Outcomes and Healthcare Resource Utilization in Patients with COVID-19 Treated with Nirmatrelvir–Ritonavir: Real-World Data Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Population
2.3. Study Outcomes and Variables
2.4. Statistical Analyses
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Torge, D.; Bernardi, S.; Arcangeli, M.; Bianchi, S. Histopathological Features of SARS-CoV-2 in Extrapulmonary Organ Infection: A Systematic Review of Literature. Pathogens 2022, 11, 867. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Situational Report. 2022. Available online: https://covid19.who.int (accessed on 21 September 2024).
- CDC. Underlying Medical Conditions Associated with Higher Risk for Severe COVID-19: Information for Healthcare Professionals. 2022. Available online: https://www.cdc.gov/covid/hcp/clinical-care/underlying-conditions.html?CDC_AAref_Val=https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-care/underlyingconditions.html (accessed on 26 April 2022).
- Anand, K.; Ziebuhr, J.; Wadhwani, P.; Mesters, J.R.; Hilgenfeld, R. Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs. Science 2003, 300, 1763–1767. [Google Scholar] [CrossRef] [PubMed]
- Owen, D.R.; Allerton, C.M.; Anderson, A.S.; Aschenbrenner, L.; Avery, M.; Berritt, S.; Boras, B.; Cardin, R.D.; Carlo, A.; Coffman, K.J.; et al. An oral SARS-CoV-2 M(pro) inhibitor clinical candidate for the treatment of COVID-19. Science 2021, 374, 1586–1593. [Google Scholar] [CrossRef] [PubMed]
- Sevrioukova, I.F.; Poulos, T.L. Structure and mechanism of the complex between cytochrome P4503A4 and ritonavir. Proc. Natl. Acad. Sci. USA 2010, 107, 18422–18427. [Google Scholar] [CrossRef]
- Hammond, J. Effect of Nirmatrelvir/Ritonavir versus Placebo on COVID-19─Related Hospitalizations and Other Medical Visits. In Proceedings of the ID Week 2022, Washington, DC, USA, 19–23 October 2022. [Google Scholar]
- Shu, Y. GISAID: From vision to reality. Eurosrveillance 2017, 22, 30494. [Google Scholar]
- Hodcroft, E. CoVariants: SARS-CoV-2 Mutations and Variants of Interest. 2021. Available online: https://covariants.org/ (accessed on 22 December 2022).
- Mathieu, E. Coronavirus Pandemic (COVID-19)-SARS-CoV-2 Sequences by Variant. 3 January 2022. Available online: https://ourworldindata.org/coronavirus#explore-the-global-situation (accessed on 22 December 2022).
- Available online: https://www.researchgate.net/figure/World-map-of-Pfizer-voluntary-licensing-of-Paxlovid_fig1_359810882 (accessed on 26 April 2022).
- Arbel, R.; Wolff Sagy, Y.; Hoshen, M.; Battat, E.; Lavie, G.; Sergienko, R.; Friger, M.; Waxman, J.G.; Dagan, N.; Balicer, R.; et al. Nirmatrelvir use and severe COVID-19 outcomes during the Omicron surge. N. Engl. J. Med. 2022, 387, 790–798. [Google Scholar] [CrossRef]
- Ganatra, S.; Dani, S.S.; Ahmad, J.; Kumar, A.; Shah, J.; Abraham, G.M.; McQuillen, D.P.; Wachter, R.M.; Sax, P.E. Oral nirmatrelvir and ritonavir in nonhospitalized vaccinated patients with coronavirus disease 2019 (COVID-19). Clin. Infect. Dis. 2023, 76, 563–572. [Google Scholar] [CrossRef]
- Najjar-Debbiny, R.; Gronich, N.; Weber, G.; Khoury, J.; Amar, M.; Stein, N.; Goldstein, L.H.; Saliba, W. Effectiveness of Paxlovid in reducing severe coronavirus disease 2019 and mortality in high-risk patients. Clin. Infect. Dis. 2023, 76, e342–e349. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.; Au, I.; Lau, K.; Lau, E.; Cowling, B.; Leung, G. Real-world effectiveness of early molnupiravir or nirmatrelvir-ritonavir in hospitalised patients with COVID-19 without supplemental oxygen requirement on admission during Hong Kong’s omicron BA.2 wave: A retrospective cohort study. Lancet Infect. Dis. 2022, 22, 1681–1693. [Google Scholar] [CrossRef]
- Wai, A.K.C.; Chan, C.Y.; Cheung, A.W.L.; Wang, K.; Chan, S.C.L.; Lee, T.T.L.; Luk, L.Y.F.; Yip, E.T.F.; Ho, J.W.K.; Tsui, O.W.K.; et al. Association of molnupiravir and nirmatrelvir-ritonavir with preventable mortality, hospital admissions and related avoidable healthcare system cost among high-risk patients with mild to moderate COVID-19. Lancet Reg. Health West. Pac. 2022, 30, 100602. [Google Scholar] [CrossRef]
- Yip, T.C.F.; Lui, G.C.Y.; Lai, M.S.M.; Wong, V.W.S.; Tse, Y.K.; Ma, B.H.M.; Hui, E.; Leung, M.K.; Chan, H.L.Y.; Hui, D.S.C.; et al. Impact of the use of oral antiviral agents on the risk of hospitalization in community COVID-19 patients. Clin. Infect. Dis. 2023, 76, e26–e33. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.M.; Joyce, B.; Plumb, I.D.; Sahakian, S.; Feldstein, L.R.; Barkley, E.; Paccione, M.; Deckert, J.; Sandmann, D.; Gerhart, J.L.; et al. Paxlovid associated with decreased hospitalization rate among adults with COVID-19—United States, April–September 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 1531–1537. [Google Scholar] [CrossRef]
- Bar-On, Y.M.; Goldberg, Y.; Mandel, M.; Bodenheimer, O.; Freedman, L.; Kalkstein, N.; Mizrahi, B.; Alroy-Preis, S.; Ash, N.; Milo, R.; et al. Protection of BNT162b2 vaccine booster against Covid-19 in Israel. N. Engl. J. Med. 2021, 385, 1393–1400. [Google Scholar] [CrossRef] [PubMed]
- Israel Ministry of Health. Ministry of Health Tariff. 2022. Available online: https://www.gov.il/he/Departments/DynamicCollectors/moh-price-list?skip=0 (accessed on 2 January 2022).
- Israel NIIo. Death Statistics. 2022. Available online: https://www.btl.gov.il/English%20Homepage/Pages/default.aspx (accessed on 1 October 2021).
- Israel Central Bureau of Statistics. Characterization and Classification of Geographic Units by the Socio-Economic Level of the Population 2015, Publication No 1765. 2015. Available online: https://www.cbs.gov.il/he/publications/DocLib/2019/1765_socio_economic_2015/e_print.pdf (accessed on 1 October 2021).
- Rossman, H.; Shilo, S.; Meir, T.; Gorfine, M.; Shalit, U.; Segal, E. COVID-19 dynamics after a national immunization program in Israel. Nat. Med. 2021, 27, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Chodick, G.; Heymann, A.D.; Shalev, V.; Kookia, E. The epidemiology of diabetes in a large Israeli HMO. Eur. J. Epidemiol. 2003, 18, 1143–1146. [Google Scholar] [CrossRef]
- Shalev, V.; Chodick, G.; Goren, I.; Silber, H.; Kokia, E.; Heymann, A.D. The use of an automated patient registry to manage and monitor cardiovascular conditions and related outcomes in a large health organization. Int. J. Cardiol. 2011, 152, 345–349. [Google Scholar] [CrossRef]
- Coresh, J.; Turin, T.C.; Matsushita, K.; Sang, Y.; Ballew, S.H.; Appel, L.J.; Arima, H.; Chadban, S.J.; Cirillo, M.; Djurdjev, O.; et al. Decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality. Jama 2014, 311, 2518–2531. [Google Scholar] [CrossRef]
- Weitzman, D.; Chodick, G.; Shalev, V.; Grossman, C.; Grossman, E. Prevalence and factors associated with resistant hypertension in a large health maintenance organization in Israel. Hypertension 2014, 64, 501–507. [Google Scholar] [CrossRef]
- Quinn, S.C.; Hilyard, K.; Castaneda-Angarita, N.; Freimuth, V.S. Public acceptance of peramivir during the 2009 H1N1 influenza pandemic: Implications for other drugs or vaccines under emergency use authorizations. Disaster Med. Public Health Prep. 2015, 9, 166–174. [Google Scholar] [CrossRef]
- Yoshida, K.; Solomon, D.H.; Kim, S.C. Active-comparator design and new-user design in observational studies. Nat. Rev. Rheumatol. 2015, 11, 437–441. [Google Scholar] [CrossRef]
- Henderson, H.I.; Wohl, D.A.; Fischer, W.A.; Bartelt, L.A.; van Duin, D.; Agil, D.M.; Browne, L.E.; Li, K.P.; Moy, A.; Eron, J.J.; et al. COVID-19 hospitalization risk after outpatient nirmatrelvir/ritonavir use, January to August 2022, North Carolina. J. Antimicrob. Chemother. 2024, 79, 859–867. [Google Scholar] [CrossRef] [PubMed]
- Dormuth, C.R.; Kim, J.D.; Fisher, A.; Piszczek, J.; Kuo, I.F. Nirmatrelvir-Ritonavir and COVID-19 Mortality and Hospitalization Among Patients With Vulnerability to COVID-19 Complications. JAMA Netw. Open 2023, 6, e2336678. [Google Scholar] [CrossRef] [PubMed]
- Abraham, S.; Nohria, A.; Neilan, T.G.; Asnani, A.; Saji, A.M.; Shah, J.; Lech, T.; Grossman, J.; Abraham, G.M.; McQuillen, D.P.; et al. Cardiovascular Drug Interactions With Nirmatrelvir/Ritonavir in Patients With COVID-19: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2022, 80, 1912–1924. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Qiu, L.; Zhuo, J.; Fang, Y.; Wang, L.; Xia, J.; Wang, S.; Luo, Q.; Zhou, K.; Li, Y.; et al. Prevalence of inappropriate use of nirmatrelvir-ritonavir antiviral therapy in hospitalized patients: A multi-centre retrospective study in China. Int. J. Antimicrob. Agents 2023, 62, 106857. [Google Scholar] [CrossRef]
Characteristic | Unweighted | IPTW c | ||||
---|---|---|---|---|---|---|
Reference Group a n = 1654 | Treatment Group a n = 3460 | SMD | Reference Group b | Treatment Group b | SMD | |
Age, y | 0.1 | 0.01 | ||||
Median (IQR) | 70.2 (60.6, 77.3) | 68.4 (59.8, 75.5) | 70.1 (60.4, 76.8) | 68.9 (60.3, 76.0) | ||
≥65 c | 1044 (63.1) | 2091 (60.4) | 0.06 | 62.5 | 61.8 | 0.01 |
Sex | 0.01 | 0.02 | ||||
Female | 815 (49.3) | 1716 (49.6) | 50.5 | 49.7 | ||
Socioeconomic status, residential | 0.31 | 0.02 | ||||
Low | 341 (20.6) | 480 (13.9) | 16.8 | 16.1 | ||
Medium | 642 (38.8) | 1056 (30.5) | 33.9 | 33.8 | ||
High | 666 (40.3) | 1918 (55.4) | 49.1 | 49.8 | ||
Missing | 5 (0.3) | 6 (0.2) | 0.3 | 0.2 | ||
Smoking status | 0.09 | 0.02 | ||||
Never | 1473 (89.1) | 3156 (91.2) | 91.1 | 90.7 | ||
Ever | 177 (10.7) | 288 (8.3) | 8.5 | 8.9 | ||
Missing | 4 (0.2) | 16 (0.5) | 0.4 | 0.4 | ||
BMI category, kg/m2 | 0.08 | 0.02 | ||||
Normal, 18.5–24.9 | 351 (21.2) | 714 (20.6) | 20.5 | 20.8 | ||
Underweight, <18.5 | 9 (0.5) | 23 (0.7) | 0.8 | 0.6 | ||
Overweight, 25.0–29.9 | 584 (35.3) | 1286 (37.2) | 36.5 | 36.3 | ||
Obese I, 30.0–39.9 | 576 (34.8) | 1169 (33.8) | 34.6 | 34.6 | ||
Obese II, 40.0+ | 58 (3.5) | 147 (4.2) | 3.8 | 3.8 | ||
Missing | 76 (4.6) | 121 (3.5) | 3.8 | 3.8 | ||
Diabetes | 624 (37.7) | 1233 (35.6) | 0.04 | 36.2 | 36.5 | –0.01 |
Cardiovascular disease | 573 (34.6) | 1093 (31.6) | 0.06 | 32.5 | 32.5 | 0 |
Hypertension | 1092 (66.0) | 2068 (59.8) | 0.13 | 63.3 | 62.3 | 0.02 |
Chronic kidney disease | 718 (43.4) | 1357 (39.2) | 0.09 | 41.0 | 40.8 | 0 |
Liver disease | 423 (25.6) | 923 (26.7) | –0.03 | 25.6 | 26.1 | –0.01 |
Diseases of the nervous system in prior 12 mo | 917 (55.4) | 2010 (58.1) | –0.05 | 58.5 | 57.5 | 0.02 |
Chronic obstructive pulmonary disease | 136 (8.2) | 300 (8.7) | –0.02 | 8.8 | 8.5 | 0.01 |
Cancer, active or treated in prior 5 y | 208 (12.6) | 511 (14.8) | –0.06 | 14.5 | 14.2 | 0.01 |
Immunosuppression | 465 (28.1) | 924 (26.7) | 0.03 | 27.5 | 27.0 | 0.01 |
Hospitalization in prior 180 d | 182 (11.0) | 353 (10.2) | 0.03 | 10.5 | 10.5 | 0 |
Risk score category c | 0.28 | 0.04 | ||||
2 | 186 (11.2) | 685 (19.8) | 14.9 | 17.2 | ||
3 | 248 (15.0) | 645 (18.6) | 18.6 | 16.7 | ||
4+ | 1220 (73.8) | 2130 (61.6) | 66.5 | 66.0 | ||
Risk score = 4+ | 1220 (73.8) | 2130 (61.6) | 0.26 | 66.5 | 66.0 | 0.01 |
Symptoms questionnaire, between SARS-CoV-2-positive test and index date | 0.29 | 0 | ||||
None reported | 159 (9.6) | 97 (2.8) | 5.3 | 5.3 | ||
1+ reported | 833 (50.4) | 1760 (50.9) | 50.7 | 50.6 | ||
Missing | 662 (40.0) | 1603 (46.3) | 44.0 | 44.1 | ||
Days since SARS-CoV-2-positive test ≥ 3 | 122 (7.4) | 157 (4.5) | 0.12 | 5.5 | 5.3 | 0.01 |
COVID-19 vaccination status, doses | –0.45 | 0 | ||||
0 | 462 (27.9) | 365 (10.5) | 16.9 | 17.2 | ||
1 | 30 (1.8) | 61 (1.8) | 2.1 | 1.9 | ||
2 | 84 (5.1) | 183 (5.3) | 5.7 | 5.3 | ||
3 | 703 (42.5) | 1716 (49.6) | 46.0 | 46.5 | ||
4 | 375 (22.7) | 1135 (32.8) | 29.3 | 29.1 | ||
COVID-19 vaccination status in prior 180 d | 850 (51.4) | 2504 (72.4) | –0.44 | 64.6 | 64.8 | 0 |
Prior SARS-CoV-2 infection | 99 (6.0) | 128 (3.7) | 0.11 | 4.5 | 4.7 | –0.01 |
COVID-19-Related Hospitalization, 30 d Post-Index: Treatment (n = 3460) vs. Reference (n = 1650) Group | |||||
---|---|---|---|---|---|
Age Group at Index, y | COVID-19 Vaccination Status at Index | Unweighted | IPTW a | ||
OR | 95% CI | OR | 95% CI | ||
Overall | Overall | 0.44 | 0.27, 0.72 | 0.59 | 0.41, 0.83 |
Not vaccinated in prior 180 days b | 0.53 | 0.26, 1.03 | 0.59 | 0.37, 0.93 | |
Vaccinated in prior 180 days | 0.51 | 0.24, 1.08 | 0.59 | 0.35, 0.97 | |
18–64 | Overall | 0.52 | 0.23, 1.20 | 0.46 | 0.26, 0.78 |
Not vaccinated in prior 180 days b | 0.65 | 0.21, 1.97 | 0.47 | 0.21, 0.98 | |
Vaccinated in prior 180 days | 0.47 | 0.14, 1.79 | 0.45 | 0.20, 0.97 | |
≥65 | Overall | 0.41 | 0.22, 0.75 | 0.59 | 0.38, 0.92 |
Not vaccinated in prior 180 days b | 0.49 | 0.19, 1.13 | 0.59 | 0.32, 1.05 | |
Vaccinated in prior 180 days | 0.52 | 0.21, 1.34 | 0.61 | 0.30, 1.17 |
Unweighted | IPTW c | |||||||
---|---|---|---|---|---|---|---|---|
Characteristic | Reference Group n = 1654 a | Treatment Group n = 3460 a | SMD | OR (95% CI) | Reference Group b | Treatment Group b | SMD | OR (95% CI) |
PCP, ≥1 visit | 1614 (97.6) | 3394 (98.1) | −0.04 | 1.27 (0.85, 1.89) | 97.9 | 98.2 | −0.02 | 1.16 (0.88, 1.54) |
Specialists, ≥1 visit | 544 (32.9) | 1263 (36.5) | −0.08 | 1.17 (1.04, 1.33) | 35.8 | 35.6 | 0 | 0.99 (0.91, 1.08) |
Telemedicine, ≥1 visit | 804 (48.6) | 1931 (55.8) | −0.14 | 1.34 (1.19, 1.50) | 50.3 | 54.0 | −0.07 | 1.16 (1.07, 1.25) |
After-hours urgent care, ≥1 visit | 6 (0.4) | 20 (0.6) | −0.03 | 1.6 (0.68, 4.37) | 0.3 | 0.5 | −0.03 | 1.73 (0.94, 3.30) |
ER, ≥1 visit | 92 (5.6) | 203 (5.9) | −0.01 | 1.06 (0.82, 1.37) | 5.10 | 6.10 | −0.04 | 1.2 (1.02, 1.43) |
Hospitalization (all-cause), ≥1 admission | 65 (3.9) | 97 (2.8) | 0.06 | 0.71 (0.51, 0.97) | 3.4 | 3.1 | 0.02 | 0.92 (0.73, 1.14) |
Hospitalization (all-cause), LOS | 0.23 | 0.3 | ||||||
n | 65 | 97 | 168 | 159 | ||||
Median (IQR) | 4.0 (2.0, 7.0) | 3.0 (2.0, 6.0) | 4.0 (2.0, 7.0) | 3.0 (2.0, 5.4) | ||||
Hospitalization (all-cause) in ICU, ≥ admission | 10 (0.6) | 10 (0.3) | 0.05 | 0.48 (0.20, 1.16) | 0.5 | 0.3 | 0.04 | 0.58 (0.31, 1.06) |
Hospitalization (all-cause) in ICU, LOS | 1.2 | 1.1 | ||||||
n | 10 | 10 | 27 | 16 | ||||
Median (IQR) | 15.5 (3.5, 23.5) | 2.5 (1.3, 8.0) | 11.9 (2.3, 22.7) | 3.2 (1.1, 8.0) | ||||
Hospitalization, COVID-19-related, ≥1 admission | 34 (2.1) | 32 (0.9) | 0.09 | 0.44 (0.27, 0.72) | 1.7 | 1.0 | 0.06 | 0.59 (0.41, 0.83) |
Hospitalization, COVID-19-related, LOS | 0.37 | 0.56 | ||||||
n | 34 | 32 | 87 | 53 | ||||
Median (IQR) | 5.5 (3.0, 11.0) | 5.0 (3.0, 7.2) | 6.0 (3.0, 11.9) | 5.0 (2.4, 7.0) | ||||
Hospitalization, COVID-19-related in ICU, LOS | 1.5 | 1.5 | ||||||
n | 8 | 8 | 22 | 14 | ||||
Median (IQR) | 19.0 (12.5, 24.0) | 5.5 (1.8, 8.2) | 15.5 (6.2, 23.9) | 5.0 (1.5, 8.0) | ||||
Maximum level of care | 0.1 | 0.07 | ||||||
None | 29 (1.8) | 46 (1.3) | 1.5 | 1.3 | ||||
Telemedicine | 91 (5.5) | 203 (5.9) | 5.0 | 5.7 | ||||
Outpatient | 1431 (86.5) | 3000 (86.7) | 87.7 | 86.6 | ||||
ER | 38 (2.3) | 114 (3.3) | 2.4 | 3.4 | ||||
Inpatient | 55 (3.3) | 87 (2.5) | 2.8 | 2.8 | ||||
ICU | 10 (0.6) | 10 (0.3) | 0.5 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weil, C.; Tene, L.; Chodick, G.; Fallach, N.; Ansari, W.; Distelman-Menachem, T.; Maor, Y. Outcomes and Healthcare Resource Utilization in Patients with COVID-19 Treated with Nirmatrelvir–Ritonavir: Real-World Data Analysis. J. Clin. Med. 2024, 13, 6091. https://doi.org/10.3390/jcm13206091
Weil C, Tene L, Chodick G, Fallach N, Ansari W, Distelman-Menachem T, Maor Y. Outcomes and Healthcare Resource Utilization in Patients with COVID-19 Treated with Nirmatrelvir–Ritonavir: Real-World Data Analysis. Journal of Clinical Medicine. 2024; 13(20):6091. https://doi.org/10.3390/jcm13206091
Chicago/Turabian StyleWeil, Clara, Lilac Tene, Gabriel Chodick, Noga Fallach, Wajeeha Ansari, Tal Distelman-Menachem, and Yasmin Maor. 2024. "Outcomes and Healthcare Resource Utilization in Patients with COVID-19 Treated with Nirmatrelvir–Ritonavir: Real-World Data Analysis" Journal of Clinical Medicine 13, no. 20: 6091. https://doi.org/10.3390/jcm13206091
APA StyleWeil, C., Tene, L., Chodick, G., Fallach, N., Ansari, W., Distelman-Menachem, T., & Maor, Y. (2024). Outcomes and Healthcare Resource Utilization in Patients with COVID-19 Treated with Nirmatrelvir–Ritonavir: Real-World Data Analysis. Journal of Clinical Medicine, 13(20), 6091. https://doi.org/10.3390/jcm13206091