Effects of Pulmonary Rehabilitation on Respiratory Function and Thickness of the Diaphragm in Patients with Post-COVID-19 Syndrome: A Randomized Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Trial Design
2.2. Participants
2.3. Interventions
2.4. Randomisation
2.5. Measures
2.6. Statistical Methods
3. Results
- PImax and: PEmax (r = 0.576), chest expansion at the level of xiphoid process (r = 0.484), chest expansion at the level of 10th rib (r = 0.408), PEF (r = 0.327), right hemidiaphragm thickness during maximal expiration (r = 0.339);
- PEmax and: PImax (r = 0.576), chest expansion at the level of 10th rib (r = 0.394).
- PImax and: PEmax (r = 0.554), FEV1 (r = 0.627), VC MAX (r = 0.584), FVC EX (r = 0.494), FVC IN (r = 0.595), PEF (r = 0.515), right hemidiaphragm thickness during maximal inspiration (r = 0.627), left hemidiaphragm thickness during maximal inspiration (r = 0.547);
- PEmax and: PImax (r = 0.554), FEV1 (r = 0.509), PEF (r = 0.46).
- PImax and: PEmax (r = 0.433), chest expansion at the level of xiphoid process (r = 0.319), chest expansion at the level of 10th rib (r = 0.322);
- PEmax and: PImax (r = 0.433), chest expansion at the level of 10th rib (r = 0.371).
- PImax and: PEmax (r = 0.729), PEF (r = 0.5) right hemidiaphragm thickness during maximal inspiration (r = 0.445);
- PEmax and: PImax (r = 0.729), PEF (r = 0.6) right hemidiaphragm thickness during maximal inspiration (r = 0.569).
4. Discussion
4.1. Generalisability
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Simon, K.; Rorat, M.; Janocha-Litwin, J.; Pazgan-Simon, M. SARS-CoV-2 infection: Etiopathogenesis, clinical picture, current therapeutic options—The author’s observations. Nowotw. J. Oncol. 2021, 71, 38–41. [Google Scholar] [CrossRef]
- WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 21 December 2023).
- Demeco, A.; Marotta, N.; Barletta, M.; Pino, I.; Marinaro, C.; Petraroli, A.; Moggio, L.; Ammendolia, A. Rehabilitation of patients post-COVID-19 infection: A literature review. J. Int. Med. Res. 2020, 48, 300060520948382. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, J.; Zhu, G.; Zhang, Y.; Bi, Z.; Yu, Y.; Huang, B.; Fu, S.; Tan, Y.; Sun, J.; et al. Clinical Features of Maintenance Hemodialysis Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. Clin. J. Am. Soc. Nephrol. CJASN 2020, 15, 1139–1145. [Google Scholar] [CrossRef] [PubMed]
- Harapan, H.; Itoh, N.; Yufika, A.; Winardi, W.; Keam, S.; Te, H.; Megawati, D.; Hayati, Z.; Wagner, A.L.; Mudatsir, M. Coronavirus disease 2019 (COVID-19): A literature review. J. Infect. Public Health 2020, 13, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 324, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Froidure, A.; Mahsouli, A.; Liistro, G.; De Greef, J.; Belkhir, L.; Gérard, L.; Bertrand, A.; Koenig, S.; Pothen, L.; Yildiz, H.; et al. Integrative respiratory follow-up of severe COVID-19 reveals common functional and lung imaging sequelae. Respir. Med. 2021, 181, 106383. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, P. NICE guideline on long COVID. Lancet. Respir. Med. 2021, 9, 129. [Google Scholar] [CrossRef]
- Writing Committee for the COMEBAC Study Group; Morin, L.; Savale, L.; Pham, T.; Colle, R.; Figueiredo, S.; Harrois, A.; Gasnier, M.; Lecoq, A.L.; Meyrignac, O.; et al. Four-Month Clinical Status of a Cohort of Patients After Hospitalization for COVID-19. JAMA 2021, 325, 1525–1534. [Google Scholar] [CrossRef]
- Cortés-Telles, A.; López-Romero, S.; Figueroa-Hurtado, E.; Pou-Aguilar, Y.N.; Wong, A.W.; Milne, K.M.; Ryerson, C.J.; Guenette, J.A. Pulmonary function and functional capacity in COVID-19 survivors with persistent dyspnoea. Respir. Physiol. Neurobiol. 2021, 288, 103644. [Google Scholar] [CrossRef]
- Jafari, Z.; Kolb, B.E.; Mohajerani, M.H. Hearing Loss, Tinnitus, and Dizziness in COVID-19: A Systematic Review and Meta-Analysis. The Canadian journal of neurological sciences. Le J. Can. Des Sci. Neurol. 2022, 49, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Liu, X.; Zhou, Y.; Yu, H.; Li, R.; Zhan, Q.; Ni, F.; Fang, S.; Lu, Y.; Ding, X.; et al. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalisation: A prospective study. The Lancet. Respir. Med. 2021, 9, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Fugazzaro, S.; Contri, A.; Esseroukh, O.; Kaleci, S.; Croci, S.; Massari, M.; Facciolongo, N.C.; Besutti, G.; Iori, M.; Salvarani, C.; et al. Reggio Emilia COVID-19 Working Group. Rehabilitation Interventions for Post-Acute COVID-19 Syndrome: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 5185. [Google Scholar] [CrossRef]
- Mandal, S.; Barnett, J.; Brill, S.E.; Brown, J.S.; Denneny, E.K.; Hare, S.S.; Heightman, M.; Hillman, T.E.; Jacob, J.; Jarvis, H.C.; et al. ‘Long-COVID’: A cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax 2021, 76, 396–398. [Google Scholar] [CrossRef] [PubMed]
- O’Mahoney, L.L.; Routen, A.; Gillies, C.; Ekezie, W.; Welford, A.; Zhang, A.; Karamchandani, U.; Simms-Williams, N.; Cassambai, S.; Ardavani, A.; et al. The prevalence and long-term health effects of Long COVID among hospitalised and non-hospitalised populations: A systematic review and meta-analysis. EClinicalMedicine 2022, 55, 101762. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Leon, S.; Wegman-Ostrosky, T.; Perelman, C.; Sepulveda, R.; Rebolledo, P.A.; Cuapio, A.; Villapol, S. More than 50 long-term effects of COVID-19: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 16144. [Google Scholar] [CrossRef]
- Oronsky, B.; Larson, C.; Hammond, T.C.; Oronsky, A.; Kesari, S.; Lybeck, M.; Reid, T.R. A Review of Persistent Post-COVID Syndrome (PPCS). Clin. Rev. Allergy Immunol. 2023, 64, 66–74. [Google Scholar] [CrossRef]
- Kim, Y.J. COVID-19 and Long-Term Sequelae. Korean J. Med. 2022, 97, 23–27. [Google Scholar] [CrossRef]
- Kim, K.H.; Kim, D.H. Effects of Maitland Thoracic Joint Mobilization and Lumbar Stabilization Exercise on Diaphragm Thickness and Respiratory Function in Patients with a History of COVID-19. Int. J. Environ. Res. Public Health 2022, 19, 17044. [Google Scholar] [CrossRef] [PubMed]
- Yong, S.J. Long COVID or post-COVID-19 syndrome: Putative pathophysiology, risk factors, and treatments. Infect. Dis. 2021, 53, 737–754. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Rapid Guideline: Managing the Long-Term Effects of COVID-19; National Institute for Health and Care Excellence (NICE): London, UK, 18 December 2020.
- Bhattacharjee, N.; Sarkar, P.; Sarkar, T. Beyond the acute illness: Exploring long COVID and its impact on multiple organ systems. Physiol. Int. 2023, 110, 291–310. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’em, Y.; Redfield, S.; Austin, J.P.; Akrami, A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 2021, 38, 101019. [Google Scholar] [CrossRef]
- Crook, H.; Raza, S.; Nowell, J.; Young, M.; Edison, P. Long COVID-mechanisms, risk factors, and management. BMJ 2021, 374, n1648. [Google Scholar] [CrossRef]
- Ostrowska, M.; Rzepka-Cholasińska, A.; Pietrzykowski, Ł.; Michalski, P.; Kosobucka-Ozdoba, A.; Jasiewicz, M.; Kasprzak, M.; Kryś, J.; Kubica, A. Effects of Multidisciplinary Rehabilitation Program in Patients with Long COVID-19: Post-COVID-19 Rehabilitation (PCR SIRIO 8) Study. J. Clin. Med. 2023, 12, 420. [Google Scholar] [CrossRef]
- Barker-Davies, R.M.; O’Sullivan, O.; Senaratne, K.P.P.; Baker, P.; Cranley, M.; Dharm-Datta, S.; Ellis, H.; Goodall, D.; Gough, M.; Lewis, S.; et al. The Stanford Hall consensus statement for post-COVID-19 rehabilitation. Br. J. Sports Med. 2020, 54, 949–959. [Google Scholar] [CrossRef]
- Barbara, C.; Clavario, P.; De Marzo, V.; Lotti, R.; Guglielmi, G.; Porcile, A.; Russo, C.; Griffo, R.; Mäkikallio, T.; Hautala, A.J.; et al. Effects of exercise rehabilitation in patients with long coronavirus disease 2019. Eur. J. Prev. Cardiol. 2022, 29, e258–e260. [Google Scholar] [CrossRef]
- Besnier, F.; Bérubé, B.; Malo, J.; Gagnon, C.; Grégoire, C.A.; Juneau, M.; Simard, F.; L’Allier, P.; Nigam, A.; Iglésies-Grau, J.; et al. Cardiopulmonary Rehabilitation in Long-COVID-19 Patients with Persistent Breathlessness and Fatigue: The COVID-Rehab Study. Int. J. Environ. Res. Public Health 2022, 19, 4133. [Google Scholar] [CrossRef]
- Morrow, A.; Gray, S.R.; Bayes, H.K.; Sykes, R.; McGarry, E.; Anderson, D.; Boiskin, D.; Burke, C.; Cleland, J.G.F.; Goodyear, C.; et al. Prevention and early treatment of the long-term physical effects of COVID-19 in adults: Design of a randomised controlled trial of resistance exercise-CISCO-21. Trials 2022, 23, 660. [Google Scholar] [CrossRef]
- Chen, H.; Shi, H.; Liu, X.; Sun, T.; Wu, J.; Liu, Z. Effect of Pulmonary Rehabilitation for Patients With Post-COVID-19: A Systematic Review and Meta-Analysis. Front. Med. 2022, 9, 837420. [Google Scholar] [CrossRef] [PubMed]
- Daynes, E.; Gerlis, C.; Singh, S.J. The demand for rehabilitation following COVID-19: A call to service providers. Physiotherapy 2021, 113, A1–A3. [Google Scholar] [CrossRef] [PubMed]
- Urbaniak, G.C.; Plous, S. Research Randomizer (Version 4.0) [Computer Software]. 2013. Available online: http://www.randomizer.org/ (accessed on 22 June 2013).
- Wojciuk, M.; Ciolkiewicz, M.; Kuryliszyn-Moskal, A.; Chwiesko-Minarowska, S.; Sawicka, E.; Ptaszynska-Kopczynska, K.; Kaminski, K. Effectiveness and safety of a simple home-based rehabilitation program in pulmonary arterial hypertension: An interventional pilot study. BMC Sports Sci. Med. Rehabil. 2021, 13, 79. [Google Scholar] [CrossRef] [PubMed]
- Laveneziana, P.; Albuquerque, A.; Aliverti, A.; Babb, T.; Barreiro, E.; Dres, M.; Dubé, B.P.; Fauroux, B.; Gea, J.; Guenette, J.A.; et al. ERS statement on respiratory muscle testing at rest and during exercise. Eur. Respir. J. 2019, 53, 1801214. [Google Scholar] [CrossRef] [PubMed]
- Brusasco, V.; Crapo, R.; Viegi, G.; American Thoracic Society, European Respiratory Society. Coming together: The ATS/ERS consensus on clinical pulmonary function testing. Eur. Respir. J. 2005, 26, 1–2. [Google Scholar] [CrossRef]
- American Thoracic Society/European Respiratory Society. ATS/ERS Statement on respiratory muscle testing. Am. J. Respir. Crit. Care Med. 2002, 166, 518–624. [Google Scholar] [CrossRef]
- Patel, Z.; Franz, C.K.; Bharat, A.; Walter, J.M.; Wolfe, L.F.; Koralnik, I.J.; Deshmukh, S. Diaphragm and Phrenic Nerve Ultrasound in COVID-19 Patients and Beyond: Imaging Technique, Findings, and Clinical Applications. J. Ultrasound Med. Off. J. Am. Inst. Ultrasound Med. 2022, 41, 285–299. [Google Scholar] [CrossRef]
- Schulz, A.; Erbuth, A.; Boyko, M.; Vonderbank, S.; Gürleyen, H.; Gibis, N.; Bastian, A. Comparison of Ultrasound Measurements for Diaphragmatic Mobility, Diaphragmatic Thickness, and Diaphragm Thickening Fraction with Each Other and with Lung Function in Patients with Chronic Obstructive Pulmonary Disease. Int. J. Chronic Obstr. Pulm. Dis. 2022, 17, 2217–2227. [Google Scholar] [CrossRef]
- Hache-Marliere, M.; Lim, H.; Patail, H. Diaphragmatic thickening fraction as a predictor for intubation in patients with COVID-19. Respir. Med. Case Rep. 2022, 40, 101743. [Google Scholar] [CrossRef]
- Dong, Z.; Liu, Y.; Gai, Y.; Meng, P.; Lin, H.; Zhao, Y.; Xing, J. Early rehabilitation relieves diaphragm dysfunction induced by prolonged mechanical ventilation: A randomised control study. BMC Pulm. Med. 2021, 21, 106. [Google Scholar] [CrossRef]
- Villelabeitia-Jaureguizar, K.; Calvo-Lobo, C.; Rodríguez-Sanz, D.; Vicente-Campos, D.; Castro-Portal, J.A.; López-Cañadas, M.; Becerro-de-Bengoa-Vallejo, R.; Chicharro, J.L. Low Intensity Respiratory Muscle Training in COVID-19 Patients after Invasive Mechanical Ventilation: A Retrospective Case-Series Study. Biomedicines 2022, 10, 2807. [Google Scholar] [CrossRef] [PubMed]
- Hockele, L.F.; Sachet Affonso, J.V.; Rossi, D.; Eibel, B. Pulmonary and Functional Rehabilitation Improves Functional Capacity, Pulmonary Function and Respiratory Muscle Strength in Post COVID-19 Patients: Pilot Clinical Trial. Int. J. Environ. Res. Public Health 2022, 19, 14899. [Google Scholar] [CrossRef] [PubMed]
- Satar, S.; Şahin, M.E.; Karamanlı, H.; Demir, N.; Ergün, P. Tele-pulmonary rehabilitation with face to face in COVID-19 pandemic: A hybrid modeling. COVID-19 pandemisinde tele-pulmoner rehabilitasyon; yüz yüze ile hibrit model. Tuberk. Ve Toraks 2023, 71, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Lanza, F.d.C.; de Camargo, A.A.; Archija, L.R.; Selman, J.P.; Malaguti, C.; Dal Corso, S. Chest wall mobility is related to respiratory muscle strength and lung volumes in healthy subjects. Respir. Care 2013, 58, 2107–2112. [Google Scholar] [CrossRef] [PubMed]
- Reychler, G.; Delacroix, S.; Dresse, D.; Pieters, T.; Liistro, G. Randomized Controlled Trial of the Effect of Inspiratory Muscle Training and Incentive Spirometry on Respiratory Muscle Strength, Chest Wall Expansion, and Lung Function in Elderly Adults. J. Am. Geriatr. Soc. 2016, 64, 1128–1130. [Google Scholar] [CrossRef] [PubMed]
- Nopp, S.; Moik, F.; Klok, F.A.; Gattinger, D.; Petrovic, M.; Vonbank, K.; Koczulla, A.R.; Ay, C.; Zwick, R.H. Outpatient Pulmonary Rehabilitation in Patients with Long COVID Improves Exercise Capacity, Functional Status, Dyspnea, Fatigue, and Quality of Life. Respir. Int. Rev. Thorac. Dis. 2022, 101, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Guler, S.A.; Ebner, L.; Aubry-Beigelman, C.; Bridevaux, P.O.; Brutsche, M.; Clarenbach, C.; Garzoni, C.; Geiser, T.K.; Lenoir, A.; Mancinetti, M.; et al. Pulmonary function and radiological features 4 months after COVID-19: First results from the national prospective observational Swiss COVID-19 lung study. Eur. Respir. J. 2021, 57, 2003690. [Google Scholar] [CrossRef] [PubMed]
- Mo, X.; Jian, W.; Su, Z.; Chen, M.; Peng, H.; Peng, P.; Lei, C.; Chen, R.; Zhong, N.; Li, S. Abnormal pulmonary function in COVID-19 patients at time of hospital discharge. Eur. Respir. J. 2020, 55, 2001217. [Google Scholar] [CrossRef]
- Anastasio, F.; Barbuto, S.; Scarnecchia, E.; Cosma, P.; Fugagnoli, A.; Rossi, G.; Parravicini, M.; Parravicini, P. Medium-term impact of COVID-19 on pulmonary function, functional capacity and quality of life. Eur. Respir. J. 2021, 58, 2004015. [Google Scholar] [CrossRef]
- Veldman, C.; de Boer, W.S.; Kerstjens, H.A.M.; Edens, M.A.; van den Berg, J.W.K. Sonographic follow-up of diaphragm function in COVID-19: An exploratory study. ERJ Open Res. 2023, 9, 00623–02022. [Google Scholar] [CrossRef]
- Lee, Y.J. Thoracic Mobilization and Respiratory Muscle Endurance Training Improve Diaphragm Thickness and Respiratory Function in Patients with a History of COVID-19. Medicina 2023, 59, 906. [Google Scholar] [CrossRef] [PubMed]
Week | % HRmax or % PImax |
---|---|
1 | 45–55 |
2 | 50–60 |
3 | 55–65 |
4 | 60–70 |
5 | 65–75 |
6 | 70–80 |
Study (IMT) Group | Control (Placebo) Group | p-Value | |
---|---|---|---|
patients, n | 39 | 22 | |
mean age, years | 65.41 ± 11.23 | 57.90 ± 16.02 | 0.057 |
Male sex, % (n) | 33 (13) | 40 (9) | |
Female sex, % (n) | 67 (26) | 60 (13) | |
Weight, kg | 78.74 ± 13.15 | 84.49 ± 23.07 | 0.548 |
Height, cm | 167.49 ± 8.75 | 170.40 ± 8.15 | 0.181 |
Body mass index, kg/m2 | 28.01 ± 3.63 | 28.77 ± 6.19 | 0.701 |
History of smoking, % (n) | 10 (4) | 23 (5) | |
PImax, cmH2O | 51.62 ± 23.96 | 54.45 ± 34.19 | 0.943 |
PEmax, cmH2O | 66.95 ± 25.65 | 73.55 ± 36.03 | 0.481 |
FEV1, % predicted | 97.67 ± 20.33 | 87.65 ± 21.83 | 0.078 |
FVC EX, % predicted | 103.38 ± 23.95 | 88.95 ± 17.72 | 0.016 |
FVC IN, % predicted | 96.41 ± 31.05 | 71.85 ± 29.96 | 0.005 |
PEF, % predicted | 93.56 ± 18.92 | 93.75 ± 29.52 | 0.854 |
VC MAX, % predicted | 101.21 ± 23.39 | 87.05 ± 19.50 | 0.028 |
Xiphoid process level of chest expansion, cm | 2.23 ± 1.53 | 3.05 ± 2.61 | 0.6 |
10th rib level of chest expansion, cm | 1.32 ± 1.94 | 1.99 ± 1.89 | 0.09 |
DTF right side | 1.345 ± 1.226 | 1.519 ± 1.314 | 0.325 |
DTF left side | 1.375 ± 0.927 | 1.118 ± 0.802 | 0.181 |
Measure | Group | Baseline | Post-Intervention | Change Mdn (%) | Change M (%) | p-Value | |
---|---|---|---|---|---|---|---|
Respiratory pressure | |||||||
PImax, cmH2O | Study | 52 (31–70) | 78 (56–92) | 52 | 72.50 | <0.001 | |
Control | 50.5 (23.5–84.5) | 90 (57.5–109) | 47.54 | 118.66 | <0.001 | ||
PEmax, cmH2O | Study | 61 (48–83) | 106 (77–124) | 59.72 | 72.51 | <0.001 | |
Control | 66 (51–98.5) | 109 (64.5–146) | 37.9 | 62.23 | <0.001 | ||
Chest expansion | |||||||
Xiphoid process level, cm | Study | 2 (1–3) | 3 (1.5–4.5) | 66.67 | 68.93 | 0.001 | |
Control | 2.5 (0.5–5.5) | 3 (1.75–3.75) | 20.83 | 64.9 | 0.24 | ||
10th rib level, cm | Study | 1 (0–2) | 2.5 (1–4.5) | 66.67 | 40.91 | 0.001 | |
Control | 1.75 (0.75–3.25) | 1.5 (1–4) | −5 | −7.45 | 0.435 | ||
Spirometry | |||||||
FEV 1, % predicted | Study | 95 (86–108) | 104 (94–111) | 5.26 | 8.02 | <0.001 | |
Control | 86.5 (75–100) | 89 (82.5–101) | 0.85 | 6.42 | 0.457 | ||
FVC EX, % predicted | Study | 103 (87–117) | 111 (101–126) | 4.07 | 13.24 | <0.001 | |
Control | 84.5 (76.5–105) | 102 (84.5–110.5) | 0.87 | 9.69 | 0.205 | ||
FVC IN, % predicted | Study | 105 (85–115) | 105 (96–117) | 1.89 | 34.82 | 0.07 | |
Control | 75.5 (42–100) | 94.5 (81.5–103.5) | 8.18 | 53.96 | 0.023 | ||
VC MAX, % predicted | Study | 102 (89–114) | 109 (97–120) | 4.35 | 12.5 | 0.002 | |
Control | 80 (73.5–105.5) | 98 (83–108.5) | 0 | 10.5 | 0.156 | ||
FEV1%FVC EX, % predicted | Study | 101 (95–109) | 100 (95–103) | −1.89 | −2.48 | 0.088 | |
Control | 110 (103–123) | 103.5 (95.5–110) | −5.24 | −7.06 | <0.001 | ||
FEV1%VC MAX, % predicted | Study | 98 (93–108) | 99 (95–103) | −0.98 | −2.19 | 0.172 | |
Control | 108 (101.5–111.5) | 101 (96–108) | −3.94 | −5.41 | 0.002 | ||
PEF, % predicted | Study | 95 (81–108) | 102 (88–113) | 8.86 | 9.67 | <0.001 | |
Control | 97.5 (69–120.5) | 96.5 (78–110.5) | 4.63 | 9.97 | 0.542 | ||
MEF 75, % predicted | Study | 91 (78–105) | 89 (75–113) | 4.62 | 4.44 | 0.341 | |
Control | 83.5 (73.5–117) | 89.5 (80–104.5) | −7.21 | 4.89 | 0.059 | ||
MEF 50, % predicted | Study | 76 (56–89) | 76 (57–87) | 0 | −3.34 | 0.478 | |
Control | 82.5 (63.5–102) | 79 (62–101.5) | −9.2 | −4.19 | 0.044 | ||
MEF 25, % predicted | Study | 70 (50–84) | 61 (46–76) | −2.06 | −0.21 | 0.16 | |
Control | 83 (58–126) | 68 (56.5–86.5) | −17.65 | −16.26 | 0.026 | ||
Diaphragm ultrasonography | |||||||
Maximum inhalation, cm | Right hemidiaphragm | Study | 0.415 (0.321–0.477) | 0.486 (0.401–0.556) | 15.25 | 22.75 | <0.001 |
Control | 0.413 (0.351–0.485) | 0.448 (0.378–0.561) | 5.62 | 12.61 | <0.001 | ||
Left hemidiaphragm | Study | 0.417 (0.359–0.483) | 0.465 (0.387–0.586) | 14.91 | 18.64 | <0.001 | |
Control | 0.407 (0.354–0.488) | 0.429 (0.356–0.526) | 3.31 | 7.53 | 0.002 | ||
Maximum exhalation, cm | Right hemidiaphragm | Study | 0.201 (0.162–0.244) | 0.17 (0.132–0.247) | −13.53 | 18.1 | 0.645 |
Control | 0.174 (0.139–0.208) | 0.174 (0.147–0.201) | −7.84 | 2.42 | 0.681 | ||
Left hemidiaphragm | Study | 0.18 (0.157–0.211) | 0.185 (0.154–0.225) | 0 | 9.71 | 0.561 | |
Control | 0.19 (0.17–0.256) | 0.175 (0.156–0.224) | −5.44 | −7.27 | 0.087 | ||
Normal inhalation, cm | Right hemidiaphragm | Study | 0.254 (0.201–0.285) | 0.232 (0.193–0.355) | 3.78 | 40.41 | 0.18 |
Control | 0.212 (0.171–0.278) | 0.216 (0.190–0.286) | 7.12 | 9.27 | 0.433 | ||
Left hemidiaphragm | Study | 0.204 (0.186–0.24) | 0.217 (0.193–0.301) | 11.76 | 20.1 | 0.003 | |
Control | 0.21 (0.198–0.267) | 0.221 (0.195–0.294) | 1.48 | 9.04 | 0.094 | ||
Normal exhalation, cm | Right hemidiaphragm | Study | 0.201 (0.162–0.244) | 0.216 (0.154–0.27) | 3.02 | 28.58 | 0.376 |
Control | 0.175 (0.139–0.208) | 0.178 (0.145–0.213) | −7.84 | 4.38 | 0.94 | ||
Left hemidiaphragm | Study | 0.18 (0.157–0.211) | 0.185 (0.154–0.225) | 0 | 9.53 | 0.544 | |
Control | 0.19 (0.17–0.256) | 0.172 (0.156–0.233) | −8.14 | −6.43 | 0.064 | ||
DTF | Right hemidiaphragm | Study | 0.882 (0.625–1.594) | 1.441 (0.863–2.384) | 43.03 | 101.69 | 0.036 |
Control | 1.034 (0.905–1.413) | 1.085 (0.899–2.164) | 37.51 | 50.9 | 0.313 | ||
Left hemidiaphragm | Study | 1.232 (0.778–1.782) | 1.418 (1.015–2.211) | 26.08 | 40.92 | 0.021 | |
Control | 0.902 (0.657–1.355) | 1.15 (0.827–2.114) | 18.38 | 142.98 | 0.008 |
Measure | Change | r | p-Value | ||
---|---|---|---|---|---|
Study | Control | ||||
Respiratory pressure | |||||
PImax, cmH2O | 24 (8–33) | 23.5 (9.5–34) | 0.141 | 0.28 | |
PEmax, cmH2O | 35 (16–63) | 18.5 (7.5–59) | 0.002 | 0.987 | |
Chest expansion | |||||
Eiphoid process level, cm | 1 (0–2) | 0.5 (−0.45–1) | 0.023 | 0.86 | |
10th rib level, cm | 1 (0–2.5) | 0 (−0.5–1.5) | 0.06 | 0.646 | |
Spirometry | |||||
FEV 1, % predicted | 5 (−1–9) | 1 (−10–12) | 0.338 | 0.009 | |
FVC EX, % predicted | 5 (0–11) | 1 (−4.5–21.5) | 0.317 | 0.015 | |
FVC IN, % predicted | 2 (−3–11) | 9 (−0.5–42.5) | 0.327 | 0.012 | |
VC MAX, % predicted | 4 (−2–9) | 0 (−5–15.5) | 0.299 | 0.022 | |
FEV1%FVC EX, % predicted | −2 (−6–3) | −5.5 (−12.5 to −2) | 0.155 | 0.232 | |
FEV1%VC MAX, % predicted | −1 (−5–3) | −4 (−10 to −1.5) | 0.151 | 0.248 | |
PEF, % predicted | 8 (−2–15) | 4.5 (−8.5–12.5) | 0.135 | 0.301 | |
MEF 75, % predicted | 4 (−4–14) | −8.5 (−16–10) | 0.071 | 0.586 | |
MEF 50, % predicted | 0 (−10–8) | −8 (−14.5–1) | 0.093 | 0.476 | |
MEF 25, % predicted | −2 (−20–8) | −11.5 (−28 to −2) | 0.118 | 0.365 | |
Diaphragm ultrasonography | |||||
Maximum inhalation, cm | Right hemidiaphragm | −0.018 (−0.054–0.077) | 0.023 (0.013–0.092) | 0.056 | 0.665 |
Left hemidiaphragm | 0.062 (0.034–0.095) | 0.013 (0.005–0.042) | 0.115 | 0.378 | |
Maximum exhalation, cm | Right hemidiaphragm | −0.018 (−0.054–0.077) | −0.015 (−0.034–0.031) | 0.044 | 0.736 |
Left hemidiaphragm | 0 (−0.023–0.031) | −0.012 (−0.033–0.005) | 0.038 | 0.773 | |
Normal inhalation, cm | Right hemidiaphragm | 0.009 (−0.07–0.116) | 0.014 (−0.023–0.05) | 0.145 | 0.266 |
Left hemidiaphragm | 0.023 (−0.006–0.085) | 0.005 (−0.004–0.043) | 0.021 | 0.873 | |
Normal exhalation, cm | Right hemidiaphragm | 0.005 (−0.054–0.092) | −0.015 (−0.038–0.046) | 0.177 | 0.173 |
Left hemidiaphragm | 0 (−0.023–0.031) | −0.014 (−0.033–0.005) | 0.04 | 0.761 | |
DTF | Right hemidiaphragm | 0.48 (−0.217–1.159) | 0.24 (−0.517–0.78) | 0.023 | 0.829 |
Left hemidiaphragm | 0.211 (−0.008–0.766) | 0.266 (−0.003–0.598) | 0.105 | 0.419 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietranis, K.A.; Izdebska, W.M.; Kuryliszyn-Moskal, A.; Dakowicz, A.; Ciołkiewicz, M.; Kaniewska, K.; Dzięcioł-Anikiej, Z.; Wojciuk, M. Effects of Pulmonary Rehabilitation on Respiratory Function and Thickness of the Diaphragm in Patients with Post-COVID-19 Syndrome: A Randomized Clinical Trial. J. Clin. Med. 2024, 13, 425. https://doi.org/10.3390/jcm13020425
Pietranis KA, Izdebska WM, Kuryliszyn-Moskal A, Dakowicz A, Ciołkiewicz M, Kaniewska K, Dzięcioł-Anikiej Z, Wojciuk M. Effects of Pulmonary Rehabilitation on Respiratory Function and Thickness of the Diaphragm in Patients with Post-COVID-19 Syndrome: A Randomized Clinical Trial. Journal of Clinical Medicine. 2024; 13(2):425. https://doi.org/10.3390/jcm13020425
Chicago/Turabian StylePietranis, Katarzyna Anna, Wiktoria Maria Izdebska, Anna Kuryliszyn-Moskal, Agnieszka Dakowicz, Mariusz Ciołkiewicz, Katarzyna Kaniewska, Zofia Dzięcioł-Anikiej, and Mariusz Wojciuk. 2024. "Effects of Pulmonary Rehabilitation on Respiratory Function and Thickness of the Diaphragm in Patients with Post-COVID-19 Syndrome: A Randomized Clinical Trial" Journal of Clinical Medicine 13, no. 2: 425. https://doi.org/10.3390/jcm13020425
APA StylePietranis, K. A., Izdebska, W. M., Kuryliszyn-Moskal, A., Dakowicz, A., Ciołkiewicz, M., Kaniewska, K., Dzięcioł-Anikiej, Z., & Wojciuk, M. (2024). Effects of Pulmonary Rehabilitation on Respiratory Function and Thickness of the Diaphragm in Patients with Post-COVID-19 Syndrome: A Randomized Clinical Trial. Journal of Clinical Medicine, 13(2), 425. https://doi.org/10.3390/jcm13020425