Prognostic Impact of Anemia and Hemoglobin Levels in Unselected Patients Undergoing Coronary Angiography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Patients, Design, and Data Collection
2.2. Inclusion and Exclusion Criteria
2.3. Risk Stratification
2.4. Study Endpoints
2.5. Statistical Methods
3. Results
3.1. Study Population
3.2. Prognostic Value of Anemia in Patients Undergoing CA
3.3. Multivariable Cox Regression and Propensity-Score-Matched Analyses
3.4. Subgroup Analysis
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2019 Diseases and Injures Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.S.; Ajani, U.A.; Croft, J.B.; Critchley, J.A.; Labarthe, D.R.; Kottke, T.E.; Giles, W.H.; Capewell, S. Explaining the Decrease in U.S. Deaths from Coronary Disease, 1980–2000. N. Engl. J. Med. 2007, 356, 2388–2398. [Google Scholar] [CrossRef] [PubMed]
- Schupp, T.; Akin, I.; Behnes, M. Pharmacological Treatment Following Myocardial Infarction: How Large Is the Gap Between Guideline Recommendations and Routine Clinical Care? J. Am. Heart Assoc. 2021, 10, e021799. [Google Scholar] [CrossRef]
- Malakar, A.K.; Choudhury, D.; Halder, B.; Paul, P.; Uddin, A.; Chakraborty, S. A review on coronary artery disease, its risk factors, and therapeutics. J. Cell Physiol. 2019, 234, 16812–16823. [Google Scholar] [CrossRef]
- Brown, J.C.; Gerhardt, T.E.; Kwon, E. Risk Factors for Coronary Artery Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Lindenfeld, J. Prevalence of anemia and effects on mortality in patients with heart failure. Am. Heart J. 2005, 149, 391–401. [Google Scholar] [CrossRef]
- Rymer, J.A.; Rao, S.V. Anemia and coronary artery disease: Pathophysiology, prognosis, and treatment. Coron. Artery Dis. 2005, 29, 161–167. [Google Scholar] [CrossRef]
- Metivier, F.; Marchais, S.J.; Guerin, A.P.; Pannier, B.; London, G.M. Pathophysiology of anemia: Focus on the heart and blood vessels. Nephrol. Dial. Transpl. 2000, 15 (Suppl. S3), 14–18. [Google Scholar] [CrossRef]
- Pereira, A.A.; Sarnak, M.J. Anemia as a risk factor for cardiovascular disease. Kidney Int. 2003, 64 (Suppl. S87), 32–39. [Google Scholar] [CrossRef] [PubMed]
- Bellotto, F.; Pavei, A.; Gregory, S.A.; Cati, A.; Silverj, E.; Plebani, M.; Zaninotto, M.; Tommaso, M.; Iliceto, S. Anemia and ischemia: Myocardial injury in patients with gastrointestinal bleeding. Am. J. Med. 2005, 118, 548–551. [Google Scholar] [CrossRef] [PubMed]
- Sarnak, M.J.; Tighiouart, H.; Manjunath, G.; MacLeod, B.; Griffith, J.; Salem, D.; Levey, A.S. Anemia as a risk factor for cardiovascular disease in The Atherosclerosis Risk in Communities (ARIC) study. J. Am. Coll. Cardiol. 2002, 40, 27–33. [Google Scholar] [CrossRef]
- Byrne, R.A.; Rossello, X.; Coughlan, J.J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.A.; Dweck, M.R.; Galbraith, M.; et al. ESC Guidelines for the management of acute coronary syndromes. Eur. Heart J. 2023, 44, 3720–3826. [Google Scholar] [CrossRef] [PubMed]
- Bayraktarova, I.; Vladimirov, G.; Mateev, H.; Alexandrov, A.; Trendafilova, E. Impact of baseline anemia on the short- and long-term prognosis of patients presenting with non-ST-elevation myocardial infarction. Bulg. Cardiol. 2023, 29, 65–75. [Google Scholar] [CrossRef]
- Rathod, K.S.; Jones, D.A.; Rathod, V.S.; Bromage, D.; Guttmann, O.; Gallagher, S.M.; Mohiddin, S.; Rothman, M.T.; Knight, C.; Jain, A.K.; et al. Prognostic impact of anemia on patients with ST-elevation myocardial infarction treated by primary PCI. Coron. Artery Dis. 2014, 25, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Savarese, G.; Jonsson, Å.; Hallberg, A.C.; Dahlström, U.; Edner, M.; Lund, L.H. Prevalence of, associations with, and prognostic role of anemia in heart failure across the ejection fraction spectrum. Int. J. Cardiol. 2020, 298, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Weidner, K.; Schupp, T.; Hoppner, J.; Kittel, M.; Rusnak, J.; Kim, S.H.; Abumayyaleh, M.; Borggrefe, M.; Barth, C.; Ellguth, D.; et al. Effect of Anemia on the Prognosis of Patients with Ventricular Tachyarrhythmias. Am. J. Cardiol. 2021, 154, 54–62. [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.; Cheng, W.; Li, L. Relations of Anemia With the All-Cause Mortality and Cardiovascular Mortality in General Population: A Meta-Analysis. Am. J. Med. Sci. 2019, 358, 191–199. [Google Scholar] [CrossRef]
- da Silveira, A.D.; Ribeiro, R.A.; Rossini, A.P.; Stella, S.F.; Ritta, H.A.; Stein, R.; Polanczyk, C.A. Association of anemia with clinical outcomes in stable coronary artery disease. Coron. Artery Dis. 2008, 19, 21–26. [Google Scholar] [CrossRef]
- Sabatine, M.S.; Morrow, D.A.; Giugliano, R.P.; Burton, P.B.J.; Murphy, S.A.; McCabe, C.H.; Gibson, C.M.; Braunwald, E. Association of Hemoglobin Levels With Clinical Outcomes in Acute Coronary Syndromes. Circulation 2005, 111, 2042–2049. [Google Scholar] [CrossRef]
- Lee, G.; Choi, S.; Kim, K.; Yun, J.M.; Son, J.S.; Jeong, S.M.; Kim, S.M.; Park, S.M. Association of Hemoglobin Concentration and Its Change With Cardiovascular and All-Cause Mortality. J. Am. Heart Assoc. 2018, 7, e007723. [Google Scholar] [CrossRef]
- Lipšic, E.; Voors, A.A.; van der Meer, P.; Nijsten, M.W.N.; van Gilst, W.H.; van Veldhuisen, D.J.; Zijlstra, F. Hemoglobin levels and 30-day mortality in patients after myocardial infarction. Int. J. Cardiol. 2005, 100, 289–292. [Google Scholar] [CrossRef]
- Young, J.B.; Albert, N.M.; Stough, W.G.; Gheorghiade, M.; Greenberg, B.H.; O’Connor, C.M.; She, L.; Sun, J.L.; Yancy, C.W.; Fonarow, G.C. Relation of Low Hemoglobin and Anemia to Morbidity and Mortality in Patients Hospitalized With Heart Failure (Insight from the OPTIMIZE-HF Registry). Am. J. Cardiol. 2008, 101, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Gagnon, D.R.; Zhang, T.J.; Brand, F.N.; Kannel, W.B. Hematocrit and the risk of cardiovascular disease—The Framingham study: A 34-year follow-up. Am. Heart J. 1994, 127, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Reinecke, H. Haemoglobin-related mortality in patients undergoing percutaneous coronary interventions. Eur. Heart J. 2003, 24, 2142–2150. [Google Scholar] [CrossRef] [PubMed]
- Sorlie, P.D.; Costas Jr, R.; Havlik, R.J. Hematocrit and risk of coronary heart disease: The Puerto Rico Health Program. Am. Heart J. 1981, 101, 456–461. [Google Scholar] [CrossRef]
- Brown, D.W.; Giles, W.H.; Croft, J.B. Hematocrit and the risk of coronary heart disease mortality. Am. Heart J. 2001, 142, 657–663. [Google Scholar] [CrossRef]
- Carson, J.L.; Duff, A.; Berlin, J.A.; Lawrence, V.A.; Poses, R.M.; Huber, E.C.; O’Hara, D.A.; Noveck, H.; Strom, B.L. Perioperative blood transfusion and postoperative mortality. J. Am. Med. Assoc. 1998, 279, 199–205. [Google Scholar] [CrossRef]
- Go, A.S.; Yang, J.; Ackerson, L.M.; Lepper, K.; Robbins, S.; Massie, B.M.; Shlipak, M.G. Hemoglobin level, chronic kidney disease, and the risks ofdeath and hospitalization in adults with chronic heart failure: The anemia in chronic heart failure: Outcomes and resource utilization (ANCHOR) study. Circulation 2006, 113, 2713–2723. [Google Scholar] [CrossRef]
- Schupp, T.; Weidner, K.; Reinhardt, M.; Abel, N.; Schmitt, A.; Lau, F.; Kittel, M.; Bertsch, T.; Weiß, C.; Behnes, M.; et al. Effect of anemia and iron deficiency in heart failure with mildly reduced ejection fraction. Eur. J. Clin. Investig. 2024, 54, e14205. [Google Scholar] [CrossRef]
- Lala, A.; Desai, A.S. The Role of Coronary Artery Disease in Heart Failure. Heart Fail. Clin. 2014, 10, 353–365. [Google Scholar] [CrossRef]
- Gerber, Y.; Weston, S.A.; Enriquez-Sarano, M.; Manemann, S.M.; Chamberlain, A.M.; Jiang, R.; Roger, V.L. Atherosclerotic Burden and Heart Failure After Myocardial Infarction. J. Am. Med. Assoc. Cardiol. 2016, 1, 156–162. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Celutkiene, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2021, 42, 3599–3726. [Google Scholar]
- Felker, G.M.; Stough, W.G.; Shaw, L.K.; O’Connor, C.M. Anemia and coronary artery disease severity in patients with heart failure. Eur. J. Heart Fail. 2006, 8, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Faxén, U.L.; Hage, C.; Benson, L.; Zabarovskaja, S.; Andreasson, A.; Donal, E.; Daubert, J.C.; Linde, C.; Brismar, K.; Lund, L.H. HFpEF and HFrEF Display Different Phenotypes as Assessed by IGF-1 and IGFBP-1. J. Card. Fail. 2017, 23, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Hage, C.; Michaëlsson, E.; Linde, C.; Donal, E.; Daubert, J.C.; Gan, L.M.; Lund, L.H. Inflammatory Biomarkers Predict Heart Failure Severity and Prognosis in Patients With Heart Failure With Preserved Ejection Fraction. Circ. Cardiovasc. Genet. 2017, 10, e001633. [Google Scholar] [CrossRef] [PubMed]
- Androne, A.S.; Katz, S.D.; Lund, L.; Lamanca, J.; Hudaihed, A.; Hryniewicz, K.; Mancini, D. Hemodilution Is Common in Patients With Advanced Heart Failure. Circulation 2003, 107, 226–229. [Google Scholar] [CrossRef]
- Mentz, R.J.; Kelly, J.P.; von Lueder, T.G.; Voors, A.A.; Lam, C.S.P.; Cowie, M.R.; Kjeldsen, K.; Jankowska, E.A.; Atar, D.; Butler, J.; et al. Noncardiac Comorbidities in Heart Failure With Reduced Versus Preserved Ejection Fraction. J. Am. Coll. Cardiol. 2014, 64, 2281–2293. [Google Scholar] [CrossRef]
- Falluji, N.A.; Lawrence-Nelson, J.; Kostis, J.B.; Lacy, C.R.; Ranjan, R.; Wilson, A.C.; Myocardial Infarction Data Acquisition system (MIDAS #8) Study Group. Effect of anemia on 1-year mortality in patients with acute myocardial infarction. Am. Heart J. 2002, 144, 636–641. [Google Scholar] [CrossRef]
- Lee, P.C.; Kini, A.S.; Ahsan, C.; Fisher, E.; Sharma, S.K. Anemia Is an Independent Predictor of Mortality After Percutaneous Coronary Intervention. J. Am. Coll. Cardiol. 2004, 44, 541–546. [Google Scholar] [CrossRef]
- Kurek, T.; Lenarczyk, R.; Kowalczyk, J.; Swiatkowski, A.; Kowalski, O.; Stabryła-Deska, J.; Honisz, G.; Lekston, A.; Kalarus, Z.; Kukulski, T. Effect of anemia in high-risk groups of patients with acute myocardial infarction treated with percutaneous coronary intervention. Am. J. Cardiol. 2010, 105, 611–618. [Google Scholar] [CrossRef]
- Bolińska, S.; Sobkowicz, B.; Zaniewska, J.; Chlebińska, I.; Boliński, J.; Milewski, R.; Tycińska, A.; Musiał, W. The significance of anemia in patients with acute ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. Kardiol. Pol. 2011, 69, 33–39. [Google Scholar]
- Lee, W.C.; Fang, H.Y.; Chen, H.C.; Chen, C.J.; Yang, C.H.; Hang, C.L.; Wu, C.J.; Fang, C.Y. Anemia: A significant cardiovascular mortality risk after ST-segment elevation myocardial infarction complicated by the comorbidities of hypertension and kidney disease. PLoS ONE 2017, 12, e0180165. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.Y.; Sun, J.L.; Newby, L.K.; Shaw, L.K.; Lin, M.; Peterson, E.D.; Califf Rm Kong, D.F.; Roe, M.T. Long-Term Mortality of Patients Undergoing Cardiac Catheterization for ST-Elevation and Non-ST-Elevation Myocardial Infarction. Circulation 2009, 119, 3110–3117. [Google Scholar] [CrossRef]
- Takeji, Y.; Shiomi, H.; Morimoto, T.; Yamamoto, K.; Matsumura-Nakano, Y.; Nagao, K.; Taniguchi, R.; Yamaji, K.; Tada, T.; Kato, E.T.; et al. Differences in mortality and causes of death between STEMI and NSTEMI in the early and late phases after acute myocardial infarction. PLoS ONE 2021, 16, e0259268. [Google Scholar] [CrossRef]
- Hasdai, D. A prospective survey of the characteristics, treatments and outcomes of patients with acute coronary syndromes in Europe and the Mediterranean basin. The Euro Heart Survey of Acute Coronary Syndromes (Euro Heart Survey ACS). Eur. Heart J. 2002, 23, 1190–1201. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen, M.A.H.; Daemen, J.; van Mieghem, N.M.; de Boer, S.P.M.; Boersma, E.; van Geuns, R.J.; Zijlstra, F.; van Domburg, R.T.; Serruys, P.W.J.C. Comparison of long-term outcomes in STEMI and NSTE-ACS after coronary stent placement: An analysis in a real world BMS and DES population. Int. J. Cardiol. 2013, 167, 2082–2087. [Google Scholar] [CrossRef]
- Malmberg, M.; Sipilä, J.; Rautava, P.; Gunn, J.; Kytö, V. Outcomes After ST-Segment Versus Non-ST-Segment Elevation Myocardial Infarction Revascularized by Coronary Artery Bypass Grafting. Am. J. Cardiol. 2020, 135, 17–23. [Google Scholar] [CrossRef]
- Steg, P.G.; Goldberg, R.J.; Gore, J.M.; Fox, K.A.A.; Eagle, K.A.; Flather, M.D.; Sadiq, I.; Kasper, R.; Rushton-Mellor, S.K.; Anderson, F.A.; et al. Baseline characteristics, management practices, and in-hospital outcomes of patients hospitalized with acute coronary syndromes in the Global Registry of Acute Coronary Events (GRACE). Am. J. Cardiol. 2022, 90, 358–363. [Google Scholar] [CrossRef]
- Liebson, P.R.; Klein, L.W. The non-Q wave myocardial infarction revisited: 10 years later. Prog. Cardiovasc. Dis. 1997, 39, 399–444. [Google Scholar] [CrossRef] [PubMed]
- Horwich, T.B.; Fonarow, G.C.; Hamilton, M.A.; MacLellan, W.R.; Borenstein, J. Anemia is associated with worse symptoms, greater impairment in functional capacity and a significant increase in mortality in patients with advanced heart failure. J. Am. Coll. Cardiol. 2002, 39, 1780–1786. [Google Scholar] [CrossRef]
- Thomas, M.C.; Cooper, M.E.; Rossing, K.; Parving, H.H. Anemia in diabetes: Is there a rationale to TREAT? Diabetologia 2006, 49, 1151–1157. [Google Scholar] [CrossRef]
- Shah, R.; Agarwal, A.K. Anemia associated with chronic heart failure: Current concepts. Clin. Interv. Aging 2013, 8, 111–122. [Google Scholar] [PubMed]
- Freudenberger, R.S.; Carson, J.L. Is there an optimal hemoglobin value in the cardiac intensive care unit? Curr. Opin. Crit. Care 2003, 9, 356–361. [Google Scholar] [CrossRef] [PubMed]
Without Propensity Score Matching | With Propensity Matching | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Non-Anemics (n = 4701) | Anemics (n = 2944) | p-Value | Non-Anemics (n = 1914) | Anemics (n = 1914) | SMD | |||||
Age, median (IQR) | 66 | (56–76) | 75 | (66–81) | 0.001 | 72 | (63–80) | 74 | (65–81) | −10.55% |
Male sex, n (%) | 3115 | (66.3) | 1857 | (63.1) | 0.004 | 1196 | (62.5) | 1196 | (62.5) | 0% |
Body mass index, kg/m2, median (IQR) | 27.8 | (24.8–31.3) | 26.5 | (23.8–30.4) | 0.001 | 27.7 | (24.6–31.2) | 26.6 | (23.8–30.2) | 16.35% |
Cardiovascular risk factors, n (%) | ||||||||||
Arterial hypertension | 4093 | (87.1) | 2419 | (82.2) | 0.001 | 1794 | (93.7) | 1778 | (92.9) | −3.20% |
Diabetes mellitus | 1025 | (21.8) | 922 | (31.3) | 0.001 | 570 | (29.8) | 599 | (31.3) | 3.26% |
Hyperlipidemia | 1932 | (41.1) | 788 | (26.8) | 0.001 | 708 | (37.0) | 537 | (28.1) | −19.08% |
Prior medical history, n (%) | ||||||||||
Congestive HF | 300 | (6.4) | 374 | (12.7) | 0.001 | 162 | (8.5) | 222 | (11.6) | 10.32% |
Pacemaker | 56 | (1.2) | 59 | (2.0) | 0.004 | 28 | (1.5) | 41 | (2.1) | 4.51% |
COPD | 129 | (2.7) | 168 | (5.7) | 0.001 | 82 | (4.3) | 84 | (4.4) | 0.49% |
Liver cirrhosis | 33 | (0.7) | 55 | (1.9) | 0.001 | 17 | (0.9) | 33 | (1.7) | 7.07% |
Malignancy | 149 | (3.2) | 295 | (10.0) | 0.001 | 103 | (5.4) | 123 | (6.4) | 4.24% |
Stroke | 29 | (0.6) | 31 | (1.1) | 0.035 | 17 | (0.9) | 17 | (0.9) | 0% |
Comorbidities at index hospitalization, n (%) | ||||||||||
Acute coronary Syndrome | ||||||||||
Unstable angina | 1502 | (32.0) | 530 | (18.0) | 0.001 | 471 | (24.6) | 422 | (22.0) | −6.15% |
STEMI | 569 | (12.1) | 341 | (11.6) | 0.494 | 185 | (9.7) | 207 | (10.8) | 3.63% |
NSTEMI | 771 | (16.4) | 615 | (20.9) | 0.001 | 402 | (21.0) | 395 | (20.6) | −0.99% |
Atrial fibrillation | 1083 | (23.0) | 921 | (31.3) | 0.001 | 558 | (29.2) | 583 | (30.5) | 2.84% |
Atrial flutter | 105 | (2.2) | 55 | (1.9) | 0.277 | 58 | (3.0) | 44 | (2.3) | −4.36% |
Acute decompensated heart failure | 424 | (9.0) | 503 | (17.1) | 0.001 | 277 | (14.5) | 314 | (16.4) | 5.26% |
Cardiogenic shock | 87 | (1.9) | 234 | (7.9) | 0.001 | 14 | (0.7) | 52 | (2.7) | 15.52% |
Atrioventricular block | 92 | (2.0) | 103 | (3.5) | 0.001 | 39 | (2.0) | 50 | (2.6) | 4.00% |
Cardiopulmonary resuscitation | 161 | (3.4) | 390 | (13.2) | 0.001 | 66 | (3.4) | 78 | (4.1) | 3.69% |
Out-of-hospital | 111 | (2.4) | 273 | (9.3) | 0.001 | 46 | (2.4) | 61 | (3.2) | 4.85% |
In-hospital | 50 | (1.1) | 117 | (4.0) | 0.001 | 20 | (1.0) | 17 | (0.9) | −1.03% |
Valvular heart Disease | 649 | (13.8) | 643 | (21.8) | 0.001 | 397 | (20.7) | 447 | (23.4) | 6.52% |
Stroke | 152 | (3.2) | 135 | (4.6) | 0.002 | 53 | (2.8) | 81 | (4.2) | 7.62% |
LVEF, n (%) | ||||||||||
>55 | 2293 | (53.0) | 1029 | (40.8) | 0.001 | 946 | (49.4) | 864 | (45.1) | −8.62% |
45–55% | 962 | (22.3) | 570 | (22.6) | 418 | (21.8) | 461 | (24.1) | 5.47% | |
35–44% | 509 | (11.7) | 455 | (18.0) | 255 | (13.3) | 320 | (16.7) | 9.53% | |
<35% | 563 | (13.0) | 470 | (18.6) | 295 | (15.4) | 269 | (14.1) | −3.67% | |
Not documented | 374 | - | 420 | - | - | - | - | - | - |
Without Propensity Score Matching | With Propensity Score Matching | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Non-Anemics (n = 4701) | Anemics (n = 2944) | p-Value | Non-Anemics (n = 1914) | Anemics (n = 1914) | SMD | |||||
Coronary angiography, n (%) | ||||||||||
No evidence of coronary artery disease | 1583 | (33.7) | 742 | (25.2) | 0.001 | 524 | (27.4) | 532 | (27.8) | 0.89% |
1-vessel disease | 997 | (21.2) | 529 | (18.0) | 370 | (19.3) | 343 | (17.9) | −3.60% | |
2-vessel disease | 952 | (20.3) | 610 | (20.7) | 425 | (22.2) | 396 | (20.7) | −3.65% | |
3-vessel disease | 1169 | (24.9) | 1063 | (36.1) | 595 | (31.1) | 643 | (33.6) | 5.35% | |
Right coronary artery | 1984 | (42.2) | 1575 | (53.5) | 0.001 | 943 | (49.3) | 972 | (50.8) | 3.00% |
Left main trunk | 431 | (9.2) | 410 | (13.9) | 0.001 | 215 | (11.2) | 253 | (13.2) | 6.11% |
Left anterior descending | 2388 | (50.8) | 1766 | (60.0) | 0.001 | 1092 | (57.1) | 1095 | (57.2) | 0.20% |
Left circumflex | 1771 | (37.7) | 1411 | (47.9) | 0.001 | 859 | (55.1) | 877 | (54.2) | 1.81% |
Ramus intermedius | 462 | (9.8) | 386 | (13.1) | 0.001 | 240 | (12.5) | 238 | (12.4) | −0.30% |
CABG | 91 | (1.9) | 134 | (4.6) | 0.001 | 52 | (2.7) | 70 | (3.7) | 5.68% |
Chronic total occlusion | 344 | (7.3) | 269 | (9.1) | 0.004 | 132 | (6.9) | 147 | (7.7) | 3.08% |
PCI, n (%) | 1953 | (41.5) | 1335 | (45.3) | 0.001 | 822 | (42.9) | 837 | (43.7) | 1.61% |
Right coronary artery | 745 | (15.8) | 530 | (18.0) | 0.014 | 309 | (16.1) | 346 | (18.1) | 5.31% |
Left main trunk | 154 | (3.3) | 136 | (4.6) | 0.003 | 69 | (3.6) | 83 | (4.3) | 3.59% |
Left anterior descending | 1021 | (21.7) | 691 | (23.5) | 0.074 | 428 | (22.4) | 413 | (21.6) | −1.93% |
Left circumflex | 628 | (13.4) | 457 | (15.5) | 0.008 | 303 | (15.8) | 292 | (15.3) | −1.38% |
Ramus intermedius | 81 | (1.7) | 56 | (1.9) | 0.566 | 38 | (2.0) | 30 | (1.6) | −3.01% |
CABG | 23 | (0.5) | 32 | (1.1) | 0.002 | 14 | (0.7) | 20 | (0.9) | 3.27% |
Sent to CABG, n (%) | 213 | (4.5) | 125 | (4.2) | 0.586 | 99 | (5.2) | 97 | (5.1) | −0.45% |
Procedural data | ||||||||||
Number of stents, median (IQR) | 2 | (1–3) | 2 | (1–3) | 0.004 | 2 | (1–3) | 2 | (1–3) | 0% |
Stent length, median (IQR) | 40 | (24–72) | 46 | (24–80) | 0.015 | 43 | (24–76) | 44 | (24–76) | −9.21% |
Contrast, median (IQR) | 106 | (69–181) | 126 | (75–210) | 0.001 | 115 | (74–200) | 120 | (71–200) | −0.97% |
Baseline laboratory values, median (IQR) | ||||||||||
Sodium, mmol/L | 139 | (138–141) | 139 | (137–142) | 0.222 | 140 | (138–141) | 139 | (137–141) | 0% |
Potassium, mmol/L | 3.91 | (3.70–4.13) | 4.01 | (3.76–4.30) | 0.001 | 3.95 | (3.73–4.15) | 3.95 | (3.72–4.22) | −8.10% |
Calcium, mmol/L | 2.24 | (2.16–2.32) | 2.16 | (2.07–2.24) | 0.001 | 2.21 | (2.13–2.27) | 2.17 | (2.10–2.25) | 23.83% |
eGFR, mL/min/1.73 m2 | 73.2 | (59.6–86.2) | 57.4 | (37.9–79.7) | 0.001 | 66.1 | (52.5–80.0) | 61.7 | (42.9–83.4) | 7.67% |
Hemoglobin, g/dL | 14.2 | (13.4–15.1) | 11.0 | (9.8–11.9) | 0.001 | 14.0 | (13.3–14.8) | 11.3 | (10.1–12.0) | 247.21% |
WBC count, ×109/L | 8.7 | (7.1–10.8) | 9.4 | (7.3–12.4) | 0.001 | 8.9 | (7.2–10.7) | 8.7 | (6.8–11.1) | 0% |
Platelet count, ×109/L | 234 | (195–276) | 237 | (185–299) | 0.012 | 237 | (197–284) | 238 | (189–296) | −6.08% |
HbA1c, % | 5.8 | (5.5–6.5) | 5.9 | (5.5–6.9) | 0.004 | 6.0 | (5.6–6.8) | 5.9 | (5.4–6.8) | 7.97% |
LDL-cholesterol, mg/dL | 114 | (87–143) | 89 | (66–117) | 0.001 | 106 | (83–134) | 93 | (68–120) | 34.46% |
HDL-cholesterol, mg/dL | 43 | (36–54) | 40 | (32–51) | 0.001 | 45 | (37–55) | 41 | (33–52) | 19.83% |
Triglycerides, mg/dL | 130 | (96–183) | 120 | (91–169) | 0.001 | 132 | (98–182) | 118 | (90–165) | 16.82% |
C-reactive protein, mg/L | 14 | (7–39) | 60 | (19–131) | 0.001 | 14 | (7–39) | 42 | (14–100) | −63.47% |
Procalcitonin, µg/L | 0.15 | (0.06–0.65) | 0.52 | (0.18–2.27) | 0.001 | 0.26 | (0.11–0.93) | 0.29 | (0.12–0.97) | 5.85% |
Albumin, g/L | 36.0 | (33.5–38.3) | 30.5 | (26.1–33.9) | 0.001 | 35.0 | (32.4–37.4) | 31.8 | (28.3–34.7) | 81.28% |
INR | 1.04 | (1.00–1.11) | 1.09 | (1.02–1.22) | 0.001 | 1.04 | (0.99–1.13) | 1.07 | (1.01–1.17) | −13.87% |
NT-pro BNP, pg/mL | 1064 | (249–2964) | 3817 | (1494–10,246) | 0.001 | 1566 | (433–4181) | 2936 | (1158–7013) | −24.73% |
Cardiac troponin I, µg/L | 0.58 | (0.09–5.33) | 0.89 | (0.15–5.31) | 0.001 | 0.46 | (0.08–4.30) | 0.62 | (0.11–4.41) | −7.45% |
Creatin Kinase, U/L | 130 | (84–256) | 143 | (77–379) | 0.001 | 123 | (82–225) | 126 | (72–282) | −7.58% |
Creatin Kinase MB, U/L | 30 | (20–59) | 36 | (22–73) | 0.001 | 33 | (23–67) | 31 | (20–57) | 8.40% |
Medication at discharge, n (%) | ||||||||||
ACE-inhibitor | 2411 | (52.6) | 1218 | (47.8) | 0.001 | 1095 | (57.2) | 944 | (49.3) | −15.88% |
ARB | 1047 | (22.9) | 657 | (25.8) | 0.005 | 438 | (22.9) | 503 | (26.3) | 7.90% |
Beta-blocker | 3202 | (69.9) | 1845 | (72.5) | 0.022 | 1437 | (75.1) | 1435 | (75.0) | −0.23% |
Aldosterone antagonist | 645 | (14.1) | 423 | (16.6) | 0.004 | 306 | (16.0) | 330 | (17.2) | 3.23% |
ARNI | 46 | (1.0) | 32 | (1.3) | 0.326 | 20 | (1.0) | 23 | (1.2) | 1.92% |
SGLT2-inhibitor | 253 | (5.5) | 94 | (3.7) | 0.001 | 57 | (3.0) | 79 | (4.1) | 5.95% |
Statin | 3425 | (74.8) | 1842 | (72.3) | 0.026 | 1451 | (75.8) | 1399 | (73.1) | −6.19% |
ASA | 2961 | (64.6) | 1647 | (64.7) | 0.964 | 1247 | (65.2) | 1249 | (65.3) | 0.21% |
P2Y12-inhibitor | 2096 | (45.8) | 1287 | (50.5) | 0.001 | 924 | (48.3) | 970 | (50.7) | 4.80% |
OAC | 1199 | (26.2) | 785 | (30.8) | 0.001 | 630 | (32.9) | 605 | (31.6) | −2.78% |
p-values | ||||||||||
Follow-up data, median (IQR) | ||||||||||
Hospitalization time | 6 | (3–9) | 10 | (5–19) | 0.001 | 7 | (4–11) | 10 | (6–18) | 0.001 |
ICU time | 0 | (0–0) | 0 | (0–1) | 0.001 | 0 | (0–0) | 0 | (0–0) | 0.001 |
All-cause mortality, in-hospital, n (%) | 120 | (2.6) | 398 | (13.5) | 0.001 | 0 | (0.0) | 0 | (0.0) | - |
Patients discharged alive, n (%) | 4581 | (97.4) | 2546 | (86.5) | 1914 | (100.0) | 1914 | (100.0) | - | |
Primary endpoint, n (%) | ||||||||||
HF-related rehospitalization, at 36 months | 845 | (18.4) | 698 | (27.4) | 0.001 | 499 | (26.1) | 521 | (27.2) | 0.040 |
Secondary endpoints, n (%) | ||||||||||
Acute myocardial infarction, at 36 months | 334 | (7.3) | 214 | (8.4) | 0.091 | 175 | (9.1) | 165 | (8.6) | 0.919 |
Coronary revascularization, at 36 months | 389 | (8.5) | 203 | (8.0) | 0.447 | 189 | (9.9) | 157 | (8.2) | 0.200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steinke, P.; Schupp, T.; Kuhn, L.; Abumayyaleh, M.; Weidner, K.; Bertsch, T.; Schmitt, A.; Jannesari, M.; Siegel, F.; Duerschmied, D.; et al. Prognostic Impact of Anemia and Hemoglobin Levels in Unselected Patients Undergoing Coronary Angiography. J. Clin. Med. 2024, 13, 6088. https://doi.org/10.3390/jcm13206088
Steinke P, Schupp T, Kuhn L, Abumayyaleh M, Weidner K, Bertsch T, Schmitt A, Jannesari M, Siegel F, Duerschmied D, et al. Prognostic Impact of Anemia and Hemoglobin Levels in Unselected Patients Undergoing Coronary Angiography. Journal of Clinical Medicine. 2024; 13(20):6088. https://doi.org/10.3390/jcm13206088
Chicago/Turabian StyleSteinke, Philipp, Tobias Schupp, Lasse Kuhn, Mohammad Abumayyaleh, Kathrin Weidner, Thomas Bertsch, Alexander Schmitt, Mahboubeh Jannesari, Fabian Siegel, Daniel Duerschmied, and et al. 2024. "Prognostic Impact of Anemia and Hemoglobin Levels in Unselected Patients Undergoing Coronary Angiography" Journal of Clinical Medicine 13, no. 20: 6088. https://doi.org/10.3390/jcm13206088
APA StyleSteinke, P., Schupp, T., Kuhn, L., Abumayyaleh, M., Weidner, K., Bertsch, T., Schmitt, A., Jannesari, M., Siegel, F., Duerschmied, D., Behnes, M., & Akin, I. (2024). Prognostic Impact of Anemia and Hemoglobin Levels in Unselected Patients Undergoing Coronary Angiography. Journal of Clinical Medicine, 13(20), 6088. https://doi.org/10.3390/jcm13206088