Is Parity a Risk Factor for Late Preterm Birth? Results from a Large Cohort Study
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martin, J.A.; Hamilton, B.E.; Osterman, M.J.K. Births in the United States, 2022. NCHS Data Brief 2023, 477, 1–8. [Google Scholar] [PubMed]
- Yoshida-Montezuma, Y.; Stone, E.; Iftikhar, S.; De Rubeis, V.; Andreacchi, A.T.; Keown-Stoneman, C.; Mbuagbaw, L.; Brown, H.K.; de Souza, R.J.; Anderson, L.N. The association between late preterm birth and cardiometabolic conditions across the life course: A systematic review and meta-analysis. Paediatr. Périnat. Epidemiol. 2022, 36, 264–275. [Google Scholar] [CrossRef] [PubMed]
- Bassil, K.L.; Yasseen, A.S.; Walker, M.; Sgro, M.D.; Shah, P.S.; Smith, G.N.; Campbell, D.M.; Mamdani, M.; Sprague, A.E.; Lee, S.K.; et al. The association between obstetrical interventions and late preterm birth. Am. J. Obstet. Gynecol. 2014, 210, 538.e1–538.e9. [Google Scholar] [CrossRef] [PubMed]
- Holland, M.G.; Refuerzo, J.S.; Ramin, S.M.; Saade, G.R.; Blackwell, S.C. Late preterm birth: How often is it avoidable? Am. J. Obstet. Gynecol. 2009, 201, 404.e1–404.e4. [Google Scholar] [CrossRef] [PubMed]
- Laughon, S.K.; Reddy, U.M.; Sun, L.; Zhang, J. Precursors for late preterm birth in singleton gestations. Obstet. Gynecol. 2010, 116, 1047–1055. [Google Scholar] [CrossRef] [PubMed]
- Bastek, J.A.; Sammel, M.D.; Paré, E.; Srinivas, S.K.; Posencheg, M.A.; Elovitz, M.A. Adverse neonatal outcomes: Examining the risks between preterm, late preterm, and term infants. Am. J. Obstet. Gynecol. 2008, 199, 367.e1–367.e8. [Google Scholar] [CrossRef]
- Wang, M.L.; Dorer, D.J.; Fleming, M.P.; Catlin, E.A. Clinical Outcomes of Near-Term Infants. Pediatrics 2004, 114, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Woythaler, M. Neurodevelopmental outcomes of the late preterm infant. Semin. Fetal Neonatal Med. 2019, 24, 54–59. [Google Scholar] [CrossRef]
- Malik, S.; Vinukonda, G.; Vose, L.R.; Diamond, D.; Bhimavarapu, B.B.R.; Hu, F.; Zia, M.T.; Hevner, R.; Zecevic, N.; Ballabh, P. Neurogenesis continues in the third trimester of pregnancy and is suppressed by premature birth. J. Neurosci. 2013, 33, 411–423. [Google Scholar] [CrossRef]
- Shah, P.E.; Poehlmann, J.; Weeks, H.M.; Spinelli, M.; Richards, B.; Suh, J.; Kaciroti, N. Developmental trajectories of late preterm infants and predictors of academic performance. Pediatr. Res. 2023; Online ahead of print. [Google Scholar] [CrossRef]
- Crump, C.; Sundquist, J.; Sundquist, K. Preterm or early term birth and risk of attention-deficit/hyperactivity disorder: A national cohort and co-sibling study. Ann. Epidemiol. 2023, 86, 119–125.e4. [Google Scholar] [CrossRef]
- Crump, C.; Sundquist, J.; Sundquist, K. Preterm or Early Term Birth and Risk of Autism. Pediatrics 2021, 148, e2020032300. [Google Scholar] [CrossRef] [PubMed]
- Loftin, R.W.; Habli, M.; Snyder, C.C.; Cormier, C.M.; Lewis, D.F.; Defranco, E.A. Late preterm birth. Rev. Obstet. Gynecol. 2010, 3, 10–19. [Google Scholar] [PubMed]
- Karnati, S.; Kollikonda, S.; Abu-Shaweesh, J. Late preterm infants—Changing trends and continuing challenges. Int. J. Pediatr. Adolesc. Med. 2020, 7, 36–44. [Google Scholar] [CrossRef]
- Brown, H.; Speechley, K.; Macnab, J.; Natale, R.; Campbell, M. Biological determinants of spontaneous late preterm and early term birth: A retrospective cohort study. BJOG Int. J. Obstet. Gynaecol. 2014, 122, 491–499. [Google Scholar] [CrossRef]
- Cobo, T.; Kacerovsky, M.; Jacobsson, B. Risk factors for spontaneous preterm delivery. Int. J. Gynecol. Obstet. 2020, 150, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Laopaiboon, M.; Lumbiganon, P.; Intarut, N.; Mori, R.; Ganchimeg, T.; Vogel, J.P.; Souza, J.P.; Gulmezoglu, A.M.; on behalf of the WHO Multicountry Survey on Maternal Newborn Health Research Network. Advanced maternal age and pregnancy outcomes: A multicountry assessment. BJOG Int. J. Obstet. Gynaecol. 2014, 121 (Suppl. S1), 49–56. [Google Scholar] [CrossRef] [PubMed]
- Al-Farsi, Y.M.; Brooks, D.R.; Werler, M.M.; Cabral, H.J.; Shafei, A.; Wallenburg, H.C. Effect of high parity on occurrence of some fetal growth indices: A cohort study. Int. J. Women’s Health 2012, 4, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Milner, M.; Barry-Kinsella, C.; Unwin, A.; Harrison, R. The impact of maternal age on pregnancy and its outcome. Int. J. Gynecol. Obstet. 1992, 38, 281–286. [Google Scholar] [CrossRef]
- Toohey, J.S.; Keegan, K.A.; Morgan, M.A.; Francis, J.; Task, S.; Deveciana, M. The “dangerous multipara”: Fact or fiction? Am. J. Obstet. Gynecol. 1995, 172 Pt 1, 683–686. [Google Scholar] [CrossRef]
- Harrison, M.S.; Goldenberg, R.L. Global burden of prematurity. Semin. Fetal Neonatal Med. 2016, 21, 74–79. [Google Scholar] [CrossRef]
- Morken, N.-H.; Vogel, I.; Kallen, K.; Skjærven, R.; Langhoff-Roos, J.; Kesmodel, U.S.; Jacobsson, B. Reference population for international comparisons and time trend surveillance of preterm delivery proportions in three countries. BMC Women’s Health. 2008, 8, 16. [Google Scholar] [CrossRef] [PubMed]
- Frey, H.A.; Klebanoff, M.A. The epidemiology, etiology, and costs of preterm birth. Semin. Fetal Neonatal Med. 2016, 21, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, F.; Monet, B.; Ducruet, T.; Chaillet, N.; Audibert, F. Effect of maternal age on the risk of preterm birth: A large cohort study. PLoS ONE 2018, 13, e0191002. [Google Scholar] [CrossRef] [PubMed]
- Cnattingius, S.; Villamor, E.; Johansson, S.; Bonamy, A.-K.E.; Persson, M.; Wikström, A.-K.; Granath, F. Maternal obesity and risk of preterm delivery. JAMA J. Am. Med. Assoc. 2013, 309, 2362–2370. [Google Scholar] [CrossRef]
- Tingleff, T.; Vikanes, Å.; Räisänen, S.; Sandvik, L.; Murzakanova, G.; Laine, K. Risk of preterm birth in relation to history of preterm birth: A population-based registry study of 213 335 women in Norway. BJOG Int. J. Obstet. Gynaecol. 2021, 129, 900–907. [Google Scholar] [CrossRef]
- van Zijl, M.D.; Koullali, B.; Oudijk, M.A.; Ravelli, A.C.; Mol, B.W.; Pajkrt, E.; Kazemier, B.M. Trends in preterm birth in singleton and multiple gestations in the Netherlands 2008–2015: A population-based study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 247, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Daskalakis, G.; Psarris, A.; Koutras, A.; Fasoulakis, Z.; Prokopakis, I.; Varthaliti, A.; Karasmani, C.; Ntounis, T.; Domali, E.; Theodora, M.; et al. Maternal Infection and Preterm Birth: From Molecular Basis to Clinical Implications. Children 2023, 10, 907. [Google Scholar] [CrossRef]
- Chan, Y.Y.; Jayaprakasan, K.; Tan, A.; Thornton, J.G.; Coomarasamy, A.; Raine-Fenning, N.J. Reproductive outcomes in women with congenital uterine anomalies: A systematic review. Ultrasound Obstet. Gynecol. 2011, 38, 371–382. [Google Scholar] [CrossRef]
- Dasa, T.T.; Okunlola, M.A.; Dessie, Y. Effect of grand multiparity on adverse maternal outcomes: A prospective cohort study. Front. Public Health 2022, 10, 959633. [Google Scholar] [CrossRef]
- Thanh, B.Y.L.; Lumbiganon, P.; Pattanittum, P.; Laopaiboon, M.; Vogel, J.P.; Oladapo, O.T.; Pileggi-Castro, C.; Mori, R.; Jayaratne, K.; Qureshi, Z.; et al. Mode of delivery and pregnancy outcomes in preterm birth: A secondary analysis of the WHO Global and Multi-country Surveys. Sci. Rep. 2019, 9, 15556. [Google Scholar] [CrossRef]
- Koullali, B.; van Zijl, M.D.; Kazemier, B.M.; Oudijk, M.A.; Mol, B.W.J.; Pajkrt, E.; Ravelli, A.C.J. The association between parity and spontaneous preterm birth: A population based study. BMC Pregnancy Childbirth 2020, 20, 233. [Google Scholar] [CrossRef]
- Ananth, C.V.; Peltier, M.R.; Getahun, D.; Kirby, R.S.; Vintzileos, A.M. Primiparity: An ‘intermediate’ risk group for spontaneous and medically indicated preterm birth. J. Matern. Neonatal Med. 2007, 20, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Berkowitz, G.S.; Blackmore-Prince, C.; Lapinski, R.H.; Savitz, D.A. Risk factors for preterm birth subtypes. Epidemiology 1998, 9, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.S.; on behalf of Knowledge Synthesis Group on Determinants of LBW/PT births. Parity and low birth weight and preterm birth: A systematic review and meta-analyses. Acta Obstet. Gynecol. Scand. 2010, 89, 862–875. [Google Scholar] [CrossRef] [PubMed]
- Kervinen, K.; Holster, T.; Saqib, S.; Virtanen, S.; Stefanovic, V.; Rahkonen, L.; Nieminen, P.; Salonen, A.; Kalliala, I. Parity and gestational age are associated with vaginal microbiota composition in term and late term pregnancies. EBioMedicine 2022, 81, 104107. [Google Scholar] [CrossRef] [PubMed]
- Nasioudis, D.; Forney, L.J.; Schneider, G.M.; Gliniewicz, K.; France, M.; Boester, A.; Sawai, M.; Scholl, J.; Witkin, S.S. Influence of Pregnancy History on the Vaginal Microbiome of Pregnant Women in their First Trimester. Sci. Rep. 2017, 7, 10201. [Google Scholar] [CrossRef]
- Di Simone, N.; Santamaria Ortiz, A.; Specchia, M.; Tersigni, C.; Villa, P.; Gasbarrini, A.; Scambia, G.; D’Ippolito, S. Recent Insights on the Maternal Microbiota: Impact on Pregnancy Outcomes. Front. Immunol. 2020, 11, 528202. [Google Scholar] [CrossRef]
- Gyamfi-Bannerman, C.; Thom, E.A.; Blackwell, S.C.; Tita, A.T.; Reddy, U.M.; Saade, G.R.; Rouse, D.J.; McKenna, D.S.; Clark, E.A.; Thorp, J.M.; et al. Antenatal Betamethasone for Women at Risk for Late Preterm Delivery. N. Engl. J. Med. 2016, 374, 1311–1320, Erratum in N. Engl. J. Med. 2023, 388, 1728. [Google Scholar] [CrossRef]
- Society for Maternal-Fetal Medicine (SMFM) Publications Committee. Implementation of the use of antenatal corticosteroids in the late preterm birth period in women at risk for preterm delivery. Am. J. Obstet. Gynecol. 2016, 215, B13–B15, Erratum in Am. J. Obstet. Gynecol. 2017, 216, 180. [Google Scholar] [CrossRef]
- Committee on Obstetric Practice. Committee Opinion No. 713 Summary: Antenatal Corticosteroid Therapy for Fetal Maturation. Obstet. Gynecol. 2017, 130, 493–494. [Google Scholar] [CrossRef]
- Pires-Menard, A.; Flatley, C.; Kumar, S. Severe neonatal outcomes associated with emergency cesarean section at term. J. Matern. Neonatal Med. 2021, 34, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Flatley, C.; Greer, R.M.; Kumar, S. Birth-weight centiles and the risk of serious adverse neonatal outcomes at term. J. Perinat. Med. 2018, 46, 1048–1056. [Google Scholar] [CrossRef] [PubMed]
Nuliparas | Multiparas | Grandmultiparas | p-Value | |
---|---|---|---|---|
Number | 13,097 | 46,791 | 21,068 | |
Maternal age (mean, years) | 23.3 ± 3.3 | 27.8 ± 4.0 | 35.5 ± 3.8 | <0.01 |
Maternal age < 25 (n, %) | 10,135 (77.4%) | 10,415 (22.2%) | 4 (0.02%) | <0.01 |
Maternal age 25–34 (n, %) | 2764 (21.1%) | 33,212 (70.1%) | 8986 (42.6%) | <0.01 |
Maternal age > 35 (n, %) | 198 (1.5%) | 3164 (6.7%) | 12,078 (57.3%) | <0.01 |
Gestational age at delivery (mean, weeks + days) | 39 + 2 ± 1.6 | 39.5 ± 1.3 | 39.3 ± 1.3 | <0.01 |
Neonatal birth weight (mean, grams) | 3223 ± 437 | 3357 ± 431.7 | 3443 ± 437 | <0.01 |
Chronic Hypertension (n, %) | 62 (0.47%) | 125 (0.27%) | 59 (0.28%) | <0.01 |
Anemia (Hb < 10.5) (n, %) | 211 (1.6%) | 1547 (3.3%) | 767 (3.6%) | <0.01 |
Pregestational diabetes (n, %) | 83 (0.63%) | 222 (0.47%) | 104 (0.49%) | 0.07 |
Repeat pregnancy loss (n, %) | 53 (0.4%) | 868 (1.85%) | 1464 (6.94%) | <0.01 |
Previous cesarean delivery (n, %) | n/a | 4010 (8.6%) | 2939 (13.9%) | <0.01 |
Hypertensive disorders of pregnancy (n, %) | 90 (0.68%) | 152 (0.32%) | 94 (0.44%) | <0.01 |
Gestational diabetes (n, %) | 862 (6.6%) | 2341 (5.0%) | 1257 (5.9%) | <0.01 |
VEPTB (24–28 weeks) N = (%) | 24 (0.18%) | 30 (0.1%) | 6 (0.03%) | <0.01 |
EPTB (28–34 weeks) N = (%) | 75 (0.6%) | 162 (0.3%) | 149 (0.2%) | <0.01 |
Late PTB n = 1595, (2.0%) | 339 (2.6%) | 895 (1.9%) | 361 (1.7%) | <0.01 |
Term births | 12,659 (96.7%) | 45,704 (97.7%) | 20,552 (97.6%) | <0.01 |
Primiparas | Multiparas | Grandmultiparas | p-Value | |
---|---|---|---|---|
Number | 339 | 895 | 361 | |
Maternal age (years) | 23.3 +/− 3.8 | 27.5 +/− 4.8) | 35.7 (+/−4.0) | <0.01 |
Maternal age < 25 | 264 (77.9%) | 251 (28.0%) | 0 | <0.01 |
Maternal age 25–34 | 65 (19.2%) | 573 (64%) | 144 (39.9%) | <0.01 |
Maternal age > 35 | 10 (2.9%) | 71 (7.9%) | 217 (60.1%) | <0.01 |
Maternal Anemia (Hb < 10 g/dL) | 7 (2.1%) | 39 (4.3%) | 26 (7.0%) | <0.01 |
Chronic hypertension (n, %) | 4 (1.18%) | 2 (0.22%) | 0 | 0.06 |
Pregestational diabetes (n, %) | 3 (0.88%) | 11 (1.2%) | 0 | 0.2 |
Repeat pregnancy loss (n, %) | 2 (0.59%) | 20 (2.2%) | 33 (9.1%) | <0.01 |
Previous cesarean delivery (n, %) | n/a | 16 (1.8%) | 16 (4.4%) | <0.01 |
Hypertensive disorders of pregnancy (n, %) | 4 (1.18%) | 15 (1.67%) | 6 (1.6%) | 0.8 |
Gestational diabetes (n, %) | 29 (8.5%) | 60 (6.7%) | 24 (6.6%) | 0.4 |
Gestational age at delivery (weeks + days) | 35 + 3 ± 0.7 | 35 + 4 ± 0.69 | 35 + 4 ± 0.69 | <0.01 |
Neonatal birth weight (grams) | 2546 (+/−382.4) | 2667 (+/−384.4) | 2713 (+/−416.9) | <0.01 |
Primiparas N = 339 | Multiparas N = 895 | Grandmultiparas N = 361 | |
---|---|---|---|
Cesarean delivery (n, %) | 14 (4.1%) | 12 (1.3%) | 12 (3.3%) |
Prolonged third stage (n, %) | 8 (2.3%) | 17 (1.9%) | 9 (2.5%) |
Neonatal RDS (n, %) | 35 (10.3%) | 103 (11.5%) | 38 (10.5%) |
TTN (n, %) | 10 (2.9%) | 37 (4.1%) | 8 (2.2%) |
Neonatal hypoglycemia (n, %) | 6 (1.8%) | 9 (1.0%) | 5 (1.4%) |
Neonatal death (n, %) | 0 (0%) | 0 (0%) | 0 (0%) |
Average NICU admission duration (days) | 11.9 | 9.6 | 11.7 |
Umbilical artery PH < 7.1 (n, %) | 2 (0.6%) | 1 (0.1%) | 1 (0.3%) |
Apgar < 7 at 5 min (n, %) | 7 (2.1%) | 7 (0.8%) | 6 (1.7%) |
NICU admission > 14 days (n, %) | 20 (5.9%) | 30 (3.3%) | 9 (2.5%) |
Combined adverse neonatal outcome (n, %) | 29 (8.5%) | 38 (4.2%) | 16 (4.4%) |
Primiparas vs. Multiparas | Primiparas vs. Grandmultiparas | Multiparas vs. Grandmultiparas | |
---|---|---|---|
Spontaneous late preterm birth | aOR 1.5 | aOR 1.4 | aOR 1.1 |
[1.3–1.8] | [1.2–1.5] | [1–1.3] | |
p < 0.01 | p < 0.01 | p = 0.04 | |
Cesarean delivery | OR 2.7 | OR 1.2 | OR 0.4 |
[1.2–5.9] | [0.6–2.7] | [0.2–0.9] | |
p < 0.01 | p = 0.28 | p = 0.01 | |
Prolonged third stage | OR 1.2 | OR 0.9 | OR 0.8 |
[0.5–2.9] | [0.4–2.5] | [0.3–1.7] | |
p = 0.3 | p = 0.4 | p = 0.2 | |
Neonatal RDS | |||
OR 0.88 | OR 0.98 | OR 1.1 | |
[0.2–1.4] | [0.6–1.6] | [0.7–1.6] | |
p = 0.5 | p = 0.4 | p = 0.5 | |
TTN | |||
OR 0.7 | OR 1.3 | OR 1.9 | |
[0.3–1.4] | [0.5–3.4] | [0.5–3.4] | |
p = 0.1 | p = 0.2 | p = 0.05 | |
Neonatal hypoglycemia | |||
OR 1.7 | OR 1.3 | OR 0.7 | |
[0.6–5.0] | [0.4–4.2] | [0.2–2.2] | |
p = 0.1 | p = 0.3 | p = 0.2 | |
Neonatal death | |||
N/A | N/A | N/A | |
Average NICU admission duration (days) | |||
0.09 | 0.9 | 0.3 | |
Umbilical artery PH < 7.1 | OR 5.3 | OR 2.1 | OR 0.4 |
[0.5–58.7] | [0.2–23.7] | [0.03–6.5] | |
p = 0.08 | p = 0.2 | p = 0.2 | |
APGAR < 7 at 5 min | OR 2.7 | OR 1.2 | OR 0.4 |
[0.9–7.7] | [0.4–3.8] | [0.16–1.4] | |
p = 0.03 | p = 0.3 | p = 0.08 | |
NICU admission > 14 days | OR 1.8 | OR 2.4 | OR 1.3 |
[1.0, 3.2] | [1.1–5.5] | [0.6–2.9] | |
p = 0.02 | p = 0.01 | p = 0.2 | |
Combined adverse neonatal outcome | |||
2.1 | 2 | 1.1 | |
[1.3–3.5] | [1.1–3.8] | [0.6–2.2] | |
p = 0.002 | p = 0.01 | p = 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kashani-Ligumsky, L.; Neiger, R.; Segal, E.; Cohen, R.; Lopian, M. Is Parity a Risk Factor for Late Preterm Birth? Results from a Large Cohort Study. J. Clin. Med. 2024, 13, 429. https://doi.org/10.3390/jcm13020429
Kashani-Ligumsky L, Neiger R, Segal E, Cohen R, Lopian M. Is Parity a Risk Factor for Late Preterm Birth? Results from a Large Cohort Study. Journal of Clinical Medicine. 2024; 13(2):429. https://doi.org/10.3390/jcm13020429
Chicago/Turabian StyleKashani-Ligumsky, Lior, Ran Neiger, Ella Segal, Ronnie Cohen, and Miriam Lopian. 2024. "Is Parity a Risk Factor for Late Preterm Birth? Results from a Large Cohort Study" Journal of Clinical Medicine 13, no. 2: 429. https://doi.org/10.3390/jcm13020429
APA StyleKashani-Ligumsky, L., Neiger, R., Segal, E., Cohen, R., & Lopian, M. (2024). Is Parity a Risk Factor for Late Preterm Birth? Results from a Large Cohort Study. Journal of Clinical Medicine, 13(2), 429. https://doi.org/10.3390/jcm13020429