Heart Transplantation
Abstract
:1. Introduction
2. Graft Selection
2.1. ABO and HLA Compatibility
2.2. Graft Size
2.3. Ischemic Time
2.4. Age
2.5. Infections
2.6. Cause of Death
2.7. Laboratory-Imaging Tests
3. Allocation System—Graft Distribution
4. Transplantation Techniques
4.1. Orthotopic Transplantation
- (A)
- Bicaval technique: The placement of the graft in the recipient is an anastomosis of the left sinus of the graft with part of the recipient. Initially, suture placement is performed at the left atrial cuff adjacent to the left superior pulmonary vein and passing through the donor’s left atrial cuff adjacent to the left atrial appendage. Then, it is performed sequentially or posteriorly, and the anterior suturing of the sinus with care for the surfaces of the endocardium is sutured to reduce the possibility of thrombus formation. After this, the superior and inferior vena cava are anastomosed, taking care not to injure the coronary sinus, pulmonary artery, and aorta.
- (B)
- Biatrial technique: The anastomosis of the atrium is performed as above, with the sutures ending at the inter-atrial septum. The difference is that part of the recipient’s right sinus is also preserved, and an anastomosis is also performed there. The suture is initiated at the superior end of the atrial incision, and the anastomosis of the diaphragm follows. Then, the great vessels are sutured as before. After the anastomoses, the patient is placed in the Trendelenburg position, the cavities are vented, temporary right atrium and ventricle pacing is instituted, and the patient is weaned from mechanical circulation.
4.2. Heterotopic HTx
5. Transplant Recipients
6. Complications
6.1. Rejection
- Acute cellular rejection: This is the most frequent type of rejection. Pathophysiologically, the major and minor histocompatibility antigens are not uniformly expressed, with the result that they function as allografts and activate T-cytotoxic lymphocytes either indirectly or through antigen presentation. CD-4 and CD-8 positive T lymphocytes with high affinity to interleukin-2 receptors and increased intercellular adhesion molecules with high MHC-II expression on cardiac myocytes produce cytokines. This leads to the accumulation of inflammatory cells, such as macrophages and neutrophils, perivascularly inducing inflammation in the epicardial and endomyocardial arteries. Histopathologically, it is divided into three categories. The first is called low-grade, where inflammation is not observed in the myocardium. The second is the partial degree, where two or more foci are found in the myocardium. Finally, the third one, identified as high grade, shows multiple foci of damage with various types of inflammatory cells and necrotic elements.
- Acute humoral rejection: This shows a more complicated clinical manifestation. It is believed that the production of antibodies against the major and minor histocompatibility complex system is induced due to previous exposure to allogens such as transfusion, transplantation, and long-term circulatory support devices. It is divided into five categories according to antibody-mediated rejection in histopathological and immunopathological studies. The first is pAMR 0 Negative for antibody-mediated rejection with negative histopathological and immunopathological studies. The second is called pAMR 1(H+), with the presence of histopathological findings such as activated immune cells, inflammation, necrosis, etc. The third is pAMR 1(I+) antibody-mediated rejection with immunopathological and not histopathological findings. Next is pAMR 2, combining histopathological and immunopathological findings. Last is pAMR 3, in which severe histopathology (hemorrhage, capillary fragmentation, inflammation, interstitial edema) and immunopathological markers are observed.
- Hyperacute: This is created due to incompatibility with the ABO system, and its manifestations begin early with thrombosis of the vessels of the graft [68].
- Corticosteroids
- 2.
- Calcineurins inhibitors
- 3.
- Anti-proliferative agents
- 4.
- mTOR inhibitors
- 5.
- Induction Therapy
- -
- Monoclonal anti-lymphocyte antibodies;
- -
- Polyclonal anti-lymphocyte antibodies;
- -
- Antibodies against cytokine receptors.
6.2. Graft Angiopathy
6.3. Primary Graft Failure
6.4. Infections
6.5. Neoplasms
6.6. Retransplantations
7. Future Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Demiralp, G.; Arrigo, R.T.; Cassara, C.; Johnson, M.R. Heart Transplantation-Postoperative Considerations. Crit. Care Clin. 2024, 40, 137–157. [Google Scholar] [CrossRef]
- Stolf, N.A.G. History of Heart Transplantation: A Hard and Glorious Journey. Braz. J. Cardiovasc. Surg. 2017, 32, 423–427. [Google Scholar] [CrossRef] [PubMed]
- DeFilippis, E.M.; Kransdorf, E.P.; Jaiswal, A.; Zhang, X.; Patel, J.; Kobashigawa, J.A.; Baran, D.A.; Kittleson, M.M. Detection and management of HLA sensitization in candidates for adult heart transplantation. J. Heart Lung Transplant. 2023, 42, 409–422. [Google Scholar] [CrossRef]
- Bergenfeldt, H.; Andersson, B.; Bucin, D.; Stehlik, J.; Edwards, L.; Radegran, G.; Nilsson, J. Outcomes after ABO-incompatible heart transplantation in adults: A registry study. J. Heart Lung Transplant. 2015, 34, 892–898. [Google Scholar] [CrossRef]
- Firoz, A.; Geier, S.; Yanagida, R.; Hamad, E.; Rakita, V.; Zhao, H.; Kashem, M.M.; Toyoda, Y. Heart Transplant Human Leukocyte Antigen Matching in the Modern Era. J. Card. Fail. 2023; Epub ahead of print. [Google Scholar] [CrossRef]
- Gavroy, B.; Timmermans, T.; Van Caenegem, O.; Mastrobuoni, S.; Jacquet, L.; Latinne, D.; Poncelet, A.J. Significance of HLA-matching and anti-HLA antibodies in heart transplant patients receiving induction therapy? Transpl. Immunol. 2022, 75, 101706. [Google Scholar] [CrossRef] [PubMed]
- Tatum, R.; Briasoulis, A.; Tchantchaleishvili, V.; Massey, H.T. Evaluation of donor heart for transplantation. Heart Fail. Rev. 2022, 27, 1819–1827. [Google Scholar] [CrossRef] [PubMed]
- Guglin, M.; Kozaily, E.; Kittleson, M.M. Choosing wisely: Incorporating appropriate donor-recipient size matching in heart transplantation. Heart Fail. Rev. 2023, 28, 967–975. [Google Scholar] [CrossRef]
- Kransdorf, E.P.; Kittleson, M.M.; Benck, L.R.; Patel, J.K.; Chung, J.S.; Esmailian, F.; Kearney, B.L.; Chang, D.H.; Ramzy, D.; Czer, L.S.C.; et al. Predicted heart mass is the optimal metric for size match in heart transplantation. J. Heart Lung Transplant. 2019, 38, 156–165. [Google Scholar] [CrossRef]
- Miller, R.J.H.; Hedman, K.; Amsallem, M.; Tulu, Z.; Kent, W.; Fatehi-Hassanabad, A.; Clarke, B.; Heidenreich, P.; Hiesinger, W.; Khush, K.K.; et al. Donor and Recipient Size Matching in Heart Transplantation With Predicted Heart and Lean Body Mass. Semin. Thorac. Cardiovasc. Surg. 2022, 34, 158–167. [Google Scholar] [CrossRef]
- Kasturi, S.; Kumaran, T.; Shetty, V.; Punnen, J.; Subramanya, S.; Raghuraman, B.; Parachuri, V.R.; Shetty, D.P. Oversized donor heart transplantation-clinical experience with an underestimated problem. Indian J. Thorac. Cardiovasc. Surg. 2021, 37, 631–638. [Google Scholar] [CrossRef]
- Khush, K.K.; Cherikh, W.S.; Chambers, D.C.; Harhay, M.O.; Hayes, D., Jr.; Hsich, E.; Meiser, B.; Potena, L.; Robinson, A.; Rossano, J.W.; et al. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Thirty-sixth adult heart transplantation report—2019; focus theme: Donor and recipient size match. J. Heart Lung Transplant. 2019, 38, 1056–1066. [Google Scholar] [CrossRef] [PubMed]
- Pradegan, N.; Gallo, M.; Fabozzo, A.; Toscano, G.; Tarzia, V.; Gerosa, G. Nonischemic Donor Heart Preservation: New Milestone in Heart Transplantation History. ASAIO J. 2023, 69, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.T.; Helmers, M.R.; Iyengar, A.; Han, J.J.; Patrick, W.L.; Weingarten, N.; Herbst, D.A.; Atluri, P. Interaction between donor obesity and prolonged donor ischemic time in heart transplantation. J. Cardiol. 2022, 80, 351–357. [Google Scholar] [CrossRef]
- Reich, H.J.; Kobashigawa, J.A.; Aintablian, T.; Ramzy, D.; Kittleson, M.M.; Esmailian, F. Effects of Older Donor Age and Cold Ischemic Time on Long-Term Outcomes of Heart Transplantation. Tex. Heart Inst. J. 2018, 45, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.C.; Wu, X.; Zhang, M.; Likosky, D.; Haft, J.W.; Lei, I.; Abou El Ela, A.; Si, M.S.; Aaronson, K.D.; Pagani, F.D. Determining optimal donor heart ischemic times in adult cardiac transplantation. J. Card. Surg. 2022, 37, 2042–2050. [Google Scholar] [CrossRef]
- Nilsson, J.; Jernryd, V.; Qin, G.; Paskevicius, A.; Metzsch, C.; Sjoberg, T.; Steen, S. A nonrandomized open-label phase 2 trial of nonischemic heart preservation for human heart transplantation. Nat. Commun. 2020, 11, 2976. [Google Scholar] [CrossRef]
- Liu, J.; Yang, B.Q.; Itoh, A.; Masood, M.F.; Hartupee, J.C.; Schilling, J.D. Impact of New UNOS Allocation Criteria on Heart Transplant Practices and Outcomes. Transplant. Direct 2021, 7, e642. [Google Scholar] [CrossRef]
- Immohr, M.B.; Aubin, H.; Westenfeld, R.; Erbel-Khurtsidze, S.; Tudorache, I.; Akhyari, P.; Lichtenberg, A.; Boeken, U. Heart Transplantation of the Elderly-Old Donors for Old Recipients: Can We Still Achieve Acceptable Results? J. Clin. Med. 2022, 11, 929. [Google Scholar] [CrossRef]
- Roig, E.; Almenar, L.; Crespo-Leiro, M.; Segovia, J.; Mirabet, S.; Delgado, J.; Perez-Villa, F.; Luis Lambert, J.; Teresa Blasco, M.; Muniz, J.; et al. Heart transplantation using allografts from older donors: Multicenter study results. J. Heart Lung Transplant. 2015, 34, 790–796. [Google Scholar] [CrossRef]
- Prieto, D.; Correia, P.; Baptista, M.; Antunes, M.J. Outcome after heart transplantation from older donor age: Expanding the donor pool. Eur. J. Cardiothorac. Surg. 2015, 47, 672–678. [Google Scholar] [CrossRef]
- Siddiqi, H.K.; Schlendorf, K.H. Hepatitis C Positive Organ Donation in Heart Transplantation. Curr. Transplant. Rep. 2021, 8, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.T.; Iyengar, A.; Helmers, M.R.; Weingarten, N.; Rekhtman, D.; Song, C.; Shin, M.; Cevasco, M.; Atluri, P. Outcomes of COVID-19-Positive Donor Heart Transplantation in the United States. J. Am. Heart Assoc. 2023, 12, e029178. [Google Scholar] [CrossRef]
- Gernhofer, Y.K.; Bui, Q.M.; Powell, J.J.; Perez, P.M.; Jones, J.; Batchinsky, A.I.; Glenn, I.C.; Adler, E.; Kearns, M.J.; Pretorius, V. Heart transplantation from donation after circulatory death: Impact on waitlist time and transplant rate. Am. J. Transplant. 2023, 23, 1241–1255. [Google Scholar] [CrossRef]
- Urban, M.; Moody, M.; Lyden, E.; Kinen, L.; Castleberry, A.W.; Siddique, A.; Lowes, B.D.; Stoller, D.A.; Lungren, S.W.; Um, J.Y. Impact of donation after circulatory death heart transplantation on waitlist outcomes and transplantation activity. Clin. Transplant. 2023, 37, e14942. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Inampudi, C.; Ramu, B.; Gregoski, M.J.; Atkins, J.; Jackson, G.R.; Celia, A.; Griffin, J.M.; Silverman, D.N.; Judge, D.P.; et al. Impact of Donor Hemodynamics on Recipient Survival in Heart Transplantation. J. Card. Fail. 2023, 29, 1288–1295. [Google Scholar] [CrossRef] [PubMed]
- Ganapathi, A.M.; Lampert, B.C.; Mokadam, N.A.; Emani, S.; Hasan, A.K.; Tamer, R.; Whitson, B.A. Allocation changes in heart transplantation: What has really changed? J. Thorac. Cardiovasc. Surg. 2023, 165, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Defilippis, E.M.; Truby, L.K.; Clerkin, K.J.; Donald, E.; Sinnenberg, L.; Varshney, A.S.; Cogswell, R.; Kittleson, M.M.; Haythe, J.H.; Givertz, M.M.; et al. Increased Opportunities for Transplantation for Women in the New Heart Allocation System. J. Card. Fail. 2022, 28, 1149–1157. [Google Scholar] [CrossRef]
- Shin, M.; Iyengar, A.; Helmers, M.R.; Kelly, J.J.; Song, C.; Rekhtman, D.; Cevasco, M. Modern outcomes of heart-lung transplantation: Assessing the impact of the updated US allocation system. Eur. J. Cardiothorac. Surg. 2022, 63, 559. [Google Scholar] [CrossRef]
- Jani, M.; Cook, S.; Huang, S.H.; Boeve, T.; Leacche, M.; Manandhar-Shrestha, N.K.; Jovinge, S.V.; Loyaga-Rendon, R.Y. Increased frequency of heart transplantation, shortened waitlist time and preserved post-transplant survival in adults with congenital heart disease, on the new heart transplant allocation system. Clin. Transplant. 2021, 35, e14205. [Google Scholar] [CrossRef]
- Golbus, J.R.; Li, J.; Cascino, T.M.; Tang, W.; Zhu, J.; Colvin, M.; Walsh, M.N.; Nallamothu, B.K. Greater geographic sharing and heart transplantation waitlist outcomes following the 2018 heart allocation policy. J. Heart Lung Transplant. 2023, 42, 936–942. [Google Scholar] [CrossRef]
- Trivedi, J.R.; Slaughter, M.S. Heart Transplantation Allocation Under New Policy: Perceived Risk and Gaming the System. JACC Heart Fail. 2020, 8, 957–958. [Google Scholar] [CrossRef]
- Hess, N.R.; Seese, L.M.; Sultan, I.; Wang, Y.; Hickey, G.W.; Kilic, A. Geographic disparities in heart transplantation persist under the new allocation policy. Clin. Transplant. 2021, 35, e14459. [Google Scholar] [CrossRef] [PubMed]
- Cascino, T.M.; Stehlik, J.; Cherikh, W.S.; Cheng, Y.; Watt, T.M.F.; Brescia, A.A.; Thompson, M.P.; McCullough, J.S.; Zhang, M.; Shore, S.; et al. A challenge to equity in transplantation: Increased center-level variation in short-term mechanical circulatory support use in the context of the updated U.S. heart transplant allocation policy. J. Heart Lung Transplant. 2022, 41, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Smeltz, A.M.; Arora, H.; Kumar, P.A. Con: The New United Network for Organ Sharing Heart Allocation System Is Not a Positive Change in Listing Patients for Transplantation. J. Cardiothorac. Vasc. Anesth. 2020, 34, 1968–1971. [Google Scholar] [CrossRef]
- Hong, Y.; Hess, N.R.; Ziegler, L.A.; Hickey, G.W.; Huston, J.H.; Mathier, M.A.; McNamara, D.M.; Keebler, M.E.; Kaczorowski, D.J. Clinical trends, risk factors, and temporal effects of post-transplant dialysis on outcomes following orthotopic heart transplantation in the 2018 United States heart allocation system. J. Heart Lung Transplant. 2023, 42, 795–806. [Google Scholar] [CrossRef] [PubMed]
- DeFilippis, E.M.; Masotti, M.; Blumer, V.; Maharaj, V.; Cogswell, R. Sex-Specific Outcomes of Candidates Listed as the Highest Priority Status for Heart Transplantation. Circ. Heart Fail. 2023, 16, e009946. [Google Scholar] [CrossRef]
- Nishida, H.; Koda, Y.; Kalantari, S.; Nguyen, A.; Chung, B.; Grinstein, J.; Kim, G.; Sarswat, N.; Smith, B.; Song, T.; et al. Outcomes of Ambulatory Axillary Intraaortic Balloon Pump as a Bridge to Heart Transplantation. Ann. Thorac. Surg. 2021, 111, 1264–1270. [Google Scholar] [CrossRef]
- Pahwa, S.; Dunbar-Matos, C.; Slaughter, M.S.; Trivedi, J.R. Use of Impella in Patients Listed for Heart Transplantation. ASAIO J. 2022, 68, 786–790. [Google Scholar] [CrossRef]
- Hill, M.A.; Kwon, J.H.; Shorbaji, K.; Kilic, A. Waitlist and transplant outcomes for patients bridged to heart transplantation with Impella 5.0 and 5.5 devices. J. Card. Surg. 2022, 37, 5081–5089. [Google Scholar] [CrossRef]
- Monteagudo-Vela, M.; Panoulas, V.; Garcia-Saez, D.; de Robertis, F.; Stock, U.; Simon, A.R. Outcomes of heart transplantation in patients bridged with Impella 5.0: Comparison with native chest transplanted patients without preoperative mechanical circulatory support. Artif. Organs 2021, 45, 254–262. [Google Scholar] [CrossRef]
- Cevasco, M.; Shin, M.; Cohen, W.; Helmers, M.R.; Weingarten, N.; Rekhtman, D.; Wald, J.W.; Iyengar, A. Impella 5.5 as a bridge to heart transplantation: Waitlist outcomes in the United States. Clin. Transplant. 2023, 37, e15066. [Google Scholar] [CrossRef] [PubMed]
- Varian, K.; Xu, W.D.; Lin, W.; Unai, S.; Tong, M.Z.; Soltesz, E.; Krishnaswamy, A.; Kapadia, S.; Feitell, S.; Hanna, M.; et al. Minimally invasive biventricular mechanical circulatory support with Impella pumps as a bridge to heart transplantation: A first-in-the-world case report. ESC Heart Fail. 2019, 6, 552–554. [Google Scholar] [CrossRef] [PubMed]
- Al-Ani, M.A.; Bai, C.; Bledsoe, M.; Ahmed, M.M.; Vilaro, J.R.; Parker, A.M.; Aranda, J.M., Jr.; Jeng, E.; Shickel, B.; Bihorac, A.; et al. Utilization of the percutaneous left ventricular support as bridge to heart transplantation across the United States: In-depth UNOS database analysis. J. Heart Lung Transplant. 2023, 42, 1597–1607. [Google Scholar] [CrossRef]
- Gonzalez, M.H.; Acharya, D.; Lee, S.; Leacche, M.; Boeve, T.; Manandhar-Shrestha, N.; Jovinge, S.; Loyaga-Rendon, R.Y. Improved survival after heart transplantation in patients bridged with extracorporeal membrane oxygenation in the new allocation system. J. Heart Lung Transplant. 2021, 40, 149–157. [Google Scholar] [CrossRef]
- Shudo, Y.; Elde, S.; Lingala, B.; He, H.; Casselman, K.G.; Zhu, Y.; Kasinpila, P.; Woo, Y.J. Extracorporeal Membrane Oxygenation Bridge to Heart-Lung Transplantation. ASAIO J. 2022, 68, e44–e47. [Google Scholar] [CrossRef] [PubMed]
- Ivey-Miranda, J.B.; Maulion, C.; Farrero-Torres, M.; Griffin, M.; Posada-Martinez, E.L.; Testani, J.M.; Bellumkonda, L. Risk stratification of patients listed for heart transplantation while supported with extracorporeal membrane oxygenation. J. Thorac. Cardiovasc. Surg. 2023, 165, 711–720. [Google Scholar] [CrossRef]
- DeFilippis, E.M.; Clerkin, K.; Truby, L.K.; Francke, M.; Fried, J.; Masoumi, A.; Garan, A.R.; Farr, M.A.; Takayama, H.; Takeda, K.; et al. ECMO as a Bridge to Left Ventricular Assist Device or Heart Transplantation. JACC Heart Fail. 2021, 9, 281–289. [Google Scholar] [CrossRef]
- Hong, J.A.; Kim, A.R.; Kim, M.J.; Pack, D.; Hyun, J.; Lee, S.E.; Kim, J.J.; Kang, P.J.; Jung, S.H.; Kim, M.S. Comparison of Veno-arterial Extracorporeal Membrane Oxygenation Configurations for Patients Listed for Heart Transplantation. Korean Circ. J. 2023, 53, 535–547. [Google Scholar] [CrossRef]
- Ouyang, D.; Gulati, G.; Ha, R.; Banerjee, D. Incidence of temporary mechanical circulatory support before heart transplantation and impact on post-transplant outcomes. J. Heart Lung Transplant. 2018, 37, 1060–1066. [Google Scholar] [CrossRef]
- Barge-Caballero, E.; Almenar-Bonet, L.; Gonzalez-Vilchez, F.; Lambert-Rodriguez, J.L.; Gonzalez-Costello, J.; Segovia-Cubero, J.; Castel-Lavilla, M.A.; Delgado-Jimenez, J.; Garrido-Bravo, I.P.; Rangel-Sousa, D.; et al. Clinical outcomes of temporary mechanical circulatory support as a direct bridge to heart transplantation: A nationwide Spanish registry. Eur. J. Heart Fail. 2018, 20, 178–186. [Google Scholar] [CrossRef]
- Lim, J.H.; Lee, S.Y.; Ju, M.H.; Kim, S.H.; Choi, J.H.; Chon, M.K.; Lee, S.H.; Hwang, K.W.; Kim, J.S.; Park, Y.H.; et al. Direct Extracorporeal Membrane Oxygenation Bridged Heart Transplantation: The Importance of Multi-Organ Failure. Int. J. Heart Fail. 2023, 5, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Fukuhara, S.; Takeda, K.; Kurlansky, P.A.; Naka, Y.; Takayama, H. Extracorporeal membrane oxygenation as a direct bridge to heart transplantation in adults. J. Thorac. Cardiovasc. Surg. 2018, 155, 1607–1618. [Google Scholar] [CrossRef] [PubMed]
- Topkara, V.K.; Sayer, G.T.; Clerkin, K.J.; Wever-Pinzon, O.; Takeda, K.; Takayama, H.; Selzman, C.H.; Naka, Y.; Burkhoff, D.; Stehlik, J.; et al. Recovery With Temporary Mechanical Circulatory Support While Waitlisted for Heart Transplantation. J. Am. Coll. Cardiol. 2022, 79, 900–913. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.T.; Hadaya, J.; Tran, Z.; Williamson, C.G.; Maturana, C.; Choi, C.W.; Benharash, P. Impact of the Coronavirus Disease 2019 Pandemic on Utilization of Mechanical Circulatory Support As Bridge to Heart Transplantation. ASAIO J. 2021, 67, 382–384. [Google Scholar] [CrossRef] [PubMed]
- Hess, N.R.; Hickey, G.W.; Keebler, M.E.; Huston, J.H.; McNamara, D.M.; Mathier, M.A.; Wang, Y.; Kaczorowski, D.J. Left ventricular assist device bridging to heart transplantation: Comparison of temporary versus durable support. J. Heart Lung Transplant. 2023, 42, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Jani, M.; Lee, S.; Acharya, D.; Hoeksema, S.; Boeve, T.; Leacche, M.; Manandhar-Shrestha, N.K.; Jovinge, S.V.; Loyaga-Rendon, R.Y. Decreased frequency of transplantation and lower post-transplant survival free of re-transplantation in LVAD patients with the new heart transplant allocation system. Clin. Transplant. 2022, 36, e14493. [Google Scholar] [CrossRef] [PubMed]
- Castleberry, A.W.; DeVore, A.D.; Southerland, K.W.; Meza, J.M.; Irish, W.D.; Rogers, J.G.; Milano, C.A.; Patel, C.B. Assessing Consequences of Intraaortic Balloon Counterpulsation Versus Left Ventricular Assist Devices at the Time of Heart Transplantation. ASAIO J. 2016, 62, 232–239. [Google Scholar] [CrossRef]
- Noly, P.E.; Moriguchi, J.; Shah, K.B.; Anyanwu, A.C.; Mahr, C.; Skipper, E.; Cossette, M.; Lamarche, Y.; Carrier, M. A bridge-to-bridge approach to heart transplantation using extracorporeal membrane oxygenation and total artificial heart. J. Thorac. Cardiovasc. Surg. 2021, 165, 1138–1148.e1. [Google Scholar] [CrossRef]
- Moonsamy, P.; Axtell, A.L.; Ibrahim, N.E.; Funamoto, M.; Tolis, G.; Lewis, G.D.; D’Alessandro, D.A.; Villavicencio, M.A. Survival After Heart Transplantation in Patients Bridged With Mechanical Circulatory Support. J. Am. Coll. Cardiol. 2020, 75, 2892–2905. [Google Scholar] [CrossRef]
- Barge-Caballero, G.; Castel-Lavilla, M.A.; Almenar-Bonet, L.; Garrido-Bravo, I.P.; Delgado, J.F.; Rangel-Sousa, D.; Gonzalez-Costello, J.; Segovia-Cubero, J.; Farrero-Torres, M.; Lambert-Rodriguez, J.L.; et al. Venoarterial extracorporeal membrane oxygenation with or without simultaneous intra-aortic balloon pump support as a direct bridge to heart transplantation: Results from a nationwide Spanish registry. Interact. Cardiovasc. Thorac. Surg. 2019, 29, 670–677. [Google Scholar] [CrossRef]
- Maning, J.; Blumer, V.; Hernandez, G.; Acuna, E.; Li, H.; Chaparro, S.V. Bicaval vs biatrial anastomosis techniques in orthotopic heart transplantation: An updated analysis of the UNOS database. J. Card. Surg. 2020, 35, 2242–2247. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Bohm, M.; Burri, H.; Butler, J.; Celutkiene, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Alraies, M.C.; Eckman, P. Adult heart transplant: Indications and outcomes. J. Thorac. Dis. 2014, 6, 1120–1128. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Song, G.; Bai, X. Predictive Efficacy of the Index of Microcirculatory Resistance for Acute Allograft Rejection and Cardiac Events After Heart Transplantation: A Systematic Review and Meta-Analysis. Heart Surg. Forum 2022, 25, E784–E792. [Google Scholar] [CrossRef]
- Kopecky, B.J.; Dun, H.; Amrute, J.M.; Lin, C.Y.; Bredemeyer, A.L.; Terada, Y.; Bayguinov, P.O.; Koenig, A.L.; Frye, C.C.; Fitzpatrick, J.A.J.; et al. Donor Macrophages Modulate Rejection After Heart Transplantation. Circulation 2022, 146, 623–638. [Google Scholar] [CrossRef]
- Ruiz-Ortiz, M.; Rodriguez-Diego, S.; Delgado, M.; Kim, J.; Weinsaft, J.W.; Ortega, R.; Carnero, L.; Sanchez, J.J.; Carrasco, F.; Lopez-Aguilera, J.; et al. Myocardial deformation and acute cellular rejection after heart transplantation: Impact of inter-vendor variability in diagnostic effectiveness. Echocardiography 2019, 36, 2185–2194. [Google Scholar] [CrossRef] [PubMed]
- Mangini, S.; Alves, B.R.; Silvestre, O.M.; Pires, P.V.; Pires, L.J.; Curiati, M.N.; Bacal, F. Heart transplantation: Review. Einstein 2015, 13, 310–318. [Google Scholar] [CrossRef]
- Yasir, M.; Goyal, A.; Sonthalia, S. Corticosteroid Adverse Effects; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Goldraich, L.A.; Stehlik, J.; Cherikh, W.S.; Edwards, L.B.; Urban, R.; Dipchand, A.; Ross, H.J. Duration of corticosteroid use and long-term outcomes after adult heart transplantation: A contemporary analysis of the International Society for Heart and Lung Transplantation Registry. Clin. Transplant. 2018, 32, e13340. [Google Scholar] [CrossRef]
- Alyaydin, E.; Reinecke, H.; Tuleta, I.; Sindermann, J.R. Diltiazem as a cyclosporine A-sparing agent in heart transplantation: Benefits beyond dose reduction. Medicine 2022, 101, e31166. [Google Scholar] [CrossRef]
- Helmschrott, M.; Rivinius, R.; Ruhparwar, A.; Schmack, B.; Erbel, C.; Gleissner, C.A.; Akhavanpoor, M.; Frankenstein, L.; Ehlermann, P.; Bruckner, T.; et al. Advantageous effects of immunosuppression with tacrolimus in comparison with cyclosporine A regarding renal function in patients after heart transplantation. Drug Des. Dev. Ther. 2015, 9, 1217–1224. [Google Scholar] [CrossRef]
- Liang, J.J.; Geske, J.R.; Boilson, B.A.; Frantz, R.P.; Edwards, B.S.; Kushwaha, S.S.; Kremers, W.K.; Weinshilboum, R.M.; Pereira, N.L. TPMT genetic variants are associated with increased rejection with azathioprine use in heart transplantation. Pharmacogenet. Genom. 2013, 23, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Chi, N.H.; Chou, N.K.; Huang, S.C.; Wang, C.H.; Wu, I.H.; Yu, H.Y.; Chen, Y.S.; Tsao, C.I.; Shun, C.T.; et al. Malignancy After Heart Transplantation Under Everolimus Versus Mycophenolate Mofetil Immunosuppression. Transplant. Proc. 2016, 48, 969–973. [Google Scholar] [CrossRef] [PubMed]
- Barten, M.J.; Hirt, S.W.; Garbade, J.; Bara, C.; Doesch, A.O.; Knosalla, C.; Grinninger, C.; Stypmann, J.; Sieder, C.; Lehmkuhl, H.B.; et al. Comparing everolimus-based immunosuppression with reduction or withdrawal of calcineurin inhibitor reduction from six months after heart transplantation: The randomized MANDELA study. Am. J. Transplant. 2019, 19, 3006–3017. [Google Scholar] [CrossRef]
- Anthony, C.; Imran, M.; Pouliopoulos, J.; Emmanuel, S.; Iliff, J.W.; Moffat, K.J.; Ross, J.; Graham, R.M.; Kotlyar, E.; Muthiah, K.; et al. Everolimus for the Prevention of Calcineurin-Inhibitor-Induced Left Ventricular Hypertrophy After Heart Transplantation (RADTAC Study). JACC Heart Fail. 2021, 9, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Lo, P.; Kearney, K.; Muir, C.A.; Song, N.; Eisman, J.A.; Macdonald, P.S. Severe Hypertriglyceridemia Associated with Everolimus Treatment after Heart Transplantation. AACE Clin. Case Rep. 2020, 6, e269–e272. [Google Scholar] [CrossRef] [PubMed]
- Lindenfeld, J.; Miller, G.G.; Shakar, S.F.; Zolty, R.; Lowes, B.D.; Wolfel, E.E.; Mestroni, L.; Page, R.L., 2nd; Kobashigawa, J. Drug therapy in the heart transplant recipient: Part I: Cardiac rejection and immunosuppressive drugs. Circulation 2004, 110, 3734–3740. [Google Scholar] [CrossRef] [PubMed]
- Spartalis, M.; Spartalis, E.; Siasos, G. Cardiac allograft vasculopathy after heart transplantation: Pathophysiology, detection approaches, prevention, and treatment management. Trends Cardiovasc. Med. 2022, 32, 333–338. [Google Scholar] [CrossRef]
- Alyaydin, E.; Pogoda, C.; Dell Aquila, A.; Martens, S.; Tuleta, I.; Reinecke, H.; Sindermann, J.R. Cardiac allograft vasculopathy in a long-term follow-up after heart transplantation: Role of remnant cholesterol in residual inflammation. Cardiol. J. 2022, 29, 782–790. [Google Scholar] [CrossRef]
- Szczurek-Wasilewicz, W.; Hawranek, M.; Skrzypek, M.; Hrapkowicz, T.; Gasior, M.; Warmusz, O.; Szygula-Jurkiewicz, B. Factors associated with cardiac allograft vasculopathy after heart transplantation. Postep. Kardiol. Interwencyjnej 2022, 18, 237–245. [Google Scholar] [CrossRef]
- Costanzo, M.R.; Dipchand, A.; Starling, R.; Anderson, A.; Chan, M.; Desai, S.; Fedson, S.; Fisher, P.; Gonzales-Stawinski, G.; Martinelli, L.; et al. The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J. Heart Lung Transplant. 2010, 29, 914–956. [Google Scholar] [CrossRef]
- Fang, J.C.; Wever-Pinzon, O. Allograft Rejection Surveillance In Heart Transplantation: Is There a Better Way? Circulation 2022, 145, 1825–1828. [Google Scholar] [CrossRef] [PubMed]
- Iyer, A.; Kumarasinghe, G.; Hicks, M.; Watson, A.; Gao, L.; Doyle, A.; Keogh, A.; Kotlyar, E.; Hayward, C.; Dhital, K.; et al. Primary graft failure after heart transplantation. J. Transplant. 2011, 2011, 175768. [Google Scholar] [CrossRef] [PubMed]
- Truby, L.K.; DeRoo, S.; Spellman, J.; Jennings, D.L.; Takeda, K.; Fine, B.; Restaino, S.; Farr, M. Management of primary graft failure after heart transplantation: Preoperative risks, perioperative events, and postoperative decisions. Clin. Transplant. 2019, 33, e13557. [Google Scholar] [CrossRef]
- Chung, A.; Hartman, H.; DeFilippis, E.M. Sex Differences in Cardiac Transplantation. Curr. Atheroscler. Rep. 2023, 25, 995–1001. [Google Scholar] [CrossRef] [PubMed]
- Herbst, D.A.; Iyengar, A.; Weingarten, N.; Helmers, M.R.; Kim, S.T.; Atluri, P. Failure to rescue: Obesity increases the risk of mortality following early graft failure in heart transplantation in UNOS database patients. Interact. Cardiovasc. Thorac. Surg. 2022, 35, ivac102. [Google Scholar] [CrossRef] [PubMed]
- Rivinius, R.; Gralla, C.; Helmschrott, M.; Darche, F.F.; Ehlermann, P.; Bruckner, T.; Sommer, W.; Warnecke, G.; Kopf, S.; Szendroedi, J.; et al. Pre-transplant Type 2 Diabetes Mellitus Is Associated With Higher Graft Failure and Increased 5-Year Mortality After Heart Transplantation. Front. Cardiovasc. Med. 2022, 9, 890359. [Google Scholar] [CrossRef]
- Kaveevorayan, P.; Tokavanich, N.; Kittipibul, V.; Lertsuttimetta, T.; Singhatanadgige, S.; Ongcharit, P.; Sinphurmsukskul, S.; Ariyachaipanich, A.; Siwamogsatham, S.; Thammanatsakul, K.; et al. Primary isolated right ventricular failure after heart transplantation: Prevalence, right ventricular characteristics, and outcomes. Sci. Rep. 2023, 13, 394. [Google Scholar] [CrossRef]
- Clemmensen, T.S.; Poulsen, S.H.; Logstrup, B.B.; Bjerre, K.P.; Tolbod, L.P.; Harms, H.J.; Sorensen, J.; Eiskjaer, H. Right ventricular hemodynamics and performance in relation to perfusion during first year after heart transplantation. ESC Heart Fail. 2021, 8, 4018–4025. [Google Scholar] [CrossRef]
- Rieth, A.J.; Rivinius, R.; Luhring, T.; Grun, D.; Keller, T.; Grinninger, C.; Schuttler, D.; Bara, C.L.; Helmschrott, M.; Frey, N.; et al. Hemodynamic markers of pulmonary vasculopathy for prediction of early right heart failure and mortality after heart transplantation. J. Heart Lung Transplant. 2023, 42, 512–521. [Google Scholar] [CrossRef]
- Mastroianni, C.; Nenna, A.; Lebreton, G.; D’Alessandro, C.; Greco, S.M.; Lusini, M.; Leprince, P.; Chello, M. Extracorporeal membrane oxygenation as treatment of graft failure after heart transplantation. Ann. Cardiothorac. Surg. 2019, 8, 99–108. [Google Scholar] [CrossRef]
- Florescu, D.F.; Kwon, J.Y.; Dumitru, I. Adenovirus infections in heart transplantation. Cardiol. Rev. 2013, 21, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.J.; Ali, M.; Rana, M.; Patel, G.; Sullivan, T.; Murphy, J.; Pinney, S.; Anyanwu, A.; Huprikar, S.; Taimur, S. Infections due to multidrug-resistant organisms following heart transplantation: Epidemiology, microbiology, and outcomes. Transpl. Infect. Dis. 2020, 22, e13215. [Google Scholar] [CrossRef]
- Youn, J.C.; Stehlik, J.; Wilk, A.R.; Cherikh, W.; Kim, I.C.; Park, G.H.; Lund, L.H.; Eisen, H.J.; Kim, D.Y.; Lee, S.K.; et al. Temporal Trends of De Novo Malignancy Development After Heart Transplantation. J. Am. Coll. Cardiol. 2018, 71, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Minguito-Carazo, C.; Gomez-Bueno, M.; Almenar-Bonet, L.; Barge-Caballero, E.; Gonzalez-Vilchez, F.; Delgado-Jimenez, J.F.; Maria Arizon Del Prado, J.; Sousa-Casasnovas, I.; Mirabet-Perez, S.; Gonzalez-Costello, J.; et al. Malignancy following heart transplantation: Differences in incidence and prognosis between sexes—A multicenter cohort study. Transpl. Int. 2021, 34, 882–893. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, K.; Canner, J.K.; Etchill, E.; Suarez-Pierre, A.; Choi, C.W.; Higgins, R.S.D.; Hsu, S.; Sharma, K.; Kilic, A. High rates of de novo malignancy compromise post-heart transplantation survival. J. Card. Surg. 2021, 36, 1401–1410. [Google Scholar] [CrossRef] [PubMed]
- Saber-Moghaddam, N.; Nomani, H.; Sahebkar, A.; Johnston, T.P.; Mohammadpour, A.H. The change of immunosuppressive regimen from calcineurin inhibitors to mammalian target of rapamycin (mTOR) inhibitors and its effect on malignancy following heart transplantation. Int. Immunopharmacol. 2019, 69, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Rivinius, R.; Helmschrott, M.; Ruhparwar, A.; Schmack, B.; Klein, B.; Erbel, C.; Gleissner, C.A.; Akhavanpoor, M.; Frankenstein, L.; Darche, F.F.; et al. Analysis of malignancies in patients after heart transplantation with subsequent immunosuppressive therapy. Drug Des. Dev. Ther. 2015, 9, 93–102. [Google Scholar] [CrossRef]
- Goldraich, L.A.; Stehlik, J.; Kucheryavaya, A.Y.; Edwards, L.B.; Ross, H.J. Retransplant and Medical Therapy for Cardiac Allograft Vasculopathy: International Society for Heart and Lung Transplantation Registry Analysis. Am. J. Transplant. 2016, 16, 301–309. [Google Scholar] [CrossRef]
- Barghash, M.H.; Pinney, S.P. Heart Retransplantation: Candidacy, Outcomes, and Management. Curr. Transplant. Rep. 2020, 7, 12–17. [Google Scholar] [CrossRef]
- Wang, W.; He, W.; Ruan, Y.; Geng, Q. First pig-to-human heart transplantation. Innovation 2022, 3, 100223. [Google Scholar] [CrossRef]
- Griffith, B.P.; Goerlich, C.E.; Singh, A.K.; Rothblatt, M.; Lau, C.L.; Shah, A.; Lorber, M.; Grazioli, A.; Saharia, K.K.; Hong, S.N.; et al. Genetically Modified Porcine-to-Human Cardiac Xenotransplantation. N. Engl. J. Med. 2022, 387, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Crespo-Leiro, M.G.; Costanzo, M.R.; Gustafsson, F.; Khush, K.K.; Macdonald, P.S.; Potena, L.; Stehlik, J.; Zuckermann, A.; Mehra, M.R. Heart transplantation: Focus on donor recovery strategies, left ventricular assist devices, and novel therapies. Eur. Heart J. 2022, 43, 2237–2246. [Google Scholar] [CrossRef] [PubMed]
- DeFilippis, E.M.; Khush, K.K.; Farr, M.A.; Fiedler, A.; Kilic, A.; Givertz, M.M. Evolving Characteristics of Heart Transplantation Donors and Recipients: JACC Focus Seminar. J. Am. Coll. Cardiol. 2022, 79, 1108–1123. [Google Scholar] [CrossRef] [PubMed]
- Jou, S.; Mendez, S.R.; Feinman, J.; Mitrani, L.R.; Fuster, V.; Mangiola, M.; Moazami, N.; Gidea, C. Heart transplantation: Advances in expanding the donor pool and xenotransplantation. Nat. Rev. Cardiol. 2024, 21, 25–36. [Google Scholar] [CrossRef]
- Fedson, S. Heart transplant donation after circulatory death: Current status and implications. Curr. Opin. Cardiol. 2023; Epub ahead of print. [Google Scholar] [CrossRef]
- Giarraputo, A.; Barison, I.; Fedrigo, M.; Burrello, J.; Castellani, C.; Tona, F.; Bottio, T.; Gerosa, G.; Barile, L.; Angelini, A. A Changing Paradigm in Heart Transplantation: An Integrative Approach for Invasive and Non-Invasive Allograft Rejection Monitoring. Biomolecules 2021, 11, 201. [Google Scholar] [CrossRef]
- Marco, I.; Lopez-Azor Garcia, J.C.; Gonzalez Martin, J.; Severo Sanchez, A.; Garcia-Cosio Carmena, M.D.; Mancebo Sierra, E.; de Juan Baguda, J.; Castrodeza Calvo, J.; Hernandez Perez, F.J.; Delgado, J.F. De Novo Donor-Specific Antibodies after Heart Transplantation: A Comprehensive Guide for Clinicians. J. Clin. Med. 2023, 12, 7474. [Google Scholar] [CrossRef]
- Truby, L.K.; Maamari, D.; Saha, A.; Farr, M.; Abdulrahim, J.; Billia, F.; Peltz, M.; Khush, K.K.; Wang, T.J. Towards Allograft Longevity: Leveraging Omics Technologies to Improve Heart Transplant Outcomes. Curr. Heart Fail. Rep. 2023, 20, 493–503. [Google Scholar] [CrossRef]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
For the left ventricle |
|
|
|
For the right ventricle |
Either criteria I and II or III alone must be met:
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chrysakis, N.; Magouliotis, D.E.; Spiliopoulos, K.; Athanasiou, T.; Briasoulis, A.; Triposkiadis, F.; Skoularigis, J.; Xanthopoulos, A. Heart Transplantation. J. Clin. Med. 2024, 13, 558. https://doi.org/10.3390/jcm13020558
Chrysakis N, Magouliotis DE, Spiliopoulos K, Athanasiou T, Briasoulis A, Triposkiadis F, Skoularigis J, Xanthopoulos A. Heart Transplantation. Journal of Clinical Medicine. 2024; 13(2):558. https://doi.org/10.3390/jcm13020558
Chicago/Turabian StyleChrysakis, Nikolaos, Dimitrios E. Magouliotis, Kyriakos Spiliopoulos, Thanos Athanasiou, Alexandros Briasoulis, Filippos Triposkiadis, John Skoularigis, and Andrew Xanthopoulos. 2024. "Heart Transplantation" Journal of Clinical Medicine 13, no. 2: 558. https://doi.org/10.3390/jcm13020558
APA StyleChrysakis, N., Magouliotis, D. E., Spiliopoulos, K., Athanasiou, T., Briasoulis, A., Triposkiadis, F., Skoularigis, J., & Xanthopoulos, A. (2024). Heart Transplantation. Journal of Clinical Medicine, 13(2), 558. https://doi.org/10.3390/jcm13020558