction. Sci. Rep. 2020, 10, 90. [Google Scholar] [CrossRef]
- Schindler, T.H.; Schelbert, H.R.; Quercioli, A.; Dilsizian, V. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc. Imaging 2010, 3, 623–640. [Google Scholar] [CrossRef]
- Kotecha, T.; Martinez-Naharro, A.; Boldrini, M.; Knight, D.; Hawkins, P.; Kalra, S.; Patel, D.; Coghlan, G.; Moon, J.; Plein, S.; et al. Automated pixel-wise quantitative myocardial perfusion mapping by CMR to detect obstructive coronary artery disease and coronary microvascular dysfunction: Validation against invasive coronary physiology. JACC Cardiovasc. Imaging 2019, 12, 1958–1969. [Google Scholar] [CrossRef] [PubMed]
- Hoshida, S.; Shinoda, Y.; Ikeoka, K.; Fukuoka, H.; Inui, H.; Watanabe, T. Age- and sex-related differences in diastolic function and cardiac dimensions in a hypertensive population. ESC Heart Fail. 2016, 3, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Hoshida, S. Due diligence of a diastolic index as a prognostic factor in heart failure with preserved ejection fraction. J. Clin. Med. 2023, 12, 6692. [Google Scholar] [CrossRef]
- Hoshida, S. Left-side pressure index for all-cause mortality in older adults with HFpEF: Diagnostic potential for HFpEF and possible view for HFrEF. J. Clin. Med. 2023, 12, 802. [Google Scholar] [CrossRef] [PubMed]
- Suna, S.; Hikoso, S.; Yamada, T.; Uematsu, M.; Yasumura, Y.; Nakagawa, A.; Takeda, T.; Kojima, T.; Kida, H.; Oeun, B.; et al. Study protocol for the PURSUIT-HFpEF study: A prospective, multicenter, observational study of patients with heart failure with preserved ejection fraction. BMJ Open 2020, 10, e038294. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, Y.; Hattori, A.; Manabe, S.; Takahashi, D.; Yamamoto, Y.; Murata, T.; Nakagawa, A.; Mihara, N.; Takeda, T. Case report form reporter: A key component for the integration of electronic medical records and the electronic data capture system. Stud. Health Technol. Inform. 2017, 245, 516–520. [Google Scholar]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2016, 29, 277–314. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef]
- Cecchi, F.; Olivotto, I.; Gistri, R.; Lorenzoni, R.; Chiriatti, G.; Camici, P.G. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N. Engl. J. Med. 2003, 349, 1027–1035. [Google Scholar] [CrossRef]
- Camici, P.G.; Tschöpe, C.; Di Carli, M.F.; Rimoldi, O.; Van Linthout, S. Coronary microvascular dysfunction in hypertrophy and heart failure. Cardiovasc. Res. 2020, 116, 806–816. [Google Scholar] [CrossRef]
- Taqueti, V.R.; Solomon, S.D.; Shah, A.M.; Desai, A.S.; Groarke, J.D.; Osborne, M.T.; Hainer, J.; Bibbo, C.F.; Dorbala, S.; Blankstein, R.; et al. Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur. Heart J. 2018, 39, 840–849. [Google Scholar] [CrossRef] [PubMed]
- Adingupu, D.D.; Göpel, S.O.; Grönros, J.; Behrendt, M.; Sotak, M.; Miliotis, T.; Dahlqvist, U.; Gan, L.-M.; Jönsson-Rylander, A.-C. SGLT2 inhibition with empagliflozin improves coronary microvascular function and cardiac contractility in prediabetic ob/ob−/− mice. Cardiovasc. Diabetol. 2019, 18, 16. [Google Scholar] [CrossRef] [PubMed]
- Juni, R.P.; Kuster, D.W.D.; Goebel, M.; Helmes, M.; Musters, R.J.P.; van der Velden, J.; Koolwijk, P.; Paulus, W.J.; van Hinsbergh, V.W. Cardiac microvascular endothelial enhancement of cardiomyocyte function is impaired by inflammation and restored by empagliflozin. JACC Basic Transl. Sci. 2019, 4, 575–591. [Google Scholar] [CrossRef]
- Mazer, C.D.; Hare, G.M.T.; Connelly, P.W.; Gilbert, R.E.; Shehata, N.; Quan, A.; Teoh, H.; Leiter, L.A.; Zinman, B.; Jüni, P.; et al. Effect of empagliflozin on erythropoietin levels, iron stores, and red blood cell morphology in patients with type 2 diabetes mellitus and coronary artery disease. Circulation 2020, 141, 704–707. [Google Scholar] [CrossRef]
- Kanbay, M.; Tapoi, L.; Ureche, C.; Tanriover, C.; Cevik, E.; Demiray, A.; Afsar, B.; Cherney, D.Z.I.; Covic, A. Effect of sodium-glucose cotransporter 2 inhibitors on hemoglobin and hematocrit levels in type 2 diabetes: A systematic review and meta-analysis. Int. Urol. Nephrol. 2022, 54, 827–841. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Yi, T.; Fan, F.; Qiu, L.; Wang, Z.; Weng, H.; Ma, W.; Zhang, Y.; Huo, Y. Effect of sodium-glucose cotransporter-2 inhibitors on blood pressure in patients with heart failure: A systematic review and meta-analysis. Cardiovasc. Diabetol. 2022, 21, 139. [Google Scholar] [CrossRef]
- Patel, S.M.; Kang, Y.M.; Im, K.; Neuen, B.L.; Anker, S.D.; Bhatt, D.L.; Butler, J.; Cherney, D.Z.; Claggett, B.L.; Fletcher, R.A.; et al. Sodium-Glucose Cotransporter-2 Inhibitors and Major Adverse Cardiovascular Outcomes: A SMART-C Collaborative Meta-Analysis. Circulation 2024, 149, 1789–1801. [Google Scholar] [CrossRef]
All | All-Cause Mortality+ | ||||||
---|---|---|---|---|---|---|---|
All (n = 607) | LVH− (n = 323) | LVH+ (n = 284) | p-Value (− vs. +) | LVH− (n = 64) | LVH+ (n = 59) | p-Value (− vs. +) | |
Age, years | 81.2 ± 9.4 | 81.5 ± 9.2 | 80.9 ± 9.6 | 0.425 | 84.9 ± 7.6 | 87.0 ± 6.5 | 0.116 |
Male, n (%) | 250 (41) | 160 (50) | 90 (32) | <0.001 | 33 (52) | 18 (31) | 0.014 |
Body mass index, Kg/m2 | 21.8 ± 4.3 | 21.3 ± 4.0 | 22.3 ± 4.5 | 0.003 | 19.8 ± 3.6 | 21.6 ± 4.3 | 0.012 |
Systolic blood pressure, mmHg | 121 ± 20 | 119 ± 20 | 123 ± 19 | 0.004 | 115 ± 21 | 120 ± 20 | 0.191 |
Diastolic blood pressure, mmHg | 66 ± 12 | 66 ± 12 | 66 ± 12 | 0.855 | 65 ± 12 | 61 ± 9 | 0.038 |
Heart rate, bpm | 70 ± 15 | 72 ± 15 | 68 ± 13 | <0.001 | 71 ± 15 | 71 ± 16 | 0.961 |
Albumin, g/dL | 3.4 ± 0.4 | 3.4 ± 0.4 | 3.4 ± 0.5 | 0.129 | 3.2 ± 0.5 | 3.2 ± 0.4 | 0.405 |
CRP, mg/dL | 0.78 ± 1.45 | 0.70 ± 1.27 | 0.87 ± 1.63 | 0.136 | 0.71 ± 1.12 | 1.17 ± 1.59 | 0.065 |
eGFR, mL/min/1.73m2 | 44.2 ± 19.1 | 47.4 ± 17.3 | 40.6 ± 19.7 | <0.001 | 44.6 ± 20.5 | 38.5 ± 23.1 | 0.130 |
log (NT-proBNP) | 3.02 ± 0.51 | 2.95 ± 0.46 | 3.10 ± 0.54 | <0.001 | 3.21 ± 0.42 | 3.29 ± 0.50 | 0.333 |
Atrial fibrillation, n (%) | 289 (48) | 172 (53) | 117 (49) | 0.001 | 35 (55) | 21 (36) | 0.026 |
Diabetes mellitus, n (%) | 184 (31) | 94 (30) | 90 (32) | 0.273 | 18 (29) | 22 (37) | 0.186 |
Dyslipidemia, n (%) | 222 (37) | 102 (33) | 120 (42) | 0.004 | 14 (23) | 19 (32) | 0.138 |
Hypertension, n (%) | 512 (85) | 257 (80) | 255 (90) | <0.001 | 48 (75) | 52 (88) | 0.051 |
Medications | |||||||
Beta blockers, n (%) | 315 (52) | 161 (50) | 154 (54) | 0.159 | 33 (52) | 26 (44) | 0.257 |
Calcium channel blockers, n (%) | 304 (50) | 131 (41) | 173 (61) | <0.001 | 28 (44) | 29 (49) | 0.337 |
Diuretics, n (%) | 498 (82) | 267 (83) | 231 (81) | 0.375 | 54 (84) | 54 (92) | 0.174 |
RAAS inhibitors, n (%) | 435 (72) | 234 (72) | 201 (71) | 0.357 | 46 (72) | 37 (63) | 0.186 |
Statins, n (%) | 168 (28) | 72 (22) | 96 (34) | 0.001 | 12 (19) | 18 (31) | 0.095 |
All | All-Cause Mortality | ||||||
---|---|---|---|---|---|---|---|
All | LVH− | LVH+ | p-Value (− vs. +) | LVH− | LVH+ | p-Value (− vs. +) | |
LAVI, mL/m2 | 55.1 ± 36.7 | 49.9 ± 24.7 | 61.2 ± 35.6 | <0.001 | 54.2 ± 28.5 | 64.9 ± 27.2 | 0.049 |
LVEDVI, mL/m2 | 54.9 ± 20.6 | 50.0 ± 17.9 | 60.2 ± 22.0 | <0.001 | 49.6 ± 16.2 | 57.1 ± 18.6 | 0.024 |
LVESVI, mL/m2 | 21.9 ± 10.7 | 19.9 ± 9.5 | 24.0 ± 11.6 | <0.001 | 20.0 ± 8.3 | 22.3 ± 8.8 | 0.167 |
LVEF, % | 60.8 ± 7.7 | 60.9 ± 7.9 | 60.7 ± 7.4 | 0.836 | 59.5 ± 6.8 | 61.4 ± 6.4 | 0.127 |
LVMI, g/m2 | 106.1 ± 34.2 | 83.2 ± 16.5 | 132.2 ± 30.3 | <0.001 | 82.6 ± 16.5 | 130.0 ± 25.8 | <0.001 |
TRPG, mmHg | 28.4 ± 9.5 | 28.1 ± 9.2 | 28.6 ± 9.8 | 0.510 | 29.6 ± 9.5 | 31.7 ± 11.6 | 0.289 |
E/A | 1.0 ± 0.6 | 1.0 ± 0.7 | 1.0 ± 0.5 | 0.674 | 1.0 ± 0.6 | 0.9 ± 0.4 | 0.671 |
DcT of E wave | 0.21 ± 0.06 | 0.21 ± 0.06 | 0.21 ± 0.06 | 0.288 | 0.21 ± 0.06 | 0.22 ± 0.05 | 0.166 |
E/e’ | 13.5 ± 5.7 | 12.4 ± 5.1 | 14.7 ± 6.2 | <0.001 | 13.3 ± 4.8 | 16.6 ± 5.9 | 0.008 |
Diastolic Blood Pressure | p-Value (− vs. +) | LVH− (n = 323) | p-Value (− vs. +) | LVH+ (n = 284) | p-Value (− vs. +) | ||||
---|---|---|---|---|---|---|---|---|---|
Diastolic Blood Pressure | Diastolic Blood Pressure | ||||||||
Low (n = 295) | High (n = 312) | Low (n = 154) | High (n = 169) | Low (n = 141) | High (n = 143) | ||||
All-cause mortality, n (%) | 69 (23) | 54 (17) | 0.039 | 32 (21) | 32 (19) | 0.391 | 37 (26) | 22 (15) | 0.017 |
Age, years | 82.4 ± 8.1 | 80.1 ± 10.3 | 0.001 | 82.0 ± 8.7 | 81.1 ± 9.5 | 0.372 | 82.9 ± 7.4 | 78.9 ± 11.0 | <0.001 |
Male, n (%) | 136 (46) | 114 (37) | 0.010 | 84 (55) | 76 (45) | 0.053 | 52 (37) | 38 (27) | 0.041 |
Body mass index, Kg/m2 | 21.6 ± 4.1 | 21.9 ± 4.5 | 0.445 | 21.0 ± 3.7 | 21.5 ± 4.2 | 0.250 | 22.3 ± 4.3 | 22.3 ± 4.7 | 0.960 |
Systolic blood pressure, mmHg | 113 ± 18 | 128 ± 18 | <0.001 | 111 ± 17 | 126 ± 19 | <0.001 | 115 ± 18 | 131 ± 17 | <0.001 |
Diastolic blood pressure, mmHg | 56 ± 6 | 75 ± 8 | <0.001 | 56 ± 6 | 75 ± 8 | <0.001 | 56 ± 6 | 75 ± 9 | <0.001 |
Heart rate, bpm | 68 ± 14 | 72 ± 15 | <0.001 | 70 ± 16 | 74 ± 15 | 0.007 | 67 ± 12 | 70 ± 15 | 0.041 |
Albumin, g/dL | 3.4 ± 0.5 | 3.4 ± 0.4 | 0.366 | 3.4 ± 0.5 | 3.4 ± 0.4 | 0.968 | 3.3 ± 0.4 | 3.4 ± 0.5 | 0.232 |
CRP, mg/dL | 0.89 ± 1.66 | 0.67 ± 1.22 | 0.065 | 0.66 ± 1.09 | 0.73 ± 1.41 | 0.616 | 1.14 ± 2.08 | 0.60 ± 0.93 | 0.005 |
eGFR, mL/min/1.73 m2 | 43.2 ± 18.6 | 45.6 ± 19.6 | 0.234 | 48.0 ± 18.0 | 46.8 ± 18.1 | 0.552 | 38.0 ± 17.8 | 43.2 ± 21.1 | 0.027 |
log (NT-proBNP) | 3.05 ± 0.51 | 2.99 ± 0.50 | 0.149 | 2.96 ± 0.44 | 2.94 ± 0.47 | 0.662 | 3.15 ± 0.55 | 3.05 ± 0.53 | 0.159 |
Atrial fibrillation, n (%) | 131 (44) | 158 (51) | 0.072 | 86 (56) | 86 (51) | 0.217 | 45 (32) | 72 (50) | 0.001 |
Diabetes mellitus, n (%) | 93 (32) | 91 (30) | 0.293 | 47 (31) | 47 (29) | 0.339 | 46 (33) | 44 (31) | 0.417 |
Dyslipidemia, n (%) | 103 (35) | 119 (39) | 0.229 | 42 (27) | 60 (36) | 0.071 | 61 (43) | 59 (42) | 0.412 |
Hypertension, n (%) | 245 (83) | 267 (86) | 0.228 | 119 (77) | 138 (83) | 0.201 | 126 (89) | 129 (90) | 0.484 |
Medications | |||||||||
Beta blockers, n (%) | 149 (51) | 166 (53) | 0.279 | 76 (49) | 85 (51) | 0.476 | 73 (52) | 81 (57) | 0.241 |
Calcium channel blockers, n (%) | 152 (52) | 152 (49) | 0.271 | 63 (41) | 68 (40) | 0.496 | 89 (63) | 84 (59) | 0.262 |
Diuretics, n (%) | 243 (82) | 255 (82) | 0.460 | 124 (81) | 143 (85) | 0.204 | 119 (84) | 112 (73) | 0.122 |
RAAS inhibitors, n (%) | 215 (73) | 220 (71) | 0.288 | 115 (75) | 119 (70) | 0.232 | 100 (71) | 101 (71) | 0.530 |
Statins, n (%) | 89 (30) | 79 (25) | 0.106 | 37 (24) | 35 (21) | 0.281 | 52 (37) | 44 (31) | 0.167 |
All-Cause Mortality | p-Value (− vs. +) | Diastolic Blood Pressure | p-Value (Low vs. High) | ||||
---|---|---|---|---|---|---|---|
Ed/Ea | − | + | Low | High | |||
All | 0.127 ± 0.057 | 0.122 ± 0.055 | 0.146 ± 0.061 | <0.001 | 0.135 ± 0.063 | 0.119 ± 0.050 | <0.001 |
LVH− | 0.119 ± 0.052 | 0.115 ± 0.052 | 0.132 ± 0.052 | 0.021 | 0.128 ± 0.061 | 0.110 ± 0.042 | 0.003 |
LVH+ | 0.136 ± 0.061 | 0.130 ± 0.058 | 0.161 ± 0.067 | <0.001 | 0.144 ± 0.064 | 0.128 ± 0.057 | 0.033 |
p-value (LVH− vs. +) | <0.001 | 0.004 | 0.010 | 0.027 | 0.001 |
(A) Left Ventricular Hypertrophy − | ||||||
---|---|---|---|---|---|---|
Cox Hazard Analysis | ||||||
Univariable | Multivariable | |||||
Ratio | 95% CI | p-Value | Ratio | 95% CI | p-Value | |
Age | 1.068 | 1.034–1.104 | <0.001 | 1.056 | 1.016–1.096 | 0.005 |
Male | 1.029 | 0.63–1.618 | 0.909 | 1.621 | 0.937–2.806 | 0.084 |
SBP | 0.989 | 0.975–1.003 | 0.115 | - | - | - |
DBP | 0.998 | 0.978–1.02 | 0.907 | - | - | - |
Albumin | 0.218 | 0.153–0.516 | <0.001 | 0.396 | 0.199–0.785 | 0.008 |
NT-proBNP | 4.757 | 2.615–8.652 | <0.001 | 2.658 | 1.358–5.203 | 0.004 |
LAVI | 1.008 | 0.999–1.018 | 0.073 | - | - | - |
LVMI | 0.996 | 0.981–1.011 | 0.604 | - | - | - |
E/e’ | 1.032 | 0.990–1.076 | 0.134 | - | - | - |
Ed/Ea | 38.32 | 1.277–1149 | 0.035 | 91.420 | 1.213–6893 | 0.040 |
(B) Left Ventricular Hypertrophy + | ||||||
Age | 1.145 | 1.101–1.191 | <0.001 | 1.145 | 1.096–1.197 | <0.001 |
Male | 1.112 | 0.636–1.942 | 0.709 | 1.306 | 0.697–2.445 | 0.404 |
SBP | 0.986 | 0.972–1.001 | 0.060 | - | - | - |
DBP | 0.961 | 0.939–0.984 | 0.001 | 0.996 | 0.968–1.024 | 0.787 |
Albumin | 0.420 | 0.261–0.676 | <0.001 | 0.460 | 0.266–0.795 | 0.005 |
NT-proBNP | 2.173 | 1.358–3.477 | 0.001 | 1.884 | 1.054–3.366 | 0.032 |
LAVI | 1.003 | 0.996–1.009 | 0.412 | - | - | - |
LVMI | 0.999 | 0.990–1.008 | 0.857 | - | - | - |
E/e’ | 1.053 | 1.017–1.089 | 0.003 | - | - | - |
Ed/Ea | 1501 | 48.37–46600 | <0.001 | 142.6 | 1.612–12610 | 0.030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoshida, S.; Watanabe, T.; Masunaga, N.; Shinoda, Y.; Seo, M.; Hayashi, T.; Yano, M.; Yamada, T.; Yasumura, Y.; Hikoso, S.; et al. Alternative Factors in Possible Involvement of Coronary Microvascular Dysfunction in Older Patients with HFpEF. J. Clin. Med. 2024, 13, 5911. https://doi.org/10.3390/jcm13195911
Hoshida S, Watanabe T, Masunaga N, Shinoda Y, Seo M, Hayashi T, Yano M, Yamada T, Yasumura Y, Hikoso S, et al. Alternative Factors in Possible Involvement of Coronary Microvascular Dysfunction in Older Patients with HFpEF. Journal of Clinical Medicine. 2024; 13(19):5911. https://doi.org/10.3390/jcm13195911
Chicago/Turabian StyleHoshida, Shiro, Tetsuya Watanabe, Nobutaka Masunaga, Yukinori Shinoda, Masahiro Seo, Takaharu Hayashi, Masamichi Yano, Takahisa Yamada, Yoshio Yasumura, Shungo Hikoso, and et al. 2024. "Alternative Factors in Possible Involvement of Coronary Microvascular Dysfunction in Older Patients with HFpEF" Journal of Clinical Medicine 13, no. 19: 5911. https://doi.org/10.3390/jcm13195911
APA StyleHoshida, S., Watanabe, T., Masunaga, N., Shinoda, Y., Seo, M., Hayashi, T., Yano, M., Yamada, T., Yasumura, Y., Hikoso, S., Okada, K., Nakatani, D., Sotomi, Y., & Sakata, Y., on behalf of the OCVC-Heart Failure Investigators. (2024). Alternative Factors in Possible Involvement of Coronary Microvascular Dysfunction in Older Patients with HFpEF. Journal of Clinical Medicine, 13(19), 5911. https://doi.org/10.3390/jcm13195911