PR Interval as a Novel Therapeutic Target of Ivabradine Therapy—Prognostic Impact of Ivabradine-Induced PR Prolongation in Heart Failure Patients
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Patient Characteristics
2.3. Clinical Outcomes
2.4. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Trajectory of Electrocardiographic Parameters
3.3. Association between Electrocardiographic and Echocardiographic Data
3.4. Predictors of the Primary Endpoints
4. Discussion
4.1. Major Findings
4.2. Impact of Ivabradine on Electrophysiology
4.3. Impact of Ivabradine on Cardiac Conduction System
4.4. Impacts of PR Prolongation on Hemodynamics
4.5. Clinical Perspective
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
bpm | beats per minute |
If | funny current |
msec | milliseconds |
References
- Swedberg, K.; Komajda, M.; Böhm, M.; Borer, J.S.; Ford, I.; Dubost-Brama, A.; Lerebours, G.; Tavazzi, L. Ivabradine and outcomes in chronic heart failure (SHIFT): A randomised placebo-controlled study. Lancet 2010, 376, 875–885. [Google Scholar] [CrossRef] [PubMed]
- Speranza, L.; Franceschelli, S.; Riccioni, G. The biological effects of ivabradine in cardiovascular disease. Molecules 2012, 17, 4924–4935. [Google Scholar] [CrossRef] [PubMed]
- Verrier, R.L.; Sobrado, M.F.; Pagotto, V.P.; Kanas, A.F.; Machado, A.D.; Varone, B.B.; Sobrado, L.F.; Nearing, B.D.; Zeng, D.; Belardinelli, L. Inhibition of I(f) in the atrioventricular node as a mechanism for dronedarone’s reduction in ventricular rate during atrial fibrillation. Heart Rhythm. 2013, 10, 1692–1697. [Google Scholar] [CrossRef]
- Wongcharoen, W.; Ruttanaphol, A.; Gunaparn, S.; Phrommintikul, A. Ivabradine reduced ventricular rate in patients with non-paroxysmal atrial fibrillation. Int. J. Cardiol. 2016, 224, 252–255. [Google Scholar] [CrossRef] [PubMed]
- Fontenla, A.; Tamargo, J.; Salgado, R.; López-Gil, M.; Mejía, E.; Matía, R.; Toquero, J.; Montilla, I.; Rajjoub, E.A.; García-Fernandez, F.J.; et al. Ivabradine for controlling heart rate in permanent atrial fibrillation: A translational clinical trial. Heart Rhythm. 2023, 20, 822–830. [Google Scholar] [CrossRef]
- Verrier, R.L.; Bonatti, R.; Silva, A.F.; Batatinha, J.A.; Nearing, B.D.; Liu, G.; Rajamani, S.; Zeng, D.; Belardinelli, L. If inhibition in the atrioventricular node by ivabradine causes rate-dependent slowing of conduction and reduces ventricular rate during atrial fibrillation. Heart Rhythm. 2014, 11, 2288–2296. [Google Scholar] [CrossRef]
- Soliman, E.Z.; Rautaharju, P.M. Heart rate adjustment of PR interval in middle-aged and older adults. J. Electrocardiol. 2012, 45, 66–69. [Google Scholar] [CrossRef]
- Izumida, T.; Imamura, T.; Nakamura, M.; Fukuda, N.; Kinugawa, K. How to consider target heart rate in patients with systolic heart failure. ESC Heart Fail. 2020, 7, 3231–3234. [Google Scholar] [CrossRef]
- Salden, F.; Huntjens, P.R.; Schreurs, R.; Willemen, E.; Kuiper, M.; Wouters, P.; Maessen, J.G.; Bordachar, P.; Delhaas, T.; Luermans, J.; et al. Pacing therapy for atrioventricular dromotropathy: A combined computational-experimental-clinical study. Europace 2022, 24, 784–795. [Google Scholar] [CrossRef]
- Coluccia, G.; Dell’Era, G.; Ghiglieno, C.; De Vecchi, F.; Spinoni, E.; Santagostino, M.; Guido, A.; Zaccaria, M.; Patti, G.; Accogli, M.; et al. Optimization of the atrioventricular delay in conduction system pacing. J Cardiovasc Electrophysiol. 2023, 34, 1441–1451. [Google Scholar] [CrossRef]
- Bertini, M.; Delgado, V.; Bax, J.J.; Van de Veire, N.R. Why, how and when do we need to optimize the setting of cardiac resynchronization therapy? Europace 2009, 11 (Suppl. S5), v46–v57. [Google Scholar] [CrossRef] [PubMed]
- Psotka, M.A.; Teerlink, J.R. Ivabradine: Role in the Chronic Heart Failure Armamentarium. Circulation 2016, 133, 2066–2075. [Google Scholar] [CrossRef]
- O’Connor, D.M.; Smith, R.S.; Piras, B.A.; Beyers, R.J.; Lin, D.; Hossack, J.A.; French, B.A. Heart Rate Reduction with Ivabradine Protects Against Left Ventricular Remodeling by Attenuating Infarct Expansion and Preserving Remote-Zone Contractile Function and Synchrony in a Mouse Model of Reperfused Myocardial Infarction. J. Am. Heart Assoc. 2016, 5, e002989. [Google Scholar] [CrossRef] [PubMed]
- Custodis, F.; Baumhakel, M.; Schlimmer, N.; List, F.; Gensch, C.; Bohm, M.; Laufs, U. Heart rate reduction by ivabradine reduces oxidative stress, improves endothelial function, and prevents atherosclerosis in apolipoprotein E-deficient mice. Circulation 2008, 117, 2377–2387. [Google Scholar] [CrossRef]
- Amstetter, D.; Badt, F.; Rubi, L.; Bittner, R.E.; Ebner, J.; Uhrin, P.; Hilber, K.; Koenig, X.; Todt, H. The bradycardic agent ivabradine decreases conduction velocity in the AV node and in the ventricles in-vivo. Eur. J. Pharmacol. 2021, 893, 173818. [Google Scholar] [CrossRef] [PubMed]
- Koruth, J.S.; Lala, A.; Pinney, S.; Reddy, V.Y.; Dukkipati, S.R. The Clinical Use of Ivabradine. J. Am. Coll. Cardiol. 2017, 70, 1777–1784. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidou, T.; Ghosh, J.M.; Clark, A.L. Outcomes Related to First-Degree Atrioventricular Block and Therapeutic Implications in Patients With Heart Failure. JACC Clin. Electrophysiol. 2016, 2, 181–192. [Google Scholar] [CrossRef]
- Park, S.J.; On, Y.K.; Byeon, K.; Kim, J.S.; Choi, J.O.; Choi, D.J.; Ryu, K.H.; Jeon, E.S. Short- and long-term outcomes depending on electrical dyssynchrony markers in patients presenting with acute heart failure: Clinical implication of the first-degree atrioventricular block and QRS prolongation from the Korean Heart Failure registry. Am. Heart J. 2013, 165, 57–64.e2. [Google Scholar] [CrossRef]
- Soliman, E.Z.; Cammarata, M.; Li, Y. Explaining the inconsistent associations of PR interval with mortality: The role of P-duration contribution to the length of PR interval. Heart Rhythm. 2014, 11, 93–98. [Google Scholar] [CrossRef]
- Olshansky, B.; Day, J.D.; Sullivan, R.M.; Yong, P.; Galle, E.; Steinberg, J.S. Does cardiac resynchronization therapy provide unrecognized benefit in patients with prolonged PR intervals? The impact of restoring atrioventricular synchrony: An analysis from the COMPANION Trial. Heart Rhythm. 2012, 9, 34–39. [Google Scholar] [CrossRef]
- Memenga, F.; Rybczynski, M.; Magnussen, C.; Goßling, A.; Kondziella, C.; Becher, N.; Becher, P.M.; Bernadyn, J.; Berisha, F.; Bremer, W.; et al. Heart Rate Reduction and Outcomes in Heart Failure Outpatients. J. Clin. Med. 2023, 12, 6779. [Google Scholar] [CrossRef]
- Kusunose, K.; Arase, M.; Zheng, R.; Hirata, Y.; Nishio, S.; Ise, T.; Yamaguchi, K.; Fukuda, D.; Yagi, S.; Yamada, H.; et al. Clinical utility of overlap time for incomplete relaxation to predict cardiac events in heart failure. J. Card. Fail. 2021, 27, 1222–1230. [Google Scholar] [CrossRef]
- Bohm, M.; Abdin, A.; Slawik, J.; Mahfoud, F.; Borer, J.; Ford, I.; Swedberg, K.; Tavazzi, L.; Batailler, C.; Komajda, M. Time to benefit of heart rate reduction with ivabradine in patients with heart failure and reduced ejection fraction. Eur. J. Heart Fail. 2023, 25, 1429–1435. [Google Scholar] [CrossRef]
- Imamura, T.; Onoda, H.; Uchida, K.; Kinugawa, K. Implication of Ivabradine Therapy in Up-Titrating Beta-Blocker Dose in Patients with Systolic Dysfunction. Int. Heart J. 2021, 62, 1305–1309. [Google Scholar] [CrossRef]
- Vacarescu, C.; Luca, C.T.; Feier, H.; Gaiță, D.; Crișan, S.; Negru, A.G.; Iurciuc, S.; Goanță, E.V.; Mornos, C.; Lazăr, M.A.; et al. Betablockers and Ivabradine Titration According to Exercise Test in LV Only Fusion CRT Pacing. Diagnostics 2022, 12, 1096. [Google Scholar] [CrossRef]
- Scridon, A.; Halaţiu, V.B.; Balan, A.I.; Cozac, D.A.; Moldovan, V.; Bănescu, C.; Perian, M.; Şerban, R.C. Long-Term effects of ivabradine on cardiac vagal parasympathetic function in normal rats. Front. Pharmacol. 2021, 12, 596956. [Google Scholar] [CrossRef]
Variable | Overall (n = 29) |
---|---|
Demographics | |
Age (years) | 66 [52–76] |
Male, n (%) | 18 (62) |
BMI (kg/m2) | 21.8 [18.4–24.3] |
Comorbidities | |
Hypertension, n (%) | 15 (52) |
Diabetes mellitus, n (%) | 11 (38) |
Dyslipidemia, n (%) | 15 (52) |
Hemodialysis, n (%) | 3 (10) |
Etiology | |
Ischemia, n (%) | 12 (41) |
Dilated cardiomyopathy, n (%) | 9 (31) |
Valvular heart disease, n (%) | 3 (10) |
Others, n (%) | 5 (17) |
Medications | |
ACEi, ARB, or ARNI, n (%) | 25 (86) |
β-blockers, n (%) | 24 (83) |
Mineralocorticoid receptor antagonists, n (%) | 21 (72) |
Sodium-glucose transport protein 2 inhibitors, n (%) | 10 (34) |
Administration of the above four medical therapies, n (%) | 8 (28) |
Loop diuretics, n (%) | 17 (59) |
Tolvaptan, n (%) | 11 (38) |
Blood pressure | |
Systolic, mmHg | 103 [90–110] |
Diastolic, mmHg | 66 [58–75] |
Baseline echocardiographic parameters | |
Left atrial diameter, mm | 31 [22–47] |
Left ventricular ejection fraction, % | 38 [34–49] |
Mitral E-wave speed, cm/sec | 30 [26–33] |
Deceleration time to E-wave, msec | 185 [124–237] |
Mitral A-wave speed, cm/sec | 64 [57–70] |
Mitral E/A ratio | 0.9 [0.6–1.3] |
Interval of E- and A-waves fusion, msec | 68 [33–103] |
Laboratory data | |
Serum creatinine, mg/dL | 0.8 [0.7–1.6] |
Estimated GFR, ml/min/1.73 m2 | 58.3 [35.7–78.4] |
Plasma BNP, pg/mL | 280 [137–606] |
Serum NT-proBNP, pg/mL | 1596 [999–4870] |
Serum sodium, mmol/L | 139 [138–142] |
Serum potassium, mmol/L | 4.2 [4.0–4.6] |
Hemoglobin, g/dL | 12.0 [11.1–14.0] |
HR | 95% CI | p Value | |
---|---|---|---|
Age (1 year increase) | 1.02 | 0.96–1.09 | 0.507 |
Male | 3.02 | 0.35–25.94 | 0.313 |
BMI (1 kg/m2 increase) | 1.01 | 0.82–1.19 | 0.954 |
Comorbidities | |||
Hypertension | 1.22 | 0.24–6.04 | 0.811 |
Diabetes mellitus | 4.68 | 0.85–25.71 | 0.076 |
Dyslipidemia | 0.96 | 0.19–4.74 | 0.957 |
Hemodialysis | 1.74 | 0.20–14.94 | 0.615 |
Etiology | |||
Ischemia | 0.55 | 0.11–2.73 | 0.462 |
Medications | |||
Administration of the four drugs for heart failure | 1.30 | 0.24–7.09 | 0.764 |
Loop diuretics | 1.37 | 0.25–7.53 | 0.714 |
Vital signs before administration | |||
Heart rate (1 beat per minute increase) | 0.98 | 0.94–1.03 | 0.427 |
Systolic blood pressure (1 mmHg increase) | 1.00 | 0.97–1.00 | 0.687 |
Diastolic blood pressure (1 mmHg increase) | 0.98 | 0.92–1.00 | 0.604 |
Baseline electrocardiographic parameters | |||
PR interval (1 msec increase) | 0.98 | 0.95–1.01 | 0.134 |
QRS width (1 msec increase) | 1.02 | 1.00–1.05 | 0.026 |
Corrected QT interval (1 msec increase) | 0.99 | 0.98–1.01 | 0.238 |
Baseline echocardiographic parameters | |||
Left atrial diameter (1 mm increase) | 1.03 | 0.94–1.12 | 0.553 |
Left ventricular ejection fraction (1% increase) | 1.03 | 0.98–1.09 | 0.234 |
Mitral E-wave speed (1 cm/sec increase) | 0.97 | 0.94–1.00 | 0.105 |
Deceleration time to E-wave (1 msec prolongation) | 1.00 | 0.99–1.00 | 0.472 |
Mitral A-wave speed (1 cm/sec increase) | 1.00 | 0.97–1.00 | 0.661 |
Interval of E- and A-waves fusion (1 msec increase) | 1.00 | 0.99–1.01 | 0.604 |
Laboratory data | |||
Creatinine (1 mg/dL increase) | 1.01 | 0.51–1.47 | 0.958 |
Estimated GFR (1 mL/min/1.73 m2 increase) | 1.01 | 0.98–1.04 | 0.638 |
BNP (1 pg/mL increase) | 1.00 | 1.00–1.00 | 0.715 |
NT-proBNP (1 pg/mL increase) | 1.00 | 1.00–1.00 | 0.993 |
Sodium (1 mmol/L increase) iPotassium, mmol/L Hemoglobin, g/dLTroponin I, (1 pg/mL increase) | 0.94 | 0.67–1.30 | 0.712 |
Potassium (1 mmol/L increase) | 1.13 | 0.18–4.31 0.18 | 0.890 |
Hemoglobin (1 g/dL increase) | 1.04 | 0.70–1.58 | 0.829 |
Adjusted for QRS Width | |||
---|---|---|---|
HR | 95% CI | p Value | |
Heart rate decrease | 0.23 | 0.04–1.17 | 0.076 |
PR prolongation | 0.06 | 0.01–0.67 | 0.022 |
Heart rate decrease and PR prolongation | |||
vs. heart rate increase or PR shortening | 0.06 | <0.01–0.69 | 0.025 |
vs. heart rate increase and PR shortening | 0.01 | <0.01–0.21 | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamamoto, R.; Kataoka, N.; Imamura, T.; Izumida, T.; Kinugawa, K. PR Interval as a Novel Therapeutic Target of Ivabradine Therapy—Prognostic Impact of Ivabradine-Induced PR Prolongation in Heart Failure Patients. J. Clin. Med. 2024, 13, 510. https://doi.org/10.3390/jcm13020510
Yamamoto R, Kataoka N, Imamura T, Izumida T, Kinugawa K. PR Interval as a Novel Therapeutic Target of Ivabradine Therapy—Prognostic Impact of Ivabradine-Induced PR Prolongation in Heart Failure Patients. Journal of Clinical Medicine. 2024; 13(2):510. https://doi.org/10.3390/jcm13020510
Chicago/Turabian StyleYamamoto, Riona, Naoya Kataoka, Teruhiko Imamura, Toshihide Izumida, and Koichiro Kinugawa. 2024. "PR Interval as a Novel Therapeutic Target of Ivabradine Therapy—Prognostic Impact of Ivabradine-Induced PR Prolongation in Heart Failure Patients" Journal of Clinical Medicine 13, no. 2: 510. https://doi.org/10.3390/jcm13020510
APA StyleYamamoto, R., Kataoka, N., Imamura, T., Izumida, T., & Kinugawa, K. (2024). PR Interval as a Novel Therapeutic Target of Ivabradine Therapy—Prognostic Impact of Ivabradine-Induced PR Prolongation in Heart Failure Patients. Journal of Clinical Medicine, 13(2), 510. https://doi.org/10.3390/jcm13020510