Decrease in Hemoglobin Levels during Acute Attacks in Patients with Idiopathic Recurrent Pericarditis: A Model of Anemia in Acute Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Outcomes
2.3. Statistical Analysis
3. Results
3.1. Features of Study Cohort
3.2. Hemoglobin Decreases during an Acute Attack
3.3. Correlation between Hemoglobin and Other Laboratory and Clinical Parameters
3.4. Anemia and Iron Metabolism in Two Representative Hospitalized Patients
4. Discussion
4.1. Limitations
4.2. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weiss, G.; Ganz, T.; Goodnough, L.T. Anemia of inflammation. Blood 2019, 133, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Cappellini, M.D.; Comin-Colet, J.; de Francisco, A.; Dignass, A.; Doehner, W.; Lam, C.S.; Macdougall, I.C.; Rogler, G.; Camaschella, C.; Kadir, R.; et al. Iron deficiency across chronic inflammatory conditions: International expert opinion on definition, diagnosis, and management. Am. J. Hematol. 2017, 92, 1068–1078. [Google Scholar] [CrossRef]
- Nairz, M.; Weiss, G. Iron in infection and immunity. Mol. Aspects Med. 2020, 75, 100864. [Google Scholar] [CrossRef]
- Nemeth, E.; Rivera, S.; Gabayan, V.; Keller, C.; Taudorf, S.; Pedersen, B.K.; Ganz, T. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J. Clin. Investig. 2004, 113, 1271–1276. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, E.; Tuttle, M.S.; Powelson, J.; Vaughn, M.B.; Donovan, A.; Ward, D.M.V.; Ganz, T.; Kaplan, J. Hepcidin Regulates Cellular Iron Efflux by Binding to Ferroportin and Inducing Its Internalization. Science 2004, 306, 2090–2093. [Google Scholar] [CrossRef] [PubMed]
- Pagani, A.; Nai, A.; Silvestri, L.; Camaschella, C. Hepcidin and Anemia: A Tight Relationship. Front. Physiol. 2019, 10, 1294. [Google Scholar] [CrossRef]
- Gardenghi, S.; Renaud, T.M.; Meloni, A.; Casu, C.; Crielaard, B.J.; Bystrom, L.M.; Greenberg-Kushnir, N.; Sasu, B.J.; Cooke, K.S.; Rivella, S. Distinct roles for hepcidin and interleukin-6 in the recovery from anemia in mice injected with heat-killed Brucella abortus. Blood 2014, 123, 1137–1145. [Google Scholar] [CrossRef]
- Soares, M.P.; Weiss, G. The Iron age of host–microbe interactions. EMBO Rep. 2015, 16, 1482–1500. [Google Scholar] [CrossRef]
- Drakesmith, H.; Prentice, A.M. Hepcidin and the Iron-Infection Axis. Science 2012, 338, 768–772. [Google Scholar] [CrossRef]
- Maira, D.; Duca, L.; Busti, F.; Consonni, D.; Salvatici, M.; Vianello, A.; Milani, A.; Guzzardella, A.; Di Pierro, E.; Aliberti, S.; et al. The role of hypoxia and inflammation in the regulation of iron metabolism and erythropoiesis in COVID-19: The IRONCOVID study. Am. J. Hematol. 2022, 97, 1404–1412. [Google Scholar] [CrossRef]
- Lanser, L.; Burkert, F.R.; Bellmann-Weiler, R.; Schroll, A.; Wildner, S.; Fritsche, G.; Weiss, G. Dynamics in Anemia Development and Dysregulation of Iron Homeostasis in Hospitalized Patients with COVID-19. Metabolites 2021, 11, 653. [Google Scholar] [CrossRef] [PubMed]
- Cazzola, M.; Ponchio, L.; de Benedetti, F.; Ravelli, A.; Rosti, V.; Beguin, Y.; Invernizzi, R.; Barosi, G.; Martini, A. Defective iron supply for erythropoiesis and adequate endogenous erythropoietin production in the anemia associated with systemic-onset juvenile chronic arthritis. Blood 1996, 87, 4824–4830. [Google Scholar] [CrossRef] [PubMed]
- Nai, A.; Lidonnici, M.R.; Rausa, M.; Mandelli, G.; Pagani, A.; Silvestri, L.; Ferrari, G.; Camaschella, C. The second transferrin receptor regulates red blood cell production in mice. Blood 2015, 125, 1170–1179. [Google Scholar] [CrossRef] [PubMed]
- Neri, S.; Swinkels, D.W.; Matlung, H.L.; van Bruggen, R. Novel concepts in red blood cell clearance. Curr. Opin. Hematol. 2021, 28, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Giannouli, S. Anaemia in systemic lupus erythematosus: From pathophysiology to clinical assessment. Ann. Rheum. Dis. 2006, 65, 144–148. [Google Scholar] [CrossRef]
- Theurl, I.; Hilgendorf, I.; Nairz, M.; Tymoszuk, P.; Haschka, D.; Asshoff, M.; He, S.; Gerhardt, L.M.; Holderried, T.A.; Seifert, M.; et al. On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nat. Med. 2016, 22, 945–951. [Google Scholar] [CrossRef]
- Libregts, S.F.; Gutiérrez, L.; de Bruin, A.M.; Wensveen, F.M.; Papadopoulos, P.; van Ijcken, W.; Özgür, Z.; Philipsen, S.; Nolte, M.A. Chronic IFN-γ production in mice induces anemia by reducing erythrocyte life span and inhibiting erythropoiesis through an IRF-1/PU.1 axis. Blood 2011, 118, 2578–2588. [Google Scholar] [CrossRef]
- Gomes, A.C.; Moreira, A.C.; Silva, T.; Neves, J.V.; Mesquita, G.; Almeida, A.A.; Barreira-Silva, P.; Fernandes, R.; Resende, M.; Appelberg, R.; et al. IFN-γ–Dependent Reduction of Erythrocyte Life Span Leads to Anemia during Mycobacterial Infection. J. Immunol. 2019, 203, 2485–2496. [Google Scholar] [CrossRef]
- Docherty, A.B.; Turgeon, A.F.; Walsh, T.S. Best practice in critical care: Anaemia in acute and critical illness. Transf. Med. 2018, 28, 181–189. [Google Scholar] [CrossRef]
- Adler, Y.; Charron, P.; Imazio, M.; Badano, L.; Barón-Esquivias, G.; Bogaert, J.; Brucato, A.; Gueret, P.; Klingel, K.; Lionis, C.; et al. 2015 ESC Guidelines for the diagnosis and management of pericardial diseases. Eur Heart J 2015, 36, 2921–2964. [Google Scholar] [CrossRef]
- Loftus, T.J.; Mira, J.C.; Miller, E.S.; Kannan, K.B.; Plazas, J.M.; Delitto, D.; Stortz, J.A.; Hagen, J.E.; Parvataneni, H.K.; Sadasivan, K.K.; et al. The Postinjury Inflammatory State and the Bone Marrow Response to Anemia. Am. J. Respir. Crit. Care Med. 2018, 198, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Molecular Diagnosis and Risk Stratification of Sepsis (MARS) Consortium; Boshuizen, M.; Binnekade, J.M.; Nota, B.; van de Groep, K.; Cremer, O.L.; Tuinman, P.R.; Horn, J.; Schultz, M.J.; van Bruggen, R.; et al. Iron metabolism in critically ill patients developing anemia of inflammation: A case control study. Ann. Intensive Care 2018, 8, 56. [Google Scholar] [CrossRef] [PubMed]
- Loftus, T.J.; Mira, J.C.; Stortz, J.A.; Ozrazgat-Baslanti, T.; Ghita, G.L.; Wang, Z.; Brumback, B.A.; Ungaro, R.F.; Bihorac, A.; Leeuwenburgh, C.; et al. Persistent inflammation and anemia among critically ill septic patients. J. Trauma. Acute Care Surg. 2019, 86, 260–267. [Google Scholar] [CrossRef]
- Bateman, A.P.; McArdle, F.; Walsh, T.S. Time course of anemia during six months follow up following intensive care discharge and factors associated with impaired recovery of erythropoiesis*. Crit. Care Med. 2009, 37, 1906–1912. [Google Scholar] [CrossRef]
- Walsh, T.S.; Saleh E el din Lee, R.J.; McClelland, D.B. The prevalence and characteristics of anaemia at discharge home after intensive care. Intensive Care Med. 2006, 32, 1206–1213. [Google Scholar] [CrossRef]
- Fu, J.; Wu, H. Structural Mechanisms of NLRP3 Inflammasome Assembly and Activation. Annu. Rev. Immunol. 2023, 41, 301–316. [Google Scholar] [CrossRef]
- Bizzi, E.; Trotta, L.; Pancrazi, M.; Nivuori, M.; Giosia, V.; Matteucci, L.; Montori, D.; Brucato, A. Autoimmune and Autoinflammatory Pericarditis: Definitions and New Treatments. Curr. Cardiol. Rep. 2021, 23, 128. [Google Scholar] [CrossRef]
- Lopalco, G.; Rigante, D.; Cantarini, L.; Imazio, M.; Lopalco, A.; Emmi, G.; Venerito, V.; Fornaro, M.; Frediani, B.; Nivuori, M.; et al. The autoinflammatory side of recurrent pericarditis: Enlightening the pathogenesis for a more rational treatment. Trends Cardiovasc. Med. 2021, 31, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Bizzi, E.; Picchi, C.; Mastrangelo, G.; Imazio, M.; Brucato, A. Recent advances in pericarditis. Eur. J. Intern. Med. 2022, 95, 24–31. [Google Scholar] [CrossRef]
- Tyrkalska, S.D.; Pérez-Oliva, A.B.; Rodríguez-Ruiz, L.; Martínez-Morcillo, F.J.; Alcaraz-Pérez, F.; Martínez-Navarro, F.J.; Lachaud, C.; Ahmed, N.; Schroeder, T.; Pardo-Sánchez, I.; et al. Inflammasome Regulates Hematopoiesis through Cleavage of the Master Erythroid Transcription Factor GATA1. Immunity 2019, 51, 50–63.e5. [Google Scholar] [CrossRef]
- Pietras, E.M.; Mirantes-Barbeito, C.; Fong, S.; Loeffler, D.; Kovtonyuk, L.V.; Zhang, S.; Lakshminarasimhan, R.; Chin, C.P.; Techner, J.-M.; Will, B.; et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat. Cell Biol. 2016, 18, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xu, C.-X.; Alippe, Y.; Qu, C.; Xiao, J.; Schipani, E.; Civitelli, R.; Abu-Amer, Y.; Mbalaviele, G. Chronic inflammation triggered by the NLRP3 inflammasome in myeloid cells promotes growth plate dysplasia by mesenchymal cells. Sci. Rep. 2017, 7, 4880. [Google Scholar] [CrossRef] [PubMed]
(a) Demographic Characteristics * | |
Age at index attack, years—median (IQR) | 39 (26–60) |
• <40 years | 32 (51.6%) |
• 40–65 years | 14 (22.6%) |
• >65 years | 16 (25.8%) |
Gender F:M | 30 (48.4%): 32 (51.6%) |
Smoking habits | |
• Former | 20 (32.3%) |
• Active | 7 (11.3%) |
• Non-smoker | 35 (56.4%) |
Comorbidities | |
• Arterial hypertension | 12 (19.4%) |
• Asthma | 4 (6.5%) |
• Type 2 diabetes mellitus | 1 (1.6%) |
• Thyroid dysfunction | 3 (4.8%) |
• Atrial fibrillation | 2 (3.2%) |
(b) Clinical Characteristics at Indexed Attack * | |
Pericardial effusion | 48 (77.4%) |
Size of pericardial effusion [mm]—median (IQR) | 6 (3.75–10.75) |
Cardiac tamponade | 2 (3.2%) |
Pericardiocentesis | 4 (6.5%) |
Pleural effusion | 28 (45.2%) |
Ascites | 8 (12.9%) |
Therapy | |
• Nonsteroidal anti-inflammatory drugs | 55 (88.7%) |
• Colchicine | 37 (59.7%) |
• Corticosteroids | 22 (35.5%) |
• Anakinra | 3 (4.8%) |
Remission time, days—median (IQR) | 21 (16–25) |
(c) Laboratory Findings ** | |
Maximum C-reactive protein, CRP [mg/L] | |
• Indexed attack | 70 (29–197.25) |
• Remission | 5 (2–5) |
• Difference (Delta CRP) | 68 (24–174.75) |
White blood cells count, WBC [cells/µL] | |
• Indexed attack | 11,400 (6660–13,225) |
• Remission | 7170 (6275–8030) |
• Difference (Delta leukocytes) | 4359 (1673–6187) |
Absolute neutrophil count, ANC [cells/µL] | |
• Indexed attack | 8694 (5826–10,708) |
• Remission | 4150 (3616–5993) |
• Difference (Delta neutrophils) | 4390 (1410–6717) |
Absolute lymphocyte count, ALC [cells/µL] | 1640 (1210–3067) |
Neutrophil–lymphocyte ratio, NLR | 5.93 (3.27–7.41) |
(a) Variations in hemoglobin levels | ||
Hemoglobin Levels * | Hb [g/dL] | p-Value ** |
Baseline (N = 41) | 13.8 (12.8 to 15.1) | |
Indexed attack (N = 62) | 12.0 (11.2 to 13.4) | |
Remission (N = 62) | 13.7 (13.1 to 14.0) | |
Baseline–Indexed attack | 1.5 (1.1 to 2.3) | <0.001 |
Remission–Indexed attack | 1.4 (0.9 to 1.98) | <0.001 |
Baseline–Remission | 0.2 (0.1 to 0.3) | 0.045 |
(b) Variations in MCV | ||
Mean Corpuscular Volume * | MCV [fL] | p-Value ** |
Indexed attack (N = 62) | 85 (83 to 86.7) | |
Remission (N = 62) | 85 (83 to 88) | |
Difference (Delta MCV) | 0.5 (−1.0 to 2.75) | 0.083 |
(a) Presence of Anemia during Indexed Attack and at Remission | |||
No Anemia at Remission | Anemia at Remission | Total | |
No anemia during attack | 24 (38.7%) | 2 (3.2%) | 26 (41.9%) |
Anemia during attack | 25 (40.8%) | 11 (17.3%) | 36 (58.1%) |
Total | 49 (79.5%) | 13 (20.5%) | 62 |
(b) Presence of Anemia at Baseline and during Indexed Attack | |||
No Anemia at Remission | Anemia at Remission | Total | |
No anemia during attack | 16 (39.1%) | 1 (2.4%) | 17 (41.5%) |
Anemia during attack | 14 (34.1%) | 10 (24.4%) | 24 (58.5%) |
Total | 30 (73.2%) | 11 (26.8%) | 41 |
Correlations of Delta Hb with: | ρ (95%CI) | p-Value * |
Age at event | 0.005 (−0.253 to 0.261) | 0.972 |
Delta CRP | 0.391 (0.149 to 0.589) | 0.002 |
Delta leukocytes | 0.304 (0.051 to 0.520) | 0.016 |
Delta neutrophils | 0.426 (0.190 to 0.615) | <0.001 |
Maximum CRP at indexed attack | 0.387 (0.145 to 0.586) | 0.002 |
Maximum white blood cells count at indexed attack | 0.279 (0.023 to 0.500) | 0.028 |
Maximum neutrophil count at indexed attack | 0.374 (0.130 to 0.576) | 0.003 |
Maximum lymphocyte count at indexed attack | −0.064 (−0.315 to 0.196) | 0.624 |
NLR at indexed attack | 0.278 (0.022 to 0.499) | 0.029 |
Size of pericardial effusion at indexed attack | 0.108 (−0.153 to 0.355) | 0.404 |
Clinical Features * | Delta Hb in Presence [g/dL] | Delta Hb in Absence [g/dL] | p-Value ** |
Pericardial effusion | 1.38 (0.97 to 2.06) | 1.75 (0.45 to 1.94) | 0.846 |
Pleural effusion | 1.68 (1.02 to 2.56) | 1.35 (0.90 to 1.80) | 0.145 |
Ascites | 1.65 (0.77 to 2.39) | 1.40 (0.94 to 1.90) | 0.629 |
(a) 68-Year-Old Male Patient | ||||||
Baseline (36 Days before Admission) | Day 0 (Emergency Room for Acute Attack) | Day 1 after Admission | Day 2 after Admission | At Discharge (Day 4 after Admission) | 30 Days after Discharge | |
Hb [g/dL] | 15.0 | 12.6 | 10.2 | 9.4 | 10.8 | 12.0 |
Hct [%] | 47 | 38 | 30 | 28 | 32 | 35 |
MCV [fL] | 85.8 | 84.6 | 83.4 | 84.3 | 84.3 | 84.6 |
CRP [mg/L] | 223.6 | 225.5 | 105.9 | 61.6 | 0.3 | |
WBC [/µL] | 7410 | 11,390 | 5490 | 5150 | 4980 | 5380 |
Neutrophil count [/µL] | 3490 | 9112 | 4392 | 3657 | 3020 | 3570 |
Lymphocyte count [/µL] | 3230 | 2278 | 1098 | 1494 | 1500 | 1300 |
Serum iron [μg/dL] | 46 | |||||
Ferritin [μg/L] | 572 | |||||
Transferrin [g/L] | 1.7 | |||||
Transferrin saturation [%] | 19 | |||||
Vitamin B12 [ng/L] (n.v. > 300) | 161 | |||||
Folate [μg/L] (n.v. > 4) | 4.7 | |||||
Haptoglobin [g/L] (n.v.: 0.3–2) | 1.9 | |||||
LDH [UI/L] | 116 | |||||
Hepcidin [ng/mL] (n.v. < 21.8) | 178 | 45 | ||||
sTfR [mg/L] (n.v. 1.8–4.6) | 3.27 | 2.66 | ||||
IL-6 [pg/mL] (n.v. 0–10) | 110 | 25.3 | ||||
(b) 37-Year-Old Male Patient | ||||||
Baseline (120 Days before Admission) | Day 0 (Emergency Room for Acute Attack) | Day 1 after Admission | Day 3 after Admission | At Discharge (Day 4 after Admission) | 30 Days after Discharge | |
Hb [g/dL] | 15.0 | 12.0 | 10.2 | 11.2 | 12.8 | 13.8 |
Hct [%] | 47 | 36 | 31 | 34 | 39 | 43 |
MCV [fL] | 91.8 | 88.0 | 86.4 | 89.8 | 86.8 | 90.3 |
CRP [mg/L] | 251.3 | 252.5 | 105.7 | 59.4 | 4.6 | |
WBC [/µL] | 7410 | 14,670 | 10,670 | 6910 | 7030 | 10,210 |
Neutrophil count [/µL] | 3490 | 7390 | 3000 | 4320 | 4520 | |
Lymphocyte count [/µL] | 3230 | 2030 | 3170 | 1880 | 4720 | |
Serum iron [μg/dL] | 13 | 76 | ||||
Ferritin [μg/L] | 743 | 402 | ||||
Transferrin [g/L] | 1.54 | 2.67 | ||||
Transferrin saturation [%] | 6 | 20 | ||||
Vitamin B12 [ng/L] (n.v. > 300) | 380 | |||||
Folate [μg/L] (n.v. > 4) | 4.1 | |||||
Haptoglobin [g/L] (n.v.: 0.3–2) | 0.04 | |||||
LDH [UI/L] | 178 | |||||
Hepcidin [ng/mL] (n.v. < 21.8) | 63 | 48 | ||||
sTfR [mg/L] (n.v. 1.8–4.6) | 3.04 | 2.66 | ||||
IL-6 [pg/mL] (n.v. 0–10) | 67.3 | 23.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casarin, F.; Mascolo, R.; Motta, I.; Wu, M.A.; Bizzi, E.; Pedroli, A.; Dieguez, G.; Iacomelli, G.; Serati, L.; Duca, L.; et al. Decrease in Hemoglobin Levels during Acute Attacks in Patients with Idiopathic Recurrent Pericarditis: A Model of Anemia in Acute Disease. J. Clin. Med. 2024, 13, 5944. https://doi.org/10.3390/jcm13195944
Casarin F, Mascolo R, Motta I, Wu MA, Bizzi E, Pedroli A, Dieguez G, Iacomelli G, Serati L, Duca L, et al. Decrease in Hemoglobin Levels during Acute Attacks in Patients with Idiopathic Recurrent Pericarditis: A Model of Anemia in Acute Disease. Journal of Clinical Medicine. 2024; 13(19):5944. https://doi.org/10.3390/jcm13195944
Chicago/Turabian StyleCasarin, Francesca, Ruggiero Mascolo, Irene Motta, Maddalena Alessandra Wu, Emanuele Bizzi, Alice Pedroli, Giulia Dieguez, Giacomo Iacomelli, Lisa Serati, Lorena Duca, and et al. 2024. "Decrease in Hemoglobin Levels during Acute Attacks in Patients with Idiopathic Recurrent Pericarditis: A Model of Anemia in Acute Disease" Journal of Clinical Medicine 13, no. 19: 5944. https://doi.org/10.3390/jcm13195944
APA StyleCasarin, F., Mascolo, R., Motta, I., Wu, M. A., Bizzi, E., Pedroli, A., Dieguez, G., Iacomelli, G., Serati, L., Duca, L., Maestroni, S., Tombetti, E., Cappellini, M. D., & Brucato, A. (2024). Decrease in Hemoglobin Levels during Acute Attacks in Patients with Idiopathic Recurrent Pericarditis: A Model of Anemia in Acute Disease. Journal of Clinical Medicine, 13(19), 5944. https://doi.org/10.3390/jcm13195944