Targeted Temperature Management for Patients with Acute Ischemic Stroke: A Literature Review
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Study Characteristics
3.1.1. Distribution of Study Designs
3.1.2. Time to TTM Initiation
3.1.3. Depth of TTM
First Author | Year | Study Design | Sample Size | Additional Therapy | Mean Age (Years) | Target Temperature (°C) | Time to TTM Initiation (Hours) | Time to Target Temperature (Hours) | Duration of TTM (Hours) | Method of Cooling | Site of Temperature Probe | Mechanism of Strokes |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Schwab [23] | 1998 | Prospective non- randomized | 25 | N/A | 49.0 | 33.0 | 14.0 ± 7.0 | 3.5–6.2 | 48.0–72.0 | Surface cooling (Polar Bair) with cool ventilator air | Bladder | MCA ischemic stroke |
Kammersgaard [33] | 2000 | Case–control | 73 (17 TTM cases) | N/A | 68.6 | N/A | <12.0 (mean 3.25) | 6.0 | 6.0 | Surface cooling (Polar Bair) with cool ventilator air | Tympanic Rectal | Combined ischemic/hemorrhagic |
Krieger [34] | 2001 | Case–control | 19 (10 TTM cases) | N/A | 71.1 | 32.0 | <6.0 | 3.5 ± 1.5 | 22.8 ± 8.0 | Surface cooling (Aquamatic K-Thermia EC600 blanket) + alcohol/ice bath | Bladder | MCA ischemic stroke |
Schwab [21] | 2001 | RCT | 50 | N/A | 57.0 ± 8.0 | 32.0–33.0 | 22.0 ± 9.0 | 3.5–11.0 | 24.0–72.0 | Surface cooling | N/A | Cardioembolism (n = 34) ICA dissection with secondary MCA embolization (n = 8) Atherothrombotic disease at the carotid bifurcation (n = 3) Unknown (n = 5) |
Georgiadis [32] | 2001 | Prospective non- randomized | 6 | Thrombolysis (n = 2) | 64.5 ± 8.4 | 33.0 | 28.2 ± 17.0 | 3.0 ± 1.0 | 67.0 ± 13.0 | Endovascular and selective head cooling | Bladder | Acute ischemic stroke |
Georgiadis [25] | 2002 | Prospective non- randomized | 19 | Hemicraniectomy | 56.0 | 33.0 | 24.0 | 4.0 ± 1.0 | 48.0–72.0 | Endovascular OR cold blanket + fan | Thermistor on endovascular catheter | MCA ischemic stroke |
Berger [36] | 2002 | Prospective observational study | 12 | Antiedema therapy with mannitol | N/A | 33.0 | <16.3 | N/A | 48.0–72.0 | Systemic surface | N/A | Space-occupying MCA infarction |
De Georgia [13] | 2004 | RCT | 40 (18 TTM cases) | N/A | 60.9 | 33.0 | <12.0 | 1.3 ± 0.7 | 24.0 | Endovascular (reprieve endovascular temperature management system) | Esophageal | Anterior circulation territory ischemic stroke |
Abou-Chebl [8] | 2004 | Prospective non- randomized | 18 | Various | 69.6 | 32.0 ± 1.0 | <8.0 | 3.2 ± 1.5 | 12.0–72.0 | Surface cooling (Aquamatic K-Thermia EC600 blanket) + alcohol/ice bath | Bladder | MCA ischemic stroke |
Lyden [26] | 2005 | Prospective non- randomized | 18 | N/A | 66.2 | 33.0 | <12.0 (mean 3.3) | 7.0 | 12.0 or 24.0 | Endovascular (Celsius Control catheter) | Tympanic Bladder Esophageal (2 out of 3) | Acute ischemic stroke |
Els [16] | 2006 | RCT | 25 (12 TTM cases) | Hemicraniectomy | 49.0 | 35.0 | Immediately after hemicraniectomy | 2.0 ± 1.0 | 48.0 | Intravenous saline (Icy, Cool Gard Perfusion Set) Surface cooling (thermo-wrap) | Tympanic Esophageal | Supratentorial ischemic stroke |
Guluma [27] | 2006 | Prospective non- randomized | 10 | IV thrombolysis | N/A | 33.0 | <6.0 | 1.7 ± 0.7 | 24.0 | Endovascular (Celsius Control catheter) | Thermistor on endovascular catheter | N/A |
Guluma [28] | 2008 | Prospective non- randomized | 18 | IV thrombolysis | 64.0 | 33.0 | <12.0 | 7.7 ± 4.1 | 12.0 or 24.0 | Endovascular (Celsius Control catheter) | Thermistor on endovascular catheter | Acute ischemic stroke |
Martin-Schild [22] | 2009 | Prospective non- randomized | 20 (18 TTM cases) | IV thrombolysis (n = 13) Caffeinol (n = 18) | 56.0 | 33.0–34.5 | 5.0 | 1.0 (n = 2) 2.0 (n = 4) 3.0 (n = 8) 4 did not reach target | 19.8 | Endovascular cooling Surface cooling | Bladder | Acute ischemic stroke |
Hemmen [11] | 2010 | RCT | 59 (28 TTM cases) | IV thrombolysis | 65.5 | 33.0 | <6.0 | Stratified 0.0–3.0 3.0–6.0 | 24.0 | Endovascular (Celsius Control Catheter) | Thermistor on endovascular catheter | Acute ischemic stroke |
Bi [10] | 2011 | RCT | 93 (31 TTM cases) | IV thrombolysis | Group A: 68.5 ± 6.9 | 32.0–34.0 | <6.0 | 0.3 | 24.0 | Surface Cooling | Rectal | Acute ischemic stroke |
Hong [35] | 2014 | Prospective cohort study | 75 (39 TTM cases) | IV thrombolysis | 64.5 ± 17.0 | 34.4 ± 0.9 | N/A | 6.3 ± 5.9 | 48.0 | Endovascular Surface cooling | Esophageal | Acute ischemic stroke involving the anterior circulation |
Ovesen [15] | 2013 | RCT | 31 (17 TTM cases) | IV thrombolysis | 62.3 | 33.0 | <24.0 | 14.9 | 24.0 | Endovascular Surface cooling | Bladder | Acute ischemic stroke |
Piironen [14] | 2014 | RCT | 36 (18 TTM cases) | IV thrombolysis | 68.0 | 35.0 | <6.0 | 6.0 (4.5–6.5) | 12.0 | Intravenous Saline, then maintained by surface cooling | Bladder | Acute ischemic stroke |
Lyden [17] | 2016 | RCT | 120 (63 TTM cases) | IV thrombolysis | 65.5 ± 10.3 | 33.0 | <6.0 | 4.8 ± 1.1 | 24.0 | Endovascular (Celsius Control Catheter) | N/A | Acute ischemic stroke |
Geurts [20] | 2017 | RCT | 22 (16 TTM cases) | N/A | 63.0 | 34.0 34.5 35.0 | <4.5 | 6.8 (34.5 °C) 7.4 (35.0 °C) | 24.0 | Intravenous saline + surface cooling | N/A | Acute ischemic stroke |
van der Worp [9] | 2019 | RCT | 98 (49 TTM cases) | N/A | 69.6 | 34.0–35.0 | <6.0 | N/A | 12.0 or 24.0 | IV saline Surface cooling | Rectal Bladder | N/A |
Neugebauer [12] | 2019 | RCT | 50 (26 TTM cases) | Hemicraniectomy | 51.3 (excluded over 60) | 33.0 ± 1.0 | <60.0 | N/A | 72.0 | Endovascular Surface cooling | Bladder | MCA |
Bardutzky [24] | 2023 | Prospective non- randomized | 22 | Various | 77.0 | 35.0 | After admission: 1.0 (0.7–1.3) After EVT-dependent intubation: 0.08 (0.06–0.09) Prior to groin puncture: 0.09 (0.03–0.17) | 0.5 (0.4–0.6) | 6.0 (post-recanalization) | Transnasal (RhinoChill) | Esophageal Tympanic | Occlusion of the M1 or M2 segment of the MCA or ICA or tandem occlusion; ischemic stroke |
First Author | Year of Publication | Study Design | Sample Size | Additional Therapy | Mean Age (Years) | Target Temperature (°C) | Time to TTM Initiation (Hours) | Time to Target Temperature (Minutes) | Duration of TTM (Minutes) | Method of Cooling | Site of Temperature Probe | Mechanism of Strokes |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Kollmar [29] | 2009 | Prospective non- randomized | 10 | IV thrombolysis | 66.5 ± 12.5 | N/A | <3.0 | N/A | 240.0 | Intra-arterial Selective cooling infusion | Tympanic | Acute ischemic stroke |
Chen [30] | 2016 | Prospective non- randomized | 26 | Recanalization (various) | 58.4 | N/A | <8.0 | 5.0 (pre-stent) | 10.0 (post-stent) | Intra-arterial Selective cooling infusion | Rectal | Proximal vessel (ICA, MCA M1 + M2, BA/VA) ischemic stroke |
Peng [18] | 2016 | RCT | 26 (11 TTM cases) | IV thrombolysis | N/A | N/A | <6.0 | N/A | 10.0 | Intra-arterial Selective cooling infusion | N/A | MCA |
Wu [31] | 2018 | Prospective non- randomized | 113 (45 TTM cases) | Mechanical thrombectomy | 62.1 | N/A | <6.0 | N/A | 15.0 | Intra-arterial Selective cooling infusion | N/A | M1 segment of the MCA |
Wan [19] | 2023 | RCT | 142 (71 TTM cases) | Mechanical thrombectomy | 73.4 | N/A | <24.0 | N/A | 35.0 | Intra-arterial Selective cooling infusion | N/A | M1 and M2 segments of the ICA and MCA, including the extracranial and intracranial segments |
Normothermic | Hypothermic | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Stroke | Health Outcomes | Stroke | Health Outcomes | ||||||||||||
First Author | Year | Severity (NIHSS) | Functionally Independent (%) | Infarct Volume (mL) | Mortality (%) | Pneumonia (%) | Edema Formation (%) | Hemorrhage (%) | Severity (NIHSS) | Functionally Independent (%) | Infarct Volume (mL) | Mortality (%) | Pneumonia (%) | Edema Formation (%) | Hemorrhage (%) |
Schwab [23] | 1998 | N/A | N/A | N/A | 78.0 | N/A | N/A | N/A | 4 weeks: 29.0 (25.0–37.0) 3 months: 38.0 (28.0–48.0) | N/A | N/A | 44.0 | 40.0 | N/A | N/A |
Kammersgaard [33] | 2000 | 6 months: 47.9 ± 11.4 | N/A | N/A | 28 days: 11.0 6 months: 23.0 | 13.0 | N/A | N/A | 6 months: 42.4 ± 13.7 | N/A | N/A | 28 days: 6.0 6 months: 12.0 | 18.0 | N/A | N/A |
Krieger [34] | 2001 | Baseline: 19.6 ± 2.6 | 3 months: 11.1 | N/A | 3 months: 22.2 | 11.1 | N/A | N/A | Baseline: 19.8 ± 3.3 | 3 months: 50.0 | N/A | 3 months: 30.0 | 30.0 | N/A | N/A |
Schwab [21] | 2001 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | Baseline: 25.0 (15.0–32.0) 4 weeks: 29.0 | N/A | N/A | 38.0 | 48.0 | N/A | N/A |
Georgiadis [32] | 2001 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 16.7 | 100.0 | N/A | N/A |
Georgiadis [25] | 2002 | Baseline: 17.0 (16.0–18.0) | N/A | N/A | 18 months: 12.0 | N/A | N/A | N/A | Baseline: 20.0 (18.0–22.0) | N/A | N/A | 18 months: 47.0 | 18 months: 78.9 | N/A | N/A |
Berger [36] | 2002 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 33.3 | N/A | N/A | N/A |
De Georgia [13] | 2004 | Baseline: 14.6 ± 5.6 Baseline corrected: 16.7 ± 4.4 | N/A | N/A | 10 | 5.0 | 2.5 | N/A | Baseline: 15.2 ± 4.4 Baseline corrected: 18.2 ± 4.4 | N/A | Infarct volume growth was less in the hypothermia group but not significant | 12.5 | 5.0 | 7.5 | 2.5 |
Abou-Chebl [8] | 2004 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | Baseline: 21.4 ± 5.6 | N/A | N/A | 11.1 | 27.8 | N/A | 5.6 |
Lyden [26] | 2005 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 16.7 | 30 days: 5.6 | N/A | 16.7 |
Els [16] | 2006 | Baseline: 19.0 ± 2.0 6 months: 10.0 ± 1.0 | N/A | N/A | 15.0 | N/A | N/A | N/A | Baseline: 18.0 ± 2.0 6 months: 11.0 ± 3.0 | N/A | N/A | 8.0 | N/A | N/A | N/A |
Guluma [27] | 2006 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 0.0 | 0.0 | 0.0 | 0.0 |
Guluma [28] | 2008 | Immediately following catheter removal: 12.3 ± 8.5 30 days: 9.1 ± 7.8 | N/A | 30 days: 73.0 ± 71.0 | N/A | N/A | N/A | N/A | Immediately following catheter removal: 13.3 ± 11.0 30 days: 14.4 ± 14.3 | 30 days: no difference in modified Rankin scores | 30 days: 84.0 ± 102.0 | N/A | N/A | Significantly decreased | N/A |
Martin-Schild [22] | 2009 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | Baseline: 15.0 24 h: 9.0 Discharge/5 days: 6.0 | Discharge: 40.0 | N/A | Hospitalization: 15.0 | 20.0 | 1.0 | 20.0 |
Hemmen [11] | 2010 | Baseline: 13.7 ± 5.1 24 h: 11.1 ± 8.1 1 month: 5.0 ± 4.1 3 months: 3.8 ± 3.0 | 90 days: 24.0 | N/A | 90 days: 16.7 | 10.0 | N/A | 48 h: 25.0 | Baseline: 14.3 ± 5.0 24 h: 17.0 ± 8.9 1 month: 8.0 ± 6.5 3 months: 6.3 ± 6.6 | 90 days: 18.0 | N/A | 90 days: 21.4 | 50.0 | N/A | 48 h: 33.0 |
Bi [10] | 2011 | Thrombolysis baseline: 11.0 ± 2.7 Thrombolysis 90 days: −4.1 ± 0.5 Anti-platelet baseline: 10.8 ± 2.7 Anti-platelet 90 days: −1.5 ± 0.4 | 90 days: thrombolysis 39.3 anti-platelet 13.8 | N/A | 90 days: thrombolysis 9.7 anti-platelet 6.5 | N/A | N/A | 24 h: thrombolysis symptomatic 3.2 thrombolysis Asymptomatic 19.4 Anti-platelet symptomatic 0.0 Anti-platelet asymptomatic 6.5 | Baseline: 11.4 ± 2.8 90 days: −4.0 ± 0.6 | 90 days: 48.1 | N/A | 90 days: 12.9 | N/A | N/A | 24 h: symptomatic 6.5 asymptomatic 16.1 |
Hong [35] | 2014 | Baseline: 15.5 (12.0–17.0) | 90 days: 22.2 | N/A | 1 month: 13.9 | 30.6 | 83.3 | 86.1 | Baseline: 17.0 (15.0–18.0) | 90 days: 48.7 | N/A | 1 month: 15.4 | 5.1 | 46.2 | 61.5 |
Ovesen [15] | 2013 | Baseline: 9.0 48 h: 6.0 7 days: 6.0 90 days: 4.0 | N/A | N/A | 9.0 | 9.0 | N/A | 14.3 | Baseline: 8.0 48 h: 15.0 7 days: 11.0 90 days: 4.0 | N/A | N/A | 12.0 | 35.0 | N/A | 5.9 |
Piironen [14] | 2014 | Baseline: 14.0 | 3 months: 39.0 | N/A | N/A | 3 days: 11.0 | 3 days: 44.0 | 3 days: 28.0 | Baseline: 11.0 | 3 months: 39.0 | N/A | 0.0 | 3 days: 39.0 | 3 days: 28.0 | 3 days: 33.0 |
Lyden [17] | 2016 | Baseline: 14.5 ± 4.9 7 days: 10.6 ± 11.3 | 90 days: 38.0 | N/A | 8.8 | 10.5 | N/A | 3.5 | Baseline: 14.1 ± 4.8 7 days: 10.4 ± 10.3 | 90 days: 33.0 | N/A | 15.9 | 19.0 | N/A | 1.6 |
Geurts [20] | 2017 | Baseline: 13.0 3 months: 4.0 | 3 months: 50.0 | N/A | 3 months: 17.0 | 0.0 | N/A | 0.0 | Baseline: 13.0 3 months: 8.0 | 3 months: 37.0 | N/A | 3 months: 12.0 | 53.0 | N/A | 13.3 |
van der Worp [9] | 2019 | Baseline: 11.0 (7.0–17.0) 3 months: 3.0 (1.0–11.0) | 3 months: 39.0 | N/A | 3 months: 8.2 | 4.1 | 2.0 | 4.1 | Baseline: 11.0 (7.0–17.0) 3 months: 3.0 (1.0–8.0) | 3 months: 50.0 | 34.3 (10.5–65.5) | 3 months: 10.2 | 18.4 | 8.2 | 8.2 |
Neugebauer [12] | 2019 | Baseline: 20.5 (15.0–42.0) 14 days: 22.0 (16.0–33.0) | 12 months: 4.0 | N/A | 14 days: 12.5 12 months: 13.0 | 63.0 | N/A | N/A | Baseline: 21.0 (15.0–42.0) 14 days: 25.0 (17.0–37.0) | 12 months: 0.0 | N/A | 14 days: 19.2 12 months: 24.0 | 54.0 | N/A | N/A |
Bardutzky [24] | 2023 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | Baseline: 15.0 (12.5–19.8) 24 h: 7.0 (3.0–12.5) 7 days: 2.0 (1.0–8.0) | Discharge: 64.0 3 months: 68.0 | N/A | 3 months: 9.0 | 18.0 | N/A | 18.0 |
Normothermic | Hypothermic | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Stroke | Health Outcomes | Stroke | Health Outcomes | ||||||||||||
First Author | Year | Severity (NIHSS) | Functionally Independent (%) | Infarct Volume (mL) | Mortality (%) | Pneumonia (%) | Edema Formation (%) | Hemorrhage (%) | Severity (NIHSS) | Functionally Independent (%) | Infarct Volume (mL) | Mortality (%) | Pneumonia (%) | Edema Formation (%) | Hemorrhage (%) |
Kollmar [29] | 2009 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | Baseline: 5.5 (4.0–12.0) 24 h: 3.0 (1.0–13.0) | N/A | N/A | N/A | N/A | N/A | N/A |
Chen [30] | 2016 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 38.5 | N/A | 0.0 |
Peng [18] | 2016 | Baseline: 16.8 ± 8.2 24 h: 12.3 ± 5.5 1 month: 9.2 ± 3.4 | N/A | Baseline: 25.0 ± 10.1 24 h: 25.6 ± 10.2 7 days: 26.4 ± 10.9 | N/A | N/A | N/A | N/A | Baseline: 16.3 ± 8.5 24 h: 10.0 ± 6.9 1 month: 7.1 ± 5.1 | N/A | Baseline: 24.9 ± 9.4 24 h: 13.5 ± 6.0 7 days: 12.3 ± 7.4 | N/A | N/A | N/A | N/A |
Wu [31] | 2018 | Baseline: 16.0 (11.0–19.0) | 90 days: 41.2 | 3–7 days: 77.9 ± 44.7 | 90 days: 26.5 | 7 days or discharge: 33.8 | N/A | 7 days or discharge: 32.4 | Baseline: 17.0 (13.0–21.0) | 90 days: 51.1 | 3–7 days: 63.7 ± 31.8 | 90 days: 20.0 | 7 days or discharge: 31.1 | N/A | 7 days or discharge: 35.6 |
Wan [19] | 2023 | Baseline: 16.0 ± 8.0 14 days: 3.5 ± 2.1 | 90 days: 35.2 | 7 days: 88.5 ± 20.8 | 90 days: 8.5 | 7 days: 21.1 | N/A | 24 h: 15.5 | Baseline: 15.0 ± 7.0 14 days: 2.0 ± 1.2 | 90 days: 54.9 | 7 days: 63.7 ± 22.1 | 90 days: 7.0 | 7 days: 23.9 | N/A | 24 h: 18.3 |
3.1.4. Duration of TTM
3.1.5. Fibrinolytic Therapies
3.2. Outcomes
3.2.1. Mortality Rates
3.2.2. NIHSS Severity Changes
3.2.3. Functional Outcomes
3.2.4. Pneumonia Rates
3.2.5. Hemorrhage Rates
4. Discussion
4.1. Mechanism of TTM for Stroke Management
4.2. Time to Cooling Initiation and Target Temperature
4.3. Method of Cooling
4.4. Degree of Hypothermia
4.5. Duration of Cooling
4.6. Fibrinolytic Therapies
4.7. Comorbidities
4.8. Outcomes
4.9. Recommendations for TTM in Stroke Patients
4.10. Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Snapshot. Available online: https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm (accessed on 24 November 2023).
- AIS-Professional-Education-Presentation-ucm_485538.pdf. Available online: https://www.stroke.org/-/media/Stroke-Files/Ischemic-Stroke-Professional-Materials/AIS-Toolkit/AIS-Professional-Education-Presentation-ucm_485538 (accessed on 24 November 2023).
- Campbell, B.C.V.; Mitchell, P.J.; Churilov, L.; Yassi, N.; Kleinig, T.J.; Dowling, R.J.; Yan, B.; Bush, S.J.; Dewey, H.M.; Thijs, V.; et al. Tenecteplase versus alteplase before thrombectomy for ischemic stroke. N. Engl. J. Med. 2018, 378, 1573–1582. [Google Scholar] [CrossRef] [PubMed]
- Hurford, R.; Sekhar, A.; Hughes, T.A.T.; Muir, K.W. Diagnosis and management of acute ischaemic stroke. Pract. Neurol. 2020, 20, 304–316. [Google Scholar] [CrossRef] [PubMed]
- Saver, J.L.; Goyal, M.; Van der Lugt, A.A.D.; Menon, B.K.; Majoie, C.B.; Dippel, D.W.; Campbell, B.C.; Nogueira, R.G.; Demchuk, A.M.; Tomasello, A.; et al. Time to Treatment With Endovascular Thrombectomy and Outcomes From Ischemic Stroke: A Meta-analysis. JAMA 2016, 316, 1279–1289. [Google Scholar] [CrossRef] [PubMed]
- Andresen, M.; Gazmuri, J.T.; Marín, A.; Regueira, T.; Rovegno, M. Therapeutic hypothermia for acute brain injuries. Scand. J. Trauma Resusc. Emerg. Med. 2015, 23, 42. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, H.; Andrews, P.J. Bench-to-bedside review: Hypothermia in traumatic brain injury. Crit. Care 2010, 14, 204. [Google Scholar] [CrossRef] [PubMed]
- Abou-Chebl, A.; DeGeorgia, M.A.; Andrefsky, J.C.; Krieger, D.W. Technical refinements and drawbacks of a surface cooling technique for the treatment of severe acute ischemic stroke. Neurocrit. Care 2004, 1, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Van Der Worp, H.B.; Macleod, M.R.; Bath, P.M.; Bathula, R.; Christensen, H.; Colam, B.; Cordonnier, C.; Demotes-Mainard, J.; Durand-Zaleski, I.; Gluud, C.; et al. Therapeutic hypothermia for acute ischaemic stroke. Results of a European multicentre, randomised, phase III clinical trial. Eur. Stroke J. 2019, 4, 254–262. [Google Scholar] [CrossRef]
- Bi, M.; Ma, Q.; Zhang, S.; Li, J.; Zhang, Y.; Lin, L.; Tong, S.; Wang, D. Local mild hypothermia with thrombolysis for acute ischemic stroke within a 6-h window. Clin. Neurol. Neurosurg. 2011, 113, 768–773. [Google Scholar] [CrossRef]
- Hemmen, T.M.; Raman, R.; Guluma, K.Z.; Meyer, B.C.; Gomes, J.A.; Cruz-Flores, S.; Wijman, C.A.; Rapp, K.S.; Grotta, J.C.; Lyden, P.D. Intravenous Thrombolysis Plus Hypothermia for Acute Treatment of Ischemic Stroke (ICTuS-L). Stroke 2010, 41, 2265–2270. [Google Scholar] [CrossRef]
- Neugebauer, H.; Schneider, H.; Bösel, J.; Hobohm, C.; Poli, S.; Kollmar, R.; Sobesky, J.; Wolf, S.; Bauer, M.; Tittel, S.; et al. Outcomes of Hypothermia in Addition to Decompressive Hemicraniectomy in Treatment of Malignant Middle Cerebral Artery Stroke. JAMA Neurol. 2019, 76, 571–579. [Google Scholar] [CrossRef]
- De Georgia, M.A.; Krieger, D.W.; Abou-Chebl, A.; Devlin, T.G.; Jauss, M.; Davis, S.M.; Koroshetz, W.J.; Rordorf, G.; Warach, S. Cooling for Acute Ischemic Brain Damage (COOL AID): A feasibility trial of endovascular cooling. Neurology 2004, 63, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Piironen, K.; Tiainen, M.; Mustanoja, S.; Kaukonen, K.M.; Meretoja, A.; Tatlisumak, T.; Kaste, M. Mild hypothermia after intravenous thrombolysis in patients with acute stroke: A randomized controlled trial. Stroke 2014, 45, 486–491. [Google Scholar] [CrossRef] [PubMed]
- Ovesen, C.; Brizzi, M.; Pott, F.C.; Thorsen-Meyer, H.C.; Karlsson, T.; Ersson, A.; Christensen, H.; Norrlin, A.; Meden, P.; Krieger, D.W.; et al. Feasibility of endovascular and surface cooling strategies in acute stroke. Acta Neurol. Scand. 2013, 127, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Els, T.; Oehm, E.; Voigt, S.; Klisch, J.; Hetzel, A.; Kassubek, J. Safety and Therapeutical Benefit of Hemicraniectomy Combined with Mild Hypothermia in Comparison with Hemicraniectomy Alone in Patients with Malignant Ischemic Stroke. Cerebrovasc. Dis. 2006, 21, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Lyden, P.; Hemmen, T.; Grotta, J.; Rapp, K.; Ernstrom, K.; Rzesiewicz, T.; Parker, S.; Concha, M.; Syed, H.; Agarwal, S.; et al. Results of the Intravascular Cooling in the Treatment of Acute Stroke 2 Trial (ICTuS-2). Stroke 2016, 47, 2888–2895. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Wan, Y.; Liu, W.; Dan, B.; Lin, L.; Tang, Z. Protective roles of intra-arterial mild hypothermia and arterial thrombolysis in acute cerebral infarction. Springer Plus 2016, 5, 1988. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Tian, H.; Wang, H.; Wang, D.; Jiang, H.; Fang, Q. Selective intraarterial hypothermia combined with mechanical thrombectomy for acute cerebral infarction based on microcatheter technology: A single-center, randomized, single-blind controlled study. Front. Neurol. 2023, 14, 1039816. [Google Scholar] [CrossRef]
- Geurts, M.; Petersson, J.; Brizzi, M.; Olsson-Hau, S.; Luijckx, G.J.; Algra, A.; Dippel, D.W.; Kappelle, L.J.; van der Worp, H.B. COOLIST (Cooling for Ischemic Stroke Trial): A Multicenter, Open, Randomized, Phase II, Clinical Trial. Stroke 2017, 48, 219–221. [Google Scholar] [CrossRef]
- Schwab, S.; Georgiadis, D.; Berrouschot, J.; Schellinger, P.D.; Graffagnino, C.; Mayer, S.A. Feasibility and Safety of Moderate Hypothermia After Massive Hemispheric Infarction. Stroke 2001, 32, 2033–2035. [Google Scholar] [CrossRef]
- Martin-Schild, S.; Hallevi, H.; Shaltoni, H.; Barreto, A.D.; Gonzales, N.R.; Aronowski, J.; Savitz, S.I.; Grotta, J.C. Combined Neuroprotective Modalities Coupled with Thrombolysis in Acute Ischemic Stroke: A Pilot Study of Caffeinol and Mild Hypothermia. J. Stroke Cerebrovasc. Dis. 2009, 18, 86–96. [Google Scholar] [CrossRef]
- Schwab, S.; Schwarz, S.; Spranger, M.; Keller, E.; Bertram, M.; Hacke, W. Moderate hypothermia in the treatment of patients with severe middle cerebral artery infarction. Stroke 1998, 29, 2461–2466. [Google Scholar] [CrossRef] [PubMed]
- Bardutzky, J.; Kollmar, R.; Al-Rawi, F.; Lambeck, J.; Fazel, M.; Taschner, C.; Niesen, W.D. COmbination of Targeted temperature management and Thrombectomy after acute Ischemic Stroke (COTTIS): A pilot study. Stroke Vasc. Neurol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Georgiadis, D.; Schwarz, S.; Aschoff, A.; Schwab, S. Hemicraniectomy and moderate hypothermia in patients with severe ischemic stroke. Stroke 2002, 33, 1584–1588. [Google Scholar] [CrossRef] [PubMed]
- Lyden, P.D.; Allgren, R.L.; Ng, K.; Akins, P.; Meyer, B.; Al-Sanani, F.; Lutsep, H.; Dobak, J.; Matsubara, B.S.; Zivin, J. Intravascular Cooling in the Treatment of Stroke (ICTuS): Early clinical experience. J. Stroke Cerebrovasc. Dis. 2005, 14, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Guluma, K.Z.; Hemmen, T.M.; Olsen, S.E.; Rapp, K.S.; Lyden, P.D. A Trial of Therapeutic Hypothermia via Endovascular Approach in Awake Patients with Acute Ischemic Stroke: Methodology. Acad. Emerg. Med. 2006, 13, 820–827. [Google Scholar] [CrossRef] [PubMed]
- Guluma, K.Z.; Oh, H.; Yu, S.-W.; Meyer, B.C.; Rapp, K.; Lyden, P.D. Effect of Endovascular Hypothermia on Acute Ischemic Edema: Morphometric Analysis of the ICTuS Trial. Neurocrit. Care 2008, 8, 42–47. [Google Scholar] [CrossRef]
- Kollmar, R.; Schellinger, P.; Steigleder, T.; Kohrmann, M.; Schwab, S. Ice-Cold Saline for the Induction of Mild Hypothermia in Patients with Acute Ischemic Stroke: A Pilot Study. Stroke 2009, 40, 1907–1909. [Google Scholar] [CrossRef]
- Chen, J.; Liu, L.; Zhang, H.; Geng, X.; Jiao, L.; Li, G.; Coutinho, J.M.; Ding, Y.; Liebeskind, D.S.; Ji, X. Endovascular hypothermia in acute ischemic stroke: A pilot study of selective intra-arterial cold saline infusion. Stroke J. Cereb. Circ. 2016, 47, 1933–1935. [Google Scholar] [CrossRef]
- Wu, C.; Zhao, W.; An, H.; Wu, L.; Chen, J.; Hussain, M.; Ding, Y.; Li, C.; Wei, W.; Duan, J.; et al. Safety, feasibility, and potential efficacy of intraarterial selective cooling infusion for stroke patients treated with mechanical thrombectomy. J. Cereb. Blood Flow Metab. 2018, 38, 2251–2260. [Google Scholar] [CrossRef]
- Georgiadis, D.; Schwarz, S.; Kollmar, R.; Schwab, S. Endovascular cooling for moderate hypothermia in patients with acute stroke: First results of a novel approach. Stroke 2001, 32, 2550–2553. [Google Scholar] [CrossRef]
- Kammersgaard, L.P.; Rasmussen, B.H.; Jørgensen, H.S.; Reith, J.; Weber, U.; Olsen, T.S. Feasibility and safety of inducing modest hypothermia in awake patients with acute stroke through surface cooling: A case-control study: The Copenhagen Stroke Study. Stroke 2000, 31, 2251–2256. [Google Scholar] [CrossRef] [PubMed]
- Krieger, D.W.; De Georgia, M.A.; Abou-Chebl, A.; Andrefsky, J.C.; Sila, C.A.; Katzan, I.L.; Mayberg, M.R.; Furlan, A.J. Cooling for Acute Ischemic Brain Damage (COOL AID). Stroke 2001, 32, 1847–1854. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.M.; Lee, J.S.; Song, H.-J.; Jeong, H.S.; Choi, H.A.; Lee, K. Therapeutic Hypothermia After Recanalization in Patients With Acute Ischemic Stroke. Stroke 2014, 45, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Berger, C.; Schäbitz, W.-R.; Georgiadis, D.; Steiner, T.; Aschoff, A.; Schwab, S. Effects of Hypothermia on Excitatory Amino Acids and Metabolism in Stroke Patients: A Microdialysis Study. Stroke 2002, 33, 519–524. [Google Scholar] [CrossRef]
- Tong, D.; Reeves, M.J.; Hernandez, A.F.; Zhao, X.; Olson, D.M.; Fonarow, G.C.; Schwamm, L.H.; Smith, E.E. Times from symptom onset to hospital arrival in the Get with the Guidelines—Stroke Program 2002 to 2009: Temporal trends and implications. Stroke 2012, 43, 1912–1917. [Google Scholar] [CrossRef] [PubMed]
- Kurisu, K.; Yenari, M.A. Therapeutic hypothermia for ischemic stroke; pathophysiology and future promise. Neuropharmacology 2018, 134, 302–309. [Google Scholar] [CrossRef]
- Kurisu, K.; Abumiya, T.; Nakamura, H.; Shimbo, D.; Shichinohe, H.; Nakayama, N.; Kazumata, K.; Shimizu, H.; Houkin, K. Transarterial Regional Brain Hypothermia Inhibits Acute Aquaporin-4 Surge and Sequential Microvascular Events in Ischemia/Reperfusion Injury. Neurosurgery 2016, 79, 125–134. [Google Scholar] [CrossRef]
- Krieger, D.W.; Yenari, M.A. Therapeutic Hypothermia for Acute Ischemic Stroke. Stroke 2004, 35, 1482–1489. [Google Scholar] [CrossRef]
- Truettner, J.S.; Alonso, O.F.; Dietrich, W.D. Influence of Therapeutic Hypothermia on Matrix Metalloproteinase Activity after Traumatic Brain Injury in Rats. J. Cereb. Blood Flow Metab. 2005, 25, 1505–1516. [Google Scholar] [CrossRef]
- Liu, A.; Zhang, Z.; Li, A.; Xue, J. Effects of hypothermia and cerebral ischemia on cold-inducible RNA-binding protein mRNA expression in rat brain. Brain Res. 2010, 1347, 104–110. [Google Scholar] [CrossRef]
- Yenari, M.A.; Han, H.S. Neuroprotective mechanisms of hypothermia in brain ischaemia. Nat. Rev. Neurosci. 2012, 13, 267–278. [Google Scholar] [CrossRef] [PubMed]
- ACeulemans, G.; Zgavc, T.; Kooijman, R.; Hachimi-Idrissi, S.; Sarre, S.; Michotte, Y. The dual role of the neuroinflammatory response after ischemic stroke: Modulatory effects of hypothermia. J. Neuroinflammation 2010, 7, 74. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Tang, X.N.; Yenari, M.A. The inflammatory response in stroke. J. Neuroimmunol. 2007, 184, 53–68. [Google Scholar] [CrossRef] [PubMed]
- Xiong, M.; Cheng, G.-Q.; Ma, S.-M.; Yang, Y.; Shao, X.-M.; Zhou, W.-H. Post-ischemic hypothermia promotes generation of neural cells and reduces apoptosis by Bcl-2 in the striatum of neonatal rat brain. Neurochem. Int. 2011, 58, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Lasarzik, I.; Winkelheide, U.; Thal, S.C.; Benz, N.; Lörscher, M.; Jahn-Eimermacher, A.; Werner, C.; Engelhard, K. Mild hypothermia has no long-term impact on postischemic neurogenesis in rats. Anesth. Analg. 2009, 109, 1632–1639. [Google Scholar] [CrossRef] [PubMed]
- Uribarri, A.; Bueno, H.; Pérez-Castellanos, A.; Loughlin, G.; Sousa, I.; Viana-Tejedor, A.; Fernández-Avilés, F. Impact of time to cooling initiation and time to target temperature in patients treated with hypothermia after cardiac arrest. Eur. Heart J. Acute Cardiovasc. Care 2015, 4, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Lavinio, A.; Andrzejowski, J.; Antonopoulou, I.; Coles, J.; Geoghegan, P.; Gibson, K.; Gudibande, S.; Lopez-Soto, C.; Mullhi, R.; Nair, P.; et al. Targeted temperature management in patients with intracerebral haemorrhage, subarachnoid haemorrhage, or acute ischaemic stroke: Updated consensus guideline recommendations by the Neuroprotective Therapy Consensus Review (NTCR) group. Br. J. Anaesth. 2023, 131, 294–301. [Google Scholar] [CrossRef]
- Dippel, D.W.; Van Breda, E.J.; van der Worp, H.B.; van Gemert, H.M.A.; Meijer, R.J.; Kappelle, L.J.; Koudstaal, P.J. and PISA-investigators. Effect of paracetamol (acetaminophen) and ibuprofen on body temperature in acute ischemic stroke PISA, a phase II double-blind, randomized, placebo-controlled trial [ISRCTN98608690]. BMC Cardiovasc. Disord. 2003, 3, 2. [Google Scholar] [CrossRef]
- HDen Hertog, M.; van der Worp, H.B.; Tseng, M.; Dippel, D.W. Cooling therapy for acute stroke. Cochrane Database Syst. Rev. 2009, 2009, CD001247. [Google Scholar] [CrossRef]
- Müller, A.; Lorenz, A.; Seifert, B.; Keller, E. Risk of Thromboembolic Events with Endovascular Cooling Catheters in Patients with Subarachnoid Hemorrhage. Neurocrit. Care 2014, 21, 207–210. [Google Scholar] [CrossRef]
- Guidelines for the Early Management of Patients with Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke: A Guideline for Healthcare Professionals from the American Heart Association/American Stroke Association|Stroke. Available online: https://www.ahajournals.org/doi/10.1161/STR.0000000000000211 (accessed on 15 December 2023).
- Lazzaro, M.A.; Prabhakaran, S. Induced hypothermia in acute ischemic stroke. Exp. Opin. Investig. Drugs 2008, 17, 1161–1174. [Google Scholar] [CrossRef] [PubMed]
- Kallmünzer, B.; Kollmar, R. Temperature management in stroke—An unsolved, but important topic. Cerebrovasc. Dis. 2011, 31, 532–543. [Google Scholar] [CrossRef] [PubMed]
- Shi, K.; Wood, K.; Shi, F.-D.; Wang, X.; Liu, Q. Stroke-induced immunosuppression and poststroke infection. Stroke Vasc. Neurol. 2018, 3, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, N.; Wetterslev, J.; Cronberg, T.; Erlinge, D.; Gasche, Y.; Hassager, C.; Horn, J.; Hovdenes, J.; Kjaergaard, J.; Kuiper, M.; et al. Targeted Temperature Management at 33 °C versus 36 °C after Cardiac Arrest. N. Engl. J. Med. 2013, 369, 2197–2206. [Google Scholar] [CrossRef] [PubMed]
- Neugebauer, H.; Kollmar, R.; Niesen, W.D.; Bösel, J.; Schneider, H.; Hobohm, C.; Zweckberger, K.; Heuschmann, P.U.; Schellinger, P.D.; Jüttler, E.; et al. DEcompressive surgery Plus hypoTHermia for Space-Occupying Stroke (DEPTH-SOS): A protocol of a multicenter randomized controlled clinical trial and a literature review. Int. J. Stroke 2013, 8, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Su, Y.; Zhang, Y.; Ye, H.; Chen, W.; Liu, G. Decompressive craniectomy combined with mild hypothermia in patients with large hemispheric infarction: A randomized controlled trial. BMC Neurol. 2021, 21, 114. [Google Scholar] [CrossRef]
- den Hertog, H.; van der Worp, B.; van Gemert, M.; Dippel, D. Therapeutic hypothermia in acute ischemic stroke. Exp. Rev. Neurother. 2007, 7, 155–164. [Google Scholar] [CrossRef]
- Huber, C.; Huber, M.; Ding, Y. Evidence and opportunities of hypothermia in acute ischemic stroke: Clinical trials of systemic versus selective hypothermia. Brain Circ. 2019, 5, 195–202. [Google Scholar] [CrossRef]
- Cipolla, M.J.; Liebeskind, D.S.; Chan, S.-L. The importance of comorbidities in ischemic stroke: Impact of hypertension on the cerebral circulation. J. Cereb. Blood Flow Metab. 2018, 38, 2129–2149. [Google Scholar] [CrossRef]
- Lau, L.-H.; Lew, J.; Borschmann, K.; Thijs, V.; Ekinci, E.I. Prevalence of diabetes and its effects on stroke outcomes: A meta-analysis and literature review. J. Diabetes Investig. 2019, 10, 780–792. [Google Scholar] [CrossRef]
- Shigematsu, K.; Watanabe, Y.; Nakano, H. Influences of hyperlipidemia history on stroke outcome; a retrospective cohort study based on the Kyoto Stroke Registry. BMC Neurol. 2015, 15, 44. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.Y.; Ken-Dror, G.; Ly, P.; Al Hail, H.; Deleu, D.; Ali, M.; Al Hussein, H.; Abuzaid, H.O.; Sharif, K.; Sharma, P. Cigarette smoking as a risk factor for ischaemic stroke in young South Asian male migrants to Qatar: The BRAINS study. Qatar Med. J. 2023, 2023, 23. [Google Scholar] [CrossRef] [PubMed]
- Migdady, I.; Russman, A.; Buletko, A.B. Atrial Fibrillation and Ischemic Stroke: A Clinical Review. Semin. Neurol. 2021, 41, 348–364. [Google Scholar] [CrossRef] [PubMed]
- Polderman, K.H. Application of therapeutic hypothermia in the intensive care unit. Opportunities and pitfalls of a promising treatment modality—Part 2: Practical aspects and side effects. Intensive Care Med. 2004, 30, 757–769. [Google Scholar] [CrossRef]
- Volsko, T.A. Airway clearance therapy: Finding the evidence. Respir. Care 2013, 58, 1669–1678. [Google Scholar] [CrossRef]
- Wanner, A.; Salathé, M.; O’Riordan, T.G. Mucociliary clearance in the airways. Am. J. Respir. Crit. Care Med. 1996, 154 Pt 1, 1868–1902. [Google Scholar] [CrossRef]
- Westendorp, W.F.; Vermeij, J.D.; Zock, E.; Hooijenga, I.J.; Kruyt, N.D.; Bosboom, H.J.; Kwa, V.I.; Weisfelt, M.; Remmers, M.J.; ten Houten, R.; et al. The Preventive Antibiotics in Stroke Study (PASS): A pragmatic randomised open-label masked endpoint clinical trial. Lancet Lond. Engl. 2015, 385, 1519–1526. [Google Scholar] [CrossRef]
- Wang, Q.; Miao, P.; Modi, H.R.; Garikapati, S.; Koehler, R.C.; Thakor, N.V. Therapeutic hypothermia promotes cerebral blood flow recovery and brain homeostasis after resuscitation from cardiac arrest in a rat model. J. Cereb. Blood Flow Metab. 2019, 39, 1961–1973. [Google Scholar] [CrossRef]
- Polderman, K.H. Hypothermia and coagulation. Crit. Care 2012, 16, A20. [Google Scholar] [CrossRef]
- Geocadin, R.G.; Wijdicks, E.; Armstrong, M.J.; Damian, M.; Mayer, S.A.; Ornato, J.P.; Rabinstein, A.; Suarez, J.I.; Torbey, M.T.; Dubinsky, R.M.; et al. Practice guideline summary: Reducing brain injury following cardiopulmonary resuscitation: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology 2017, 88, 2141–2149. [Google Scholar] [CrossRef]
- Polderman, K.H.; Varon, J. Confusion Around Therapeutic Temperature Management Hypothermia After In-Hospital Cardiac Arrest? Circulation 2018, 137, 219–221. [Google Scholar] [CrossRef] [PubMed]
- Badjatia, N.; Fernandez, L.; Schmidt, J.M.; Lee, K.; Claassen, J.; Connolly, E.S.; Mayer, S.A. Impact of induced normothermia on outcome after subarachnoid hemorrhage: A case-control study. Neurosurgery 2010, 66, 696–700, discussion 700–701. [Google Scholar] [CrossRef] [PubMed]
- Mayer, S.A.; Kowalski, R.G.; Presciutti, M.; Ostapkovich, N.D.; McGann, E.; Fitzsimmons, B.F.; Yavagal, D.R.; Du, Y.E.; Naidech, A.M.; Janjua, N.A.; et al. Clinical trial of a novel surface cooling system for fever control in neurocritical care patients. Crit. Care Med. 2004, 32, 2508–2515. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binda, D.D.; Baker, M.B.; Varghese, S.; Wang, J.; Badenes, R.; Bilotta, F.; Nozari, A. Targeted Temperature Management for Patients with Acute Ischemic Stroke: A Literature Review. J. Clin. Med. 2024, 13, 586. https://doi.org/10.3390/jcm13020586
Binda DD, Baker MB, Varghese S, Wang J, Badenes R, Bilotta F, Nozari A. Targeted Temperature Management for Patients with Acute Ischemic Stroke: A Literature Review. Journal of Clinical Medicine. 2024; 13(2):586. https://doi.org/10.3390/jcm13020586
Chicago/Turabian StyleBinda, Dhanesh D., Maxwell B. Baker, Shama Varghese, Jennifer Wang, Rafael Badenes, Federico Bilotta, and Ala Nozari. 2024. "Targeted Temperature Management for Patients with Acute Ischemic Stroke: A Literature Review" Journal of Clinical Medicine 13, no. 2: 586. https://doi.org/10.3390/jcm13020586
APA StyleBinda, D. D., Baker, M. B., Varghese, S., Wang, J., Badenes, R., Bilotta, F., & Nozari, A. (2024). Targeted Temperature Management for Patients with Acute Ischemic Stroke: A Literature Review. Journal of Clinical Medicine, 13(2), 586. https://doi.org/10.3390/jcm13020586