Hospital Mortality in Acute Decompensation of Alcoholic Liver Cirrhosis: Can Novel Survival Markers Outperform Traditional Ones?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Identification of Derived Predictive Variables on Patient’s Outcome
3.2. Effects of Basic Predictive Variables on Patient’s Outcome
4. Discussion
5. Limitations of the Study and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patel, R.; Mueller, M. Alcoholic Liver Disease. In Treasure Island; Mueller, M., Ed.; StatPearls Publishing: Tampa, FL, USA, 2024. [Google Scholar]
- Osna, N.A.; Donohue, T.M.; Kharbanda, K.K. Alcoholic Liver Disease: Pathogenesis and Current Management. Alcohol. Res. 2017, 38, 147–161. [Google Scholar] [PubMed]
- D’Amico, G.; Garcia-Tsao, G.; Pagliaro, L. Natural history and prognostic indicators of survival in cirrhosis: A systematic review of 118 studies. J. Hepatol. 2006, 44, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Tsochatzis, E.A.; Bosch, J.; Burroughs, A.K. Liver cirrhosis. Lancet 2014, 383, 1749–1761. [Google Scholar] [CrossRef]
- Mokdad, A.A.; Lopez, A.D.; Shahraz, S.; Lozano, R.; Mokdad, A.H.; Stanaway, J.; Murray, C.J.L.; Naghavi, M. Liver cirrhosis mortality in 187 countries between 1980 and 2010: A systematic analysis. BMC Med. 2014, 12, 145. [Google Scholar] [CrossRef]
- Global Health Estimates: Leading Causes of Death [Internet]. Available online: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death. Global health estimates: Leading causes of death (accessed on 21 April 2024).
- Arroyo, V.; Angeli, P.; Moreau, R.; Jalan, R.; Clària, J.; Trebicka, J.; Fernández, J.; Gustot, T.; Caraceni, P.; Bernardi, M.; et al. The systemic inflammation hypothesis: Towards a new paradigm of acute decompensation and multiorgan failure in cirrhosis. J. Hepatol. 2021, 74, 670–685. [Google Scholar] [CrossRef]
- Bajaj, J.S.; O’Leary, J.G.; Reddy, K.R.; Wong, F.; Biggins, S.W.; Patton, H.; Fallon, M.B.; Garcia-Tsao, G.; Maliakkal, B.; Malik, R.; et al. Survival in infection-related acute-on-chronic liver failure is defined by extrahepatic organ failures. Hepatology 2014, 60, 250–256. [Google Scholar] [CrossRef]
- Kanwal, F.; Tansel, A.; Kramer, J.R.; Feng, H.; Asch, S.M.; El-Serag, H.B. Trends in 30-Day and 1-Year Mortality Among Patients Hospitalized With Cirrhosis From 2004 to 2013. Am. J. Gastroenterol. 2017, 112, 1287–1297. [Google Scholar] [CrossRef]
- Albillos, A.; Lario, M.; Álvarez-Mon, M. Cirrhosis-associated immune dysfunction: Distinctive features and clinical relevance. J. Hepatol. 2014, 61, 1385–1396. [Google Scholar] [CrossRef]
- Mansour, D.; McPherson, S. Management of decompensated cirrhosis. Clin. Med. 2018, 18, s60–s65. [Google Scholar] [CrossRef]
- Jamil, Z.; Durrani, A.A. Assessing the outcome of patients with liver cirrhosis during hospital stay: A comparison of lymphocyte/monocyte ratio with MELD and Child-Pugh scores. Turk. J. Gastroenterol. 2018, 29, 308–315. [Google Scholar] [CrossRef]
- Heuman, D.M.; Abou-assi, S.G.; Habib, A.; Williams, L.M.; Stravitz, R.T.; Sanyal, A.J.; Fisher, R.A.; Mihas, A.A. Persistent ascites and low serum sodium identify patients with cirrhosis and low MELD scores who are at high risk for early death. Hepatology 2004, 40, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Sanchez, N.; Valencia-Rodriguez, A.; Vera-Barajas, A.; Abenavoli, L.; Scarpellini, E.; Ponciano-Rodriguez, G. The mechanism of dysbiosis in alcoholic liver disease leading to liver cancer. Hepatoma Res. 2020, 6, 5. [Google Scholar]
- Boicean, A.; Birlutiu, V.; Ichim, C.; Brusnic, O.; Onișor, D.M. Fecal Microbiota Transplantation in Liver Cirrhosis. Biomedicines 2023, 11, 2930. [Google Scholar] [CrossRef]
- Boicean, A.; Prisca, D.; Bratu, D.G.; Bacila, C.I.; Tanasescu, C.; Chicea, R.; Fleaca, S.R.; Birsan, S.A.; Ichim, C.; Mohor, C.I.; et al. Uncommon Presentation of Gastric Duplication Cyst with Left-Sided Portal Hypertension: A Case Report and Literature Review. Diagnostics 2024, 14, 675. [Google Scholar] [CrossRef]
- Yang, Y.M.; Cho, Y.E.; Hwang, S. Crosstalk between Oxidative Stress and Inflammatory Liver Injury in the Pathogenesis of Alcoholic Liver Disease. Int. J. Mol. Sci. 2022, 23, 774. [Google Scholar] [CrossRef]
- Pomacu, M.M.; Trașcă, M.D.; Pădureanu, V.; Bugă, A.M.; Andrei, A.M.; Stănciulescu, E.C.; Baniță, I.M.; Rădulescu, D.; Pisoschi, C.G. Interrelation of inflammation and oxidative stress in liver cirrhosis. Exp. Ther. Med. 2021, 21, 602. [Google Scholar] [CrossRef]
- Li, D.; Sun, W.; Chen, L.; Gu, J.; Wu, H.; Xu, H.; Gan, J. Utility of neutrophil–lymphocyte ratio and platelet–lymphocyte ratio in predicting acute-on-chronic liver failure survival. Open Life Sci. 2023, 18, 20220644. [Google Scholar] [CrossRef]
- Ding, R.; Zhou, X.; Huang, D.; Wang, Y.; Li, X.; Yan, L.; Lu, W.; Yang, Z.; Zhang, Z. Predictive Performances of Blood Parameter Ratios for Liver Inflammation and Advanced Liver Fibrosis in Chronic Hepatitis B Infection. Biomed. Res. Int. 2021, 2021, 6644855. [Google Scholar] [CrossRef]
- Sahani, S.; Das, D. Neutrophil to Lymphocyte Ratio (NLR) and its Correlation with Child Turcotte Pugh (CTP) Score in Prediciting Severity of Decompensated Liver Cirrhosis. J. Assoc. Physicians India 2022, 70, 11–12. [Google Scholar]
- Liu, J.; Li, H.; Xia, J.; Wang, X.; Huang, Y.; Li, B.; Meng, Z.; Gao, Y.; Qian, Z.; Liu, F.; et al. Baseline Neutrophil-to-Lymphocyte Ratio Is Independently Associated With 90-Day Transplant-Free Mortality in Patients with Cirrhosis. Front. Med. 2021, 8, 726950. [Google Scholar] [CrossRef]
- Ding, R.; Zheng, J.; Huang, D.; Wang, Y.; Li, X.; Zhou, X.; Yan, L.; Lu, W.; Yang, Z.; Zhang, Z. INR-to-platelet ratio (INPR) as a novel noninvasive index for predicting liver fibrosis in chronic hepatitis B. Int. J. Med. Sci. 2021, 18, 1159–1166. [Google Scholar] [CrossRef]
- Hashem, M.B.; Alem, S.A.; Elsharkawy, A.; Fouad, R.; Esmat, G.; Abdellatif, Z. Performance of Albumin-Bilirubin (ALBI) score in comparison to other non-invasive markers in the staging of liver fibrosis in chronic HCV patients. Egypt. Liver J. 2023, 13, 40. [Google Scholar] [CrossRef]
- Okdemir, S.; Cakmak, E. A novel non-invasive score for the prediction of advanced fibrosis in patients with chronic hepatitis B. Ann. Hepatol. 2022, 27, 100544. [Google Scholar] [CrossRef] [PubMed]
- Alsebaey, A.; Badr, R.; Abdelsameea, E.; Amer, M.O.; Eljaky, M.A.; El-Azab, G.; Salama, M. King’s Fibrosis, Fibrosis Index, GPR, and ALBI Score Are Useful Models for Liver Fibrosis in Chronic Hepatitis B Patients Pre- and Post-Treatment. Hepat. Mon. 2019, 19, e96081. [Google Scholar] [CrossRef]
- Parikh, N.D.; Mehta, M.; Tapper, E.B. FIB-4 and APRI for cirrhosis detection in a privately insured national cohort. JHEP Rep. 2024, 6, 100925. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-Q.; Yang, B.; Zou, H.; Xiong, L.; Miao, X.-Y.; Wen, Y.; Zhou, J.-J. ALBI/ST ratio versus FIB-4 and APRI as a predictor of posthepatectomy liver failure in hepatocellular carcinoma patients. Medicine 2019, 98, e15168. [Google Scholar] [CrossRef] [PubMed]
- Al-Busafi, S.A.; McNabb-Baltar, J.; Farag, A.; Hilzenrat, N. Clinical manifestations of portal hypertension. Int. J. Hepatol. 2012, 2012, 203794. [Google Scholar] [CrossRef]
- Abby Philips, C.; Sahney, A. Oesophageal and gastric varices: Historical aspects, classification and grading: Everything in one place. Gastroenterol. Rep. 2016, 4, 186–195. [Google Scholar] [CrossRef]
- Abdi, H. Partial least squares regression and projection on latent structure regression (PLS Regression). WIREs Comput. Stat. 2010, 2, 97–106. [Google Scholar] [CrossRef]
- Cavanaugh, J.E.; Neath, A.A. The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. WIREs Comput. Stat. 2019, 11, e1460. [Google Scholar] [CrossRef]
- Sawatsky, M.L.; Clyde, M.; Meek, F. Partial least squares regression in the social sciences. Quant. Method. Psychol. 2015, 11, 52–62. [Google Scholar] [CrossRef]
- Johnson, P.J.; Berhane, S.; Kagebayashi, C.; Satomura, S.; Teng, M.; Reeves, H.L.; O’Beirne, J.; Fox, R.; Skowronska, A.; Palmer, D.; et al. Assessment of Liver Function in Patients With Hepatocellular Carcinoma: A New Evidence-Based Approach—The ALBI Grade. J. Clin. Oncol. 2015, 33, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Geng, H.; Li, Y.; Xu, Z.; Yang, K.; Yang, L.; Hui, F.; Zhang, Y. Which is the best TACE agent for patients with different NLR hepatocellular carcinomas? A systematic review and network meta-analysis. Heliyon 2024, 10, e30759. [Google Scholar] [CrossRef]
- Liu, N.; Mao, J.; Tao, P.; Chi, H.; Jia, W.; Dong, C. The relationship between NLR/PLR/LMR levels and survival prognosis in patients with non-small cell lung carcinoma treated with immune checkpoint inhibitors. Medicine 2022, 101, e28617. [Google Scholar] [CrossRef]
- Maravilla Domínguez, M.A.; de Lourdes Zermeño González, M.; Zavaleta Muñiz, E.R.; Montes Varela, V.A.; Irecta Nájera, C.A.; Fajardo Robledo, N.S.; Muñiz, S.A.Z. Inflammation and atherogenic markers in patients with type 2 diabetes mellitus. Clínica Investig. Arterioscler. 2022, 34, 105–112. [Google Scholar] [CrossRef]
- Mertoglu, C.; Gunay, M. Neutrophil-Lymphocyte ratio and Platelet-Lymphocyte ratio as useful predictive markers of prediabetes and diabetes mellitus. Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11, S127–S131. [Google Scholar] [CrossRef]
- Hashemi, S.J.; Shokrian Tosi, M.; Hajiani, E.; Parsi, A.; Alavinejad, P. The Association Between Peripheral Blood Neutrophil-to-Lymphocyte Ratio and Cirrhosis Complications in Adults with Compensated Liver Cirrhosis in Ahvaz, Iran. Shiraz Med. J. 2023, 24, e138859. [Google Scholar] [CrossRef]
- Chiriac, S.; Stanciu, C.; Singeap, A.M.; Sfarti, C.V.; Cuciureanu, T.; Trifan, A. Prognostic value of neutrophil-to-lymphocyte ratio in cirrhotic patients with acute-on-chronic liver failure. Turk. J. Gastroenterol. 2021, 31, 868–876. [Google Scholar] [CrossRef]
- Lin, L.; Yang, F.; Wang, Y.; Su, S.; Su, Z.; Jiang, X.; Zheng, Y.; Deng, Y.; Lv, H.; Zhao, J.; et al. Prognostic nomogram incorporating neutrophil-to-lymphocyte ratio for early mortality in decompensated liver cirrhosis. Int. Immunopharmacol. 2018, 56, 58–64. [Google Scholar] [CrossRef]
- Rice, J.; Dodge, J.L.; Bambha, K.M.; Bajaj, J.S.; Reddy, K.R.; Gralla, J.; Ganapathy, D.; Mitrani, R.; Reuter, B.; Palecki, J.; et al. Neutrophil-to-Lymphocyte Ratio Associates Independently With Mortality in Hospitalized Patients With Cirrhosis. Clin. Gastroenterol. Hepatol. 2018, 16, 1786–1791.e1. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Y.; Liu, L.; Prithweeraj, M.; Xu, H.; Wu, R.; Wen, X.; Niu, J. Neutrophil-to-Lymphocyte Ratio and Albumin: New Serum Biomarkers to Predict the Prognosis of Male Alcoholic Cirrhosis Patients. Biomed. Res. Int. 2020, 2020, 7268459. [Google Scholar] [CrossRef] [PubMed]
- Glisic, T.; Popovic, D.D.; Lolic, I.; Toplicanin, A.; Jankovic, K.; Dragasevic, S.; Aleksic, M.; Stjepanovic, M.; Oluic, B.; Zaric, V.M.; et al. Hematological Indices Are Useful in Predicting Complications of Liver Cirrhosis. J. Clin. Med. 2023, 12, 4820. [Google Scholar] [CrossRef]
- Heffernan, D.S.; Monaghan, S.F.; Thakkar, R.K.; Machan, J.T.; Cioffi, W.G.; Ayala, A. Failure to normalize lymphopenia following trauma is associated with increased mortality, independent of the leukocytosis pattern. Crit. Care 2012, 16, R12. [Google Scholar] [CrossRef]
- Zahorec, R. Ratio of neutrophil to lymphocyte counts--rapid and simple parameter of systemic inflammation and stress in critically ill. Bratisl. Lek. Listy. 2001, 102, 5–14. [Google Scholar]
- Salciccioli, J.D.; Marshall, D.C.; Pimentel, M.A.; Santos, M.D.; Pollard, T.; Celi, L.A.; Shalhoub, J. The association between the neutrophil-to-lymphocyte ratio and mortality in critical illness: An observational cohort study. Crit. Care 2015, 19, 13. [Google Scholar] [CrossRef]
- Emenena, I.; Emenena, B.; Kweki, A.G.; Aiwuyo, H.O.; Osarenkhoe, J.O.; Iloeje, U.N.; Ilerhunmwuwa, N.; Torere, B.E.; Akinti, O.; Akere, A.; et al. Model for End Stage Liver Disease (MELD) Score: A Tool for Prognosis and Prediction of Mortality in Patients With Decompensated Liver Cirrhosis. Cureus 2023, 15, e39267. [Google Scholar] [CrossRef]
- Cheng, X.-P.; Zhao, J.; Chen, Y.; Meng, F.-K.; Xu, B.; Yu, H.-W.; Meng, Q.-H.; Liu, Y.-M.; Zhang, S.-B.; Meng, S.; et al. Comparison of the ability of the PDD-ICG clearance test, CTP, MELD, and MELD-Na to predict short-term and medium-term mortality in patients with decompensated hepatitis B cirrhosis. Eur. J. Gastroenterol. Hepatol. 2016, 28, 444–448. [Google Scholar] [CrossRef]
- Zhai, G.; Wang, J.; Liu, Y.; Zhou, Y. Platelet-lymphocyte ratio as a new predictor of in-hospital mortality in cardiac intensive care unit patients. Sci. Rep. 2021, 11, 23578. [Google Scholar] [CrossRef]
- Balta, S.; Ozturk, C. The platelet-lymphocyte ratio: A simple, inexpensive and rapid prognostic marker for cardiovascular events. Platelets 2015, 26, 680–681. [Google Scholar] [CrossRef]
- Catanzaro, R.; Sciuto, M.; Lanzafame, C.; Balakrishnan, B.; Marotta, F. Platelet to lymphocyte ratio as a predictive biomarker of liver fibrosis (on elastography) in patients with hepatitis C virus (HCV)-related liver disease. Indian J. Gastroenterol. 2020, 39, 253–260. [Google Scholar] [CrossRef]
- Hanberg, J.S.; Freiberg, M.S.; Goetz, M.B.; Rodriguez-Barradas, M.C.; Gibert, C.; Oursler, K.A.; Justice, A.C.; Tate, J.P. Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratios as Prognostic Inflammatory Biomarkers in Human Immunodeficiency Virus (HIV), Hepatitis C Virus (HCV), and HIV/HCV Coinfection. Open Forum Infect. Dis. 2019, 6, ofz347. [Google Scholar] [PubMed]
- Alsebaey, A.; Elhelbawy, M.; Waked, I. Platelets-to-lymphocyte ratio is a good predictor of liver fibrosis and insulin resistance in hepatitis C virus-related liver disease. Eur. J. Gastroenterol. Hepatol. 2018, 30, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Qiang, L.; Qin, J.; Sun, C.; Sheng, Y.; Chen, W.; Qiu, B.; Chen, X.; Chen, Y.; Liu, F.; Wu, G. A novel predictive model based on inflammatory markers to assess the prognosis of patients with HBV-related acute-on-chronic liver failure: A retrospective cohort study. BMC Gastroenterol. 2020, 20, 301. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; He, H.; Zhao, T. Value of red blood cell distribution width-to-platelet ratio, platelet-to-lymphocyte ratio, and neutrophil-to-lymphocyte ratio in predicting compensated liver cirrhosis in patients with chronic hepatitis C. J. Clin. Hepatol. 2021, 37, 1319–1325. [Google Scholar]
- Yonkers, N.L.; Sieg, S.; Rodriguez, B.; Anthony, D.D. Reduced Naive CD4 T Cell Numbers and Impaired Induction of CD27 in Response to T Cell Receptor Stimulation Reflect a State of Immune Activation in Chronic Hepatitis C Virus Infection. J. Infect. Dis. 2011, 203, 635–645. [Google Scholar] [CrossRef]
- Lario, M.; Muñoz, L.; Ubeda, M.; Borrero, M.-J.; Martínez, J.; Monserrat, J.; Díaz, D.; Álvarez-Mon, M.; Albillos, A. Defective thymopoiesis and poor peripheral homeostatic replenishment of T-helper cells cause T-cell lymphopenia in cirrhosis. J. Hepatol. 2013, 59, 723–730. [Google Scholar] [CrossRef]
- Tuchendler, E.; Tuchendler, P.K.; Madej, G. Immunodeficiency caused by cirrhosis. Clin. Exp. Hepatol. 2018, 4, 158–164. [Google Scholar] [CrossRef]
- Leber, B.; Mayrhauser, U.; Rybczynski, M.; Stadlbauer, V. Störungen des angeborenen Immunsystems bei akuten und chronischen Lebererkrankungen. Wien. Klin. Wochenschr. 2009, 121, 732–744. [Google Scholar] [CrossRef]
- Michalak, A.; Cichoż-Lach, H.; Guz, M.; Kozicka, J.; Cybulski, M.; Jeleniewicz, W.; Stepulak, A. Towards an evaluation of alcoholic liver cirrhosis and nonalcoholic fatty liver disease patients with hematological scales. World J. Gastroenterol. 2020, 26, 7538–7549. [Google Scholar] [CrossRef]
- Cho, J.; Lee, S.; Uh, Y.; Lee, J.H. Usefulness of mean platelet volume to platelet count ratio for predicting the risk of mortality in community-acquired pneumonia. Arch. Med. Sci. 2020, 16, 1327–1335. [Google Scholar] [CrossRef]
- Iida, H.; Kaibori, M.; Matsui, K.; Ishizaki, M.; Kon, M. Ratio of mean platelet volume to platelet count is a potential surrogate marker predicting liver cirrhosis. World J. Hepatol. 2018, 10, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Shinoda, H.; Watanabe, Y.; Fukai, K.; Kasuya, K.; Furuya, Y.; Nakazawa, S.; Honda, T.; Hayashi, T.; Nakagawa, T.; Tatemichi, M.; et al. Significance of Fib4 index as an indicator of alcoholic hepatotoxicity in health examinations among Japanese male workers: A cross-sectional and retrospectively longitudinal study. Eur. J. Med. Res. 2023, 28, 31. [Google Scholar] [CrossRef] [PubMed]
- Roh, Y.H.; Kang, B.K.; Jun, D.W.; Lee, C.M.; Kim, M. Role of FIB-4 for reassessment of hepatic fibrosis burden in referral center. Sci. Rep. 2021, 11, 13616. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Xia, Y.; Zhang, X.; Cai, X.; Pan, J.; Dong, Y. FIB-4 index is associated with mortality in critically ill patients with alcohol use disorder: Analysis from the MIMIC-IV database. Addict. Biol. 2024, 29, e13361. [Google Scholar] [CrossRef]
- Barbosa, J.V.; Milligan, S.; Frick, A.; Broestl, J.; Younossi, Z.; Afdhal, N.H.; Lai, M. Fibrosis-4 Index as an Independent Predictor of Mortality and Liver-Related Outcomes in NAFLD. Hepatol. Commun. 2022, 6, 765–779. [Google Scholar] [CrossRef]
- Oikonomou, T.; Chrysavgis, L.; Kiapidou, S.; Adamantou, M.; Parastatidou, D.; Papatheodoridis, G.V.; Goulis, I.; Cholongitas, E. Aspartate aminotransferase-to-platelet ratio index can predict the outcome in patients with stable decompensated cirrhosis. Ann. Gastroenterol. 2023, 36, 442–448. [Google Scholar] [CrossRef]
- Innes, H.; Morling, J.R.; Buch, S.; Hamill, V.; Stickel, F.; Guha, I.N. Performance of routine risk scores for predicting cirrhosis-related morbidity in the community. J. Hepatol. 2022, 77, 365–376. [Google Scholar] [CrossRef]
- Saputri, A.M.; Magdaleni, A.R.; Murti, S. The relationship of apri score (aspartate aminotrans ferase-to-platelet ratio index) and pugh child score. J. Ilmu Kesehat. 2019, 7, 122–129. [Google Scholar] [CrossRef]
- Mallik, M.; Singhai, A.; Khadanga, S.; Ingle, V. The Significant Morbidity and Mortality Indicators in Patients of Cirrhosis. Cureus 2022, 14, e21226. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, G.; Zhao, Y.; Zhang, J.; Feng, L.; Yang, J. Association between lymphocyte-to-monocyte ratio (LMR) and the mortality of HBV-related liver cirrhosis: A retrospective cohort study. BMJ Open 2015, 5, e008033. [Google Scholar] [CrossRef]
- Chedid, M.F.; Picon, R.V.; Chedid, A.D. ALBI and PALBI: Novel Scores for Outcome Prediction of Cirrhotic Outpatients Awaiting Liver Transplantation. Ann. Hepatol. 2018, 17, 906–907. [Google Scholar] [CrossRef]
- Naqvi, I.H.; Talib, A.; Mahmood, K.; Abidi, R.; Zehra Rizvi, S.N. The ability of the new ALBI scoring in predicting mortality, complications and prognostic comparison among cirrhotics. Gastroenterol. Rev. 2019, 14, 250–257. [Google Scholar] [CrossRef]
(a) | ||||
Baseline Variables | Non-Survival (Mean Value ± SD) | Survival (Mean Value ± SD) | Welch | p Value |
N | 110 | 301 | ||
White blood cell [×109/L] | 10.58 ± 5.81 | 8.31 ± 4.25 | 3.748 | <0.001 * |
Lymphocytes [×109/L] | 1.26 ± 0.74 | 1.62 ± 0.84 | −4.166 | <0.001 * |
Monocytes [×109/L] | 0.76 ± 0.55 | 0.68 ± 0.44 | 1.597 | 0.112 |
Neutrophiles [×109/L] | 8.22 ± 4.96 | 5.86 ± 3.81 | 4.523 | <0.001 * |
Platelet [×109/L] | 137.19 ± 104.20 | 150.14 ± 88.38 | −1.160 | 0.248 |
MPV | 10.89 ± 1.09 | 10.56 ± 1.04 | 2.718 | 0.007 * |
Erythrocytes [×1012/L] | 3.23 ± 0.76 | 3.39 ± 0.71 | −1.953 | 0.052 |
Hematocrit | 0.316 ± 0.067 | 0.323 ± 0.068 | −0.805 | 0.422 |
Hemoglobin [g/L] | 107.45 ± 23.89 | 107.56 ± 24.96 | −0.043 | 0.966 |
MCV | 98.0 ± 9.51 | 95.9 ± 10.39 | 2.781 | 0.006 * |
Glucose [mmol/L] | 6.49 ± 2.21 | 7.30 ± 2.78 | −3.019 | 0.003 * |
Total protein [g/L] | 61.39 ± 10.53 | 64.20 ± 4.47 | −2.226 | 0.028 * |
Albumin [g/L] | 25.31 ± 4.74 | 27.61 ± 5.40 | −4.178 | <0.001 * |
Total bilirubin [mg/dL] | 175.88 ± 162.34 | 63.62 ± 68.14 | 7.000 | <0.001 * |
AST [IU/L] | 141.95 ± 125.26 | 87.81 ± 89.97 | 4.144 | <0.001 * |
ALT [IU/L] | 66.80 ± 70.30 | 49.55 ± 51.28 | 2.355 | 0.020 * |
gGT [IU/L] | 311.96 ± 441.48 | 232.81 ± 366.56 | 1.681 | 0.095 |
ALP [IU/L] | 155.01 ± 164.24 | 149.27 ± 159.58 | 0.265 | 0.791 |
INR | 1.82 ± 0.64 | 1.43 ± 0.37 | 5.915 | <0.001 * |
Na [mmol/L] | 134.60 ± 7.39 | 136.91 ± 5.09 | −3.029 | 0.003 * |
K [mmol/L] | 4.12 ± 1.01 | 4.23 ± 8.01 | −1.073 | 0.285 |
Cl [mmol/L] | 97.92 ± 7.46 | 101.70 ± 5.82 | −4.797 | <0.001 * |
Urea [mmol/L] | 14.0 ± 12.92 | 8.83 ± 7.44 | 3.967 | <0.001 * |
Creatinine [μmol/L] | 175.16 ± 165.63 | 112.71 ± 87.66 | 3.766 | <0.001 * |
MELD score | 25.67 ± 6.98 | 17.17 ± 6.1 | 11.205 | <0.001 * |
CTP score | 11.57 ± 1.82 | 9.48 ± 1.95 | 10.049 | <0.001 * |
NLR | 8.78 ± 7.24 | 4.37 ± 3.82 | 6.065 | <0.001 * |
LMR | 2.24 ± 2.39 | 2.96 ± 1.85 | −2.850 | 0.005 * |
PLR | 132.73 ± 118.85 | 111.83 ± 92.38 | 1.663 | 0.098 |
MPR | 0.118 ± 0.08 | 0.11 ± 0.12 | 1.138 | 0.256 |
INPR×100 | 2.08 ± 1.65 | 1.44 ± 1.46 | 3.544 | <0.001 * |
APRI | 4.98 ± 5.73 | 2.52 ± 4.24 | 4.099 | <0.001 * |
FIB4 | 11.35 ± 10.02 | 6.39 ± 6.26 | 4.840 | <0.001 * |
ALBI | −0.80 ± 0.54 | −1.27 ± 0.56 | 7.652 | <0.001 * |
(b) | ||||
Clinical manifestation | Non-survival | Survival | ||
N | 110 | 301 | ||
Encephalopathy | N (%) | N (%) | ||
None | 34 (30.9%) | 200 (66.4%) | ||
Grade 1 | 23 (20.9%) | 34 (11.3%) | ||
Grade 2 | 16 (14.5%) | 31 (10.3%) | ||
Grade 3 | 21 (19.1%) | 24 (8.0%) | ||
Grade 4 | 16 (14.5%) | 12 (4.0%) | ||
Varices (Paquet classification) | ||||
None | 14 (12.7%) | 50 (16.6%) | ||
Grade 1 | 21 (19.1%) | 68 (22.6%) | ||
Grade 2 | 23 (20.1%) | 92 (30.6%) | ||
Grade 3 | 15 (13.6%) | 65 (21.6%) | ||
Grade 4 | 2 (1.8%) | 7 (2.3%) | ||
No EGD | 35 (31.8%) | 19 (6.3%) | ||
Varices (small/large) | ||||
None | 14 (12.7%) | 50 (16.6%) | ||
Small | 44 (40.0%) | 160 (53.2%) | ||
Large | 17 (15.5%) | 72 (23.9%) | ||
No EGD | 35 (31.8%) | 19 (6.3%) | ||
Ascites | ||||
None | 15 (13.6%) | 76 (25.2%) | ||
Mild | 11 (10.0%) | 36 (12.0%) | ||
Moderate/Severe | 84 (76.4%) | 189 (68.8%) | ||
CTP Class | ||||
A | 0 (0%) | 21 (6.9%) | ||
B | 18 (16.4%) | 131 (43.6%) | ||
C | 92 (83.6%) | 149 (49.5%) |
Component 1 | Component 2 | Component 3 | Component 4 | |
---|---|---|---|---|
MELD | −0.37 | −0.09 | 0.09 | 0.01 |
CTP_score | −0.33 | −0.01 | −0.06 | 0.01 |
Total bilirubin | −0.30 | 0.02 | −0.14 | −0.04 |
ALBI | −0.30 | 0.15 | −0.03 | 0.05 |
INR | −0.25 | −0.03 | −0.08 | 0.05 |
Albumin | 0.20 | −0.12 | −0.08 | −0.06 |
Urea | −0.12 | −0.41 | 0.29 | 0.04 |
Encephalopathy | −0.14 | −0.39 | −0.08 | 0.07 |
Age | 0.02 | −0.35 | 0.08 | 0.09 |
Creatinine | −0.15 | −0.35 | 0.23 | 0.03 |
Monocytes | −0.13 | 0.31 | 0.23 | −0.19 |
MCV | −0.14 | 0.23 | −0.13 | −0.04 |
K | 0.01 | −0.18 | 0.36 | 0.21 |
FIB4 | −0.20 | 0.23 | −0.33 | 0.24 |
PLR | −0.05 | −0.28 | 0.33 | −0.10 |
APRI | −0.19 | 0.25 | −0.28 | 0.23 |
MPV | −0.07 | 0.01 | −0.27 | 0.09 |
Na | 0.18 | −0.11 | −0.26 | 0.10 |
NLR | −0.23 | −0.18 | 0.24 | −0.09 |
gGT | −0.06 | 0.13 | −0.21 | −0.19 |
Glucose | 0.05 | 0.14 | 0.19 | 0.04 |
AST | −0.17 | 0.12 | −0.18 | −0.02 |
LMR | 0.16 | −0.11 | −0.17 | −0.07 |
ALT | −0.08 | 0.02 | −0.11 | 0.07 |
White blood cell | −0.17 | 0.08 | 0.27 | −0.38 |
INPR×100 | −0.16 | 0.23 | −0.25 | 0.36 |
MPR | −0.10 | 0.27 | −0.24 | 0.36 |
Platelet | 0.04 | −0.16 | 0.32 | −0.33 |
Neutrophiles | −0.20 | 0.02 | 0.29 | −0.31 |
Lymphocytes | 0.13 | 0.18 | −0.07 | −0.27 |
Erythrocytes | 0.10 | −0.20 | −0.01 | 0.25 |
Duration of ALD | 0.03 | 0.00 | 0.20 | 0.23 |
Cl | 0.19 | −0.12 | −0.09 | 0.23 |
Hematocrit | 0.04 | −0.11 | −0.08 | 0.22 |
Hemoglobin | 0.00 | −0.07 | −0.09 | 0.20 |
Ascites | −0.14 | 0.11 | 0.12 | −0.14 |
Gender | −0.06 | 0.04 | −0.02 | −0.13 |
BootstrappedCoefficient | StdCoefficient | BCILower | BCIUpper | Bootp | Bootp.adj | |
---|---|---|---|---|---|---|
Gender | −0.03 | −0.22 | −0.04 | −0.01 | 0 * | 0.002 |
Age | −0.04 | −0.31 | −0.05 | −0.01 | 0.002 * | 0.004 |
Duration of ALD | 0.04 | 0.32 | 0.01 | 0.06 | 0 * | 0.002 |
Ascites | −0.01 | −0.04 | −0.02 | 0.01 | 0.336 | 0.338 |
Encephalopathy | −0.07 | −0.63 | −0.1 | −0.04 | 0 * | 0.002 |
White blood cell | −0.01 | −0.11 | −0.03 | 0 | 0.108 | 0.110 |
Lymphocytes | 0.02 | 0.15 | 0 | 0.04 | 0.028 * | 0.030 |
Monocytes | 0.03 | 0.25 | 0 | 0.05 | 0.026 * | 0.028 |
Neutrophiles | 0 | −0.02 | −0.02 | 0.01 | 0.604 | 0.605 |
Platelet | 0 | 0.01 | −0.01 | 0.01 | 0.756 | 0.757 |
MPV | −0.03 | −0.29 | −0.05 | −0.02 | 0 * | 0.002 |
Erythrocytes | 0.01 | 0.05 | −0.01 | 0.02 | 0.388 | 0.390 |
Hemoglobin | 0.01 | 0.05 | −0.01 | 0.02 | 0.34 | 0.342 |
Hematocrit | 0 | 0.03 | −0.01 | 0.01 | 0.642 | 0.643 |
MCV | 0 | 0.02 | −0.01 | 0.01 | 0.782 | 0.783 |
Glucose | 0.05 | 0.43 | 0.02 | 0.07 | 0 * | 0.002 |
Albumin | −0.01 | −0.05 | −0.02 | 0.01 | 0.438 | 0.440 |
Total bilirubin | −0.06 | −0.48 | −0.08 | −0.04 | 0 * | 0.002 |
AST | −0.01 | −0.04 | −0.02 | 0 | 0.2 | 0.202 |
ALT | −0.01 | −0.09 | −0.02 | −0.01 | 0 * | 0.002 |
gGT | −0.02 | −0.16 | −0.03 | 0 | 0.002 * | 0.004 |
INR | −0.02 | −0.2 | −0.04 | −0.01 | 0 * | 0.002 |
Na | −0.02 | −0.15 | −0.04 | 0 | 0.082 | 0.084 |
K | 0.04 | 0.37 | 0 | 0.08 | 0.014 * | 0.016 |
Cl | 0.03 | 0.25 | 0.01 | 0.05 | 0.002 * | 0.004 |
Urea | −0.04 | −0.34 | −0.06 | −0.02 | 0 * | 0.002 |
Creatinine | −0.02 | −0.2 | −0.04 | −0.01 | 0.006 * | 0.008 |
MELD | −0.05 | −0.39 | −0.07 | −0.02 | 0 * | 0.002 |
CTP score | −0.06 | −0.47 | −0.07 | −0.04 | 0 * | 0.002 |
NLR | −0.05 | −0.39 | −0.06 | −0.03 | 0 * | 0.002 |
LMR | −0.01 | −0.07 | −0.03 | 0.01 | 0.416 | 0.418 |
PLR | −0.01 | −0.1 | −0.02 | 0 | 0.018 * | 0.020 |
MPR | 0.03 | 0.23 | 0 | 0.05 | 0.022 * | 0.024 |
INPR×100 | 0.01 | 0.07 | −0.01 | 0.02 | 0.39 | 0.392 |
APRI | 0 | −0.02 | −0.02 | 0.01 | 0.666 | 0.667 |
FIB4 | −0.03 | −0.26 | −0.05 | −0.01 | 0 * | 0.002 |
ALBI | −0.01 | −0.08 | −0.03 | 0 | 0.152 | 0.154 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dejanović, B.; Barak, O.; Čolović, P.; Janjić, N.; Savić, Ž.; Gvozdanović, N.; Ružić, M. Hospital Mortality in Acute Decompensation of Alcoholic Liver Cirrhosis: Can Novel Survival Markers Outperform Traditional Ones? J. Clin. Med. 2024, 13, 6208. https://doi.org/10.3390/jcm13206208
Dejanović B, Barak O, Čolović P, Janjić N, Savić Ž, Gvozdanović N, Ružić M. Hospital Mortality in Acute Decompensation of Alcoholic Liver Cirrhosis: Can Novel Survival Markers Outperform Traditional Ones? Journal of Clinical Medicine. 2024; 13(20):6208. https://doi.org/10.3390/jcm13206208
Chicago/Turabian StyleDejanović, Božidar, Otto Barak, Petar Čolović, Nebojša Janjić, Željka Savić, Nikola Gvozdanović, and Maja Ružić. 2024. "Hospital Mortality in Acute Decompensation of Alcoholic Liver Cirrhosis: Can Novel Survival Markers Outperform Traditional Ones?" Journal of Clinical Medicine 13, no. 20: 6208. https://doi.org/10.3390/jcm13206208
APA StyleDejanović, B., Barak, O., Čolović, P., Janjić, N., Savić, Ž., Gvozdanović, N., & Ružić, M. (2024). Hospital Mortality in Acute Decompensation of Alcoholic Liver Cirrhosis: Can Novel Survival Markers Outperform Traditional Ones? Journal of Clinical Medicine, 13(20), 6208. https://doi.org/10.3390/jcm13206208