Correlations Between Plasma BNP Level and Risk of Thrombotic-Hemorrhagic Events After Left Atrial Appendage Closure
Abstract
:1. Introduction
2. Methods
2.1. OCEAN-LAAC Registry
2.2. Patient Selection
2.3. Study Design
2.4. Indication of LAAC
2.5. LAAC Procedure
2.6. Definition of Implantation Outcome
2.7. Post-Procedural Antithrombotic Therapy
2.8. Data Collection
2.9. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. Comparison of Baseline Characteristics
3.3. LAAC Procedure
3.4. Peri-Procedural Outcome
3.5. Trajectory of Medications After the Procedure
3.6. Trajectory of Echocardiography Data
3.7. Primary Outcomes
3.8. Breakdown of the Primary Outcome
4. Discussion
4.1. Safety of LAAC in Patients with Elevated BNP Levels
4.2. Efficacy of LAAC in Patients with Elevated BNP Levels
4.3. BNP Level and Atrial Abnormality
4.4. Elevated BNP Level and Adverse Events
4.5. Clinical Implication of Our Findings
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brundel, B.; Ai, X.; Hills, M.T.; Kuipers, M.F.; Lip, G.Y.H.; de Groot, N.M.S. Atrial fibrillation. Nat. Rev. Dis. Primers 2022, 8, 21. [Google Scholar] [CrossRef] [PubMed]
- Kamel, H.; Healey, J.S. Cardioembolic Stroke. Circ. Res. 2017, 120, 514–526. [Google Scholar] [CrossRef]
- Gurol, M.E.; Wright, C.B.; Janis, S.; Smith, E.E.; Gokcal, E.; Reddy, V.Y.; Merino, J.G.; Hsu, J.C. Stroke Prevention in Atrial Fibrillation: Our Current Failures and Required Research. Stroke 2024, 55, 214–225. [Google Scholar] [CrossRef]
- Donnan, G.A.; Dewey, H.M.; Chambers, B.R. Warfarin for atrial fibrillation: The end of an era? Lancet Neurol. 2004, 3, 305–308. [Google Scholar] [CrossRef] [PubMed]
- Kosum, P.; Siranart, N.; Nissaipan, K.; Laohapiboolrattana, W.; Sowalertrat, W.; Triamamornwooth, K.; Arunphan, R.; Sriyom, A.; Rungpradubvong, V. Utility of TTR-INR guided warfarin adjustment protocol to improve time in therapeutic range in patients with atrial fibrillation receiving warfarin. Sci. Rep. 2024, 14, 11647. [Google Scholar] [CrossRef]
- Hogg, K.; Panag, A.; Worster, A.; Thachil, J. Direct oral anticoagulants: A practical guide for the emergency physician. Eur. J. Emerg. Med. 2016, 23, 330–336. [Google Scholar] [CrossRef]
- Lopez-Lopez, J.A.; Sterne, J.A.C.; Thom, H.H.Z.; Higgins, J.P.T.; Hingorani, A.D.; Okoli, G.N.; Davies, P.A.; Bodalia, P.N.; Bryden, P.A.; Welton, N.J.; et al. Oral anticoagulants for prevention of stroke in atrial fibrillation: Systematic review, network meta-analysis, and cost effectiveness analysis. BMJ 2017, 359, j5058. [Google Scholar] [CrossRef] [PubMed]
- Pisters, R.; Lane, D.A.; Nieuwlaat, R.; de Vos, C.B.; Crijns, H.J.; Lip, G.Y. A novel user-friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients with atrial fibrillation: The Euro Heart Survey. Chest 2010, 138, 1093–1100. [Google Scholar] [CrossRef]
- Lip, G.Y.; Frison, L.; Halperin, J.L.; Lane, D.A. Comparative validation of a novel risk score for predicting bleeding risk in anticoagulated patients with atrial fibrillation: The HAS-BLED (Hypertension, Abnormal Renal/Liver Function, Stroke, Bleeding History or Predisposition, Labile INR, Elderly, Drugs/Alcohol Concomitantly) score. J. Am. Coll. Cardiol. 2011, 57, 173–180. [Google Scholar]
- Osmancik, P.; Herman, D.; Neuzil, P.; Hala, P.; Taborsky, M.; Kala, P.; Poloczek, M.; Stasek, J.; Haman, L.; Branny, M.; et al. Left Atrial Appendage Closure Versus Direct Oral Anticoagulants in High-Risk Patients With Atrial Fibrillation. J. Am. Coll. Cardiol. 2020, 75, 3122–3135. [Google Scholar] [CrossRef]
- Reddy, V.Y.; Doshi, S.K.; Sievert, H.; Buchbinder, M.; Neuzil, P.; Huber, K.; Halperin, J.L.; Holmes, D. Percutaneous left atrial appendage closure for stroke prophylaxis in patients with atrial fibrillation: 2.3-Year Follow-up of the PROTECT AF (Watchman Left Atrial Appendage System for Embolic Protection in Patients with Atrial Fibrillation) Trial. Circulation 2013, 127, 720–729. [Google Scholar] [CrossRef] [PubMed]
- Holmes, D.R.; Jr Kar, S.; Price, M.J.; Whisenant, B.; Sievert, H.; Doshi, S.K.; Huber, K.; Reddy, V.Y. Prospective randomized evaluation of the Watchman Left Atrial Appendage Closure device in patients with atrial fibrillation versus long-term warfarin therapy: The PREVAIL trial. J. Am. Coll. Cardiol. 2014, 64, 1–12. [Google Scholar] [CrossRef]
- Aonuma, K.; Yamasaki, H.; Nakamura, M.; Matsumoto, T.; Takayama, M.; Ando, K.; Hirao, K.; Goya, M.; Morino, Y.; Hayashida, K.; et al. Efficacy and Safety of Left Atrial Appendage Closure With WATCHMAN in Japanese Nonvalvular Atrial Fibrillation Patients- Final 2-Year Follow-up Outcome Data From the SALUTE Trial. Circ. J. 2020, 84, 1237–1243. [Google Scholar] [CrossRef] [PubMed]
- Aonuma, K.; Yamasaki, H.; Nakamura, M.; Ootomo, T.; Takayama, M.; Ando, K.; Hirao, K.; Morino, Y.; Hayashida, K.; Kusano, K.; et al. Percutaneous WATCHMAN Left Atrial Appendage Closure for Japanese Patients With Nonvalvular Atrial Fibrillation at Increased Risk of Thromboembolism- First Results From the SALUTE Trial. Circ. J. 2018, 82, 2946–2953. [Google Scholar] [CrossRef]
- Kar, S.; Doshi, S.K.; Sadhu, A.; Horton, R.; Osorio, J.; Ellis, C.; Stone, J.; Shah, M., Jr.; Dukkipati, S.R.; Adler, S.; et al. Primary Outcome Evaluation of a Next-Generation Left Atrial Appendage Closure Device: Results From the PINNACLE FLX Trial. Circulation 2021, 143, 1754–1762. [Google Scholar] [CrossRef]
- Kotecha, D.; Piccini, J.P. Atrial fibrillation in heart failure: What should we do? Eur. Heart J. 2015, 36, 3250–3257. [Google Scholar] [CrossRef]
- Rebecchi, M.; Fanisio, F.; Rizzi, F.; Politano, A.; De Ruvo, E.; Crescenzi, C.; Panattoni, G.; Squeglia, M.; Martino, A.; Sasso, S.; et al. The Autonomic Coumel Triangle: A New Way to Define the Fascinating Relationship between Atrial Fibrillation and the Autonomic Nervous System. Life 2023, 13, 1139. [Google Scholar] [CrossRef] [PubMed]
- Oancea, A.F.; Jigoranu, R.A.; Morariu, P.C.; Miftode, R.S.; Trandabat, B.A.; Iov, D.E.; Cojocaru, E.; Costache, I.I.; Baroi, L.G.; Timofte, D.V.; et al. Atrial Fibrillation and Chronic Coronary Ischemia: A Challenging Vicious Circle. Life 2023, 13, 1370. [Google Scholar] [CrossRef]
- Thomas, I.; EncisoSilva, J.; Schlueter, M.; Greenberg, B. Anticoagulation Therapy and NOACs in Heart Failure. Handb. Exp. Pharmacol. 2017, 243, 515–535. [Google Scholar]
- Chong, A.Y.; Caine, G.J.; Freestone, B.; Blann, A.D.; Lip, G.Y. Plasma angiopoietin-1, angiopoietin-2, and angiopoietin receptor tie-2 levels in congestive heart failure. J. Am. Coll. Cardiol. 2004, 43, 423–428. [Google Scholar] [CrossRef]
- Kataoka, N.; Imamura, T.; Koi, T.; Uchida, K.; Kinugawa, K. Adverse Events Requiring Hospitalization Following Catheter Ablation for Atrial Fibrillation in Heart Failure with versus without Systolic Dysfunction. J. Cardiovasc. Dev. Dis. 2024, 11, 35. [Google Scholar] [CrossRef] [PubMed]
- Kotecha, D.; Lam, C.S.; Van Veldhuisen, D.J.; Van Gelder, I.C.; Voors, A.A.; Rienstra, M. Heart Failure With Preserved Ejection Fraction and Atrial Fibrillation: Vicious Twins. J. Am. Coll. Cardiol. 2016, 68, 2217–2228. [Google Scholar] [CrossRef] [PubMed]
- Asami, M.; Naganuma, T.; Ohno, Y.; Tani, T.; Okamatsu, H.; Mizutani, K.; Watanabe, Y.; Izumo, M.; Saji, M.; Mizuno, S.; et al. Initial Japanese Multicenter Experience and Age-Related Outcomes Following Left Atrial Appendage Closure: The OCEAN-LAAC Registry. JACC Asia 2023, 3, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, M.; Yamamoto, M.; Sago, M.; Tanaka, S.; Chatani, R.; Asami, M.; Hachinohe, D.; Naganuma, T.; Ohno, Y.; Tani, T.; et al. Comparative Data of Procedural and Midterm Outcomes in Patients Who Underwent Percutaneous Left Atrial Appendage Closure Between the WATCHMAN FLX and WATCHMAN 2.5 Devices- Insight From the OCEAN-LAAC Registry. Circ. J. 2024, 88, 1187–1197. [Google Scholar] [CrossRef]
- Ueno, H.; Imamura, T.; Tanaka, S.; Fukuda, N.; Kinugawa, K. Left atrial appendage closure for stroke prevention in nonvalvular atrial fibrillation: A current overview. J. Cardiol. 2023, 81, 420–428. [Google Scholar] [CrossRef]
- Alfadhel, M.; Nestelberger, T.; Samuel, R.; McAlister, C.; Saw, J. Left atrial appendage closure—Current status and future directions. Prog. Cardiovasc. Dis. 2021, 69, 101–109. [Google Scholar] [CrossRef]
- Imamura, T.; Kinugawa, K.; Nitta, D.; Hatano, M.; Komuro, I. Should cardiac resynchronization therapy be a rescue therapy for inotrope-dependent patients with advanced heart failure? J. Card. Fail. 2015, 21, 535–538. [Google Scholar] [CrossRef]
- Das, S.; Lorente-Ros, M.; Wu, L.; Mehta, D.; Suri, R. Safety of left atrial appendage closure in heart failure patients. J. Cardiovasc. Electrophysiol. 2022, 33, 2578–2584. [Google Scholar] [CrossRef]
- Zhao, M.; Hou, C.R.; Bai, J.; Post, F.; Walsleben, J.; Herold, N.; Yu, J.; Zhang, Z.; Yu, J. Effect of congestive heart failure on safety and efficacy of left atrial appendage closure in patients with non-valvular atrial fibrillation. Expert Rev. Med. Devices 2022, 19, 805–814. [Google Scholar] [CrossRef]
- Kim, D.Y.; Kim, M.J.; Seo, J.; Cho, I.; Shim, C.Y.; Hong, G.R.; Kim, J.S.; Ha, J.W. Predictors of Subsequent Heart Failure After Left Atrial Appendage Closure. Circ. J. 2022, 86, 1129–1136. [Google Scholar] [CrossRef]
- Mesnier, J.; Cruz-Gonzalez, I.; Arzamendi, D.; Freixa, X.; Nombela-Franco, L.; Peral, V.; Caneiro-Queija, B.; Mangieri, A.; Trejo-Velasco, B.; Asmarats, L.; et al. Incidence and Predictors of Early Death in Patients Undergoing Percutaneous Left Atrial Appendage Closure. JACC Clin. Electrophysiol. 2022, 8, 1093–1102. [Google Scholar] [CrossRef]
- Alkhouli, M.; Alarouri, H.; Kramer, A.; Korsholm, K.; Collins, J.; De Backer, O.; Hatoum, H.; Nielsen-Kudsk, J.E. Device-Related Thrombus After Left Atrial Appendage Occlusion: Clinical Impact, Predictors, Classification, and Management. JACC Cardiovasc. Interv. 2023, 16, 2695–2707. [Google Scholar] [CrossRef]
- Hu, Q.W.; Bao, T.Z.; Yang, H.R. NT-pro-BNP: A promising predictor of stroke risk after transient ischemic attack. Int. J. Cardiol. 2019, 297, 142. [Google Scholar] [CrossRef]
- Rodriguez-Castro, E.; Hervella, P.; Lopez-Dequidt, I.; Arias-Rivas, S.; Santamaria-Cadavid, M.; Lopez-Loureiro, I.; da Silva-Candal, A.; Perez-Mato, M.; Sobrino, T.; Campos, F.; et al. NT-pro-BNP: A novel predictor of stroke risk after transient ischemic attack. Int. J. Cardiol. 2020, 298, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Hijazi, Z.; Lindback, J.; Alexander, J.H.; Hanna, M.; Held, C.; Hylek, E.M.; Lopes, R.D.; Oldgren, J.; Siegbahn, A.; Stewart, R.A.; et al. The ABC (age, biomarkers, clinical history) stroke risk score: A biomarker-based risk score for predicting stroke in atrial fibrillation. Eur. Heart J. 2016, 37, 1582–1590. [Google Scholar] [CrossRef]
- Guichard, J.B.; Nattel, S. Atrial Cardiomyopathy: A Useful Notion in Cardiac Disease Management or a Passing Fad? J. Am. Coll. Cardiol. 2017, 70, 756–765. [Google Scholar] [CrossRef] [PubMed]
- Pant, R.; Patel, M.; Garcia-Sayan, E.; Wassouf, M.; D’Silva, O.; Kehoe, R.F.; Doukky, R. Impact of B-type natriuretic peptide level on the risk of left atrial appendage thrombus in patients with nonvalvular atrial fibrillation: A prospective study. Cardiovasc. Ultrasound 2016, 14, 4. [Google Scholar] [CrossRef] [PubMed]
- Alkhouli, M.; Di Biase, L.; Natale, A.; Rihal, C.S.; Holmes, D.R.; Asirvatham, S.; Bartus, K.; Lakkireddy, D.; Friedman, P.A. Nonthrombogenic Roles of the Left Atrial Appendage: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2023, 81, 1063–1075. [Google Scholar] [CrossRef]
- Mesnier, J.; Cepas-Guillen, P.; Freixa, X.; Flores-Umanzor, E.; Hoang Trinh, K.; O’Hara, G.; Rodes-Cabau, J. Antithrombotic Management After Left Atrial Appendage Closure: Current Evidence and Future Perspectives. Circ. Cardiovasc. Interv. 2023, 16, e012812. [Google Scholar] [CrossRef]
- Scridon, A.; Balan, A.I. Challenges of Anticoagulant Therapy in Atrial Fibrillation-Focus on Gastrointestinal Bleeding. Int. J. Mol. Sci. 2023, 24, 6879. [Google Scholar] [CrossRef]
- Della Rocca, D.G.; Magnocavallo, M.; Di Biase, L.; Mohanty, S.; Trivedi, C.; Tarantino, N.; Gianni, C.; Lavalle, C.; Van Niekerk, C.J.; Romero, J.; et al. Half-Dose Direct Oral Anticoagulation Versus Standard Antithrombotic Therapy After Left Atrial Appendage Occlusion. JACC Cardiovasc. Interv. 2021, 14, 2353–2364. [Google Scholar] [CrossRef] [PubMed]
Total (n = 937) | High BNP (n = 489) | Low BNP (n = 448) | p-Value | |
---|---|---|---|---|
Demographics | ||||
Age, years | 78 (73, 83) | 80 (75, 84) | 77 (72, 81) | <0.001 * |
Men | 596 (64%) | 292 (60%) | 196 (44%) | 0.006 * |
Body mass index, kg/m2 | 23.1 (20.7, 25.5) | 22.9 (20.0, 25.4) | 23.4 (21.4, 25.7) | 0.003 * |
Systolic blood pressure, mmHg | 125 (112, 138) | 124 (110, 138) | 126 (114, 138) | 0.13 |
Pulse rate, bpm | 70 (62, 79) | 70 (61, 79) | 71 (62, 79) | 0.96 |
Rhythm: sinus/atrial fibrillation/pacemaker | 318/550/69 | 92/352/45 | 226/198/24 | <0.001 * |
Comorbidity | ||||
Hypertension | 680 (73%) | 353 (72%) | 327 (73%) | 0.95 |
Diabetes mellitus | 309 (33%) | 167 (34%) | 142 (32%) | 0.23 |
Dyslipidemia | 384 (41%) | 204 (42%) | 180 (40%) | 0.34 |
Heart failure | 440 (47%) | 290 (59%) | 150 (33%) | <0.001 * |
Coronary artery disease | 418 (45%) | 246 (50%) | 172 (38%) | <0.001 * |
Pacemaker implantation | 107 (11%) | 65 (13%) | 42 (9%) | 0.037 * |
Peripheral artery disease | 112 (12%) | 80 (16%) | 32 (7%) | <0.001 * |
History of major bleeding | 578 (62%) | 284 (58%) | 294 (66%) | 0.010 * |
History of ischemic stroke | 376 (40%) | 193 (39%) | 183 (41%) | 0.36 |
History of hemorrhagic stroke | 120 (13%) | 58 (12%) | 62 (14%) | 0.21 |
Hemodialysis dependence | 0 (0%) | 0 (0%) | 0 (0%) | - |
Scores | ||||
CHADS2 score | 3 (2, 4) | 3 (3, 4) | 3 (2, 4) | <0.001 * |
CHA2DS2-VASc score | 5 (4, 6) | 5 (4, 6) | 5 (4, 6) | <0.001 * |
HAS-BLED score | 3 (2, 3) | 3 (2, 4) | 3 (2, 3) | 0.058 |
Laboratory data | ||||
Serum albumin, g/dL | 3.9 (3.6, 4.1) | 3.8 (3.6, 4.1) | 3.9 (3.7, 4.2) | <0.001 * |
Hemoglobin, g/dL | 12.4 (10.9, 13.8) | 11.9 (10.4, 13.5) | 12.8 (11.5, 14.0) | <0.001 * |
Serum creatinine, mg/dL | 1.0 (0.8, 1.3) | 1.1 (0.9, 1.5) | 0.9 (0.8, 1.1) | <0.001 * |
Common logarithm of plasma BNP, pg/mL | 2.15 (1.86, 2.39) | 2.37 (2.24, 2.57) | 1.83 (1.60, 2.00) | <0.001 * |
PT-INR | 1.3 (1.1, 1.5) | 1.3 (1.1, 1.6) | 1.2 (1.1, 1.5) | <0.001 * |
TTE data | ||||
LVDd, mm | 46 (42, 51) | 47 (43, 52) | 45 (42, 50) | 0.023 * |
LVEF, % | 60 (53, 65) | 60 (51, 66) | 62 (58, 68) | <0.001 * |
LVEF < 50% | 154 (16%) | 109 (22%) | 45 (10%) | <0.001 * |
LA diameter, mm | 44 (40, 50) | 46 (41, 52) | 43 (38, 49) | <0.001 * |
TRPG, mmHg | 25 (20, 31) | 27 (22, 32) | 23 (19, 29) | <0.001 * |
MR moderate or greater | 107 (11%) | 72 (15%) | 35 (8%) | 0.001 * |
TR moderate or greater | 166 (18%) | 121 (25%) | 45 (10%) | <0.001 * |
TEE data | ||||
LAA ostium diameter, mm | ||||
0 degree | 22 (20, 25) | 23 (20, 25) | 22 (19, 24) | <0.001 * |
45 degrees | 21 (19, 23) | 21 (19, 23) | 20 (18, 23) | 0.002 * |
90 degrees | 21 (19, 24) | 22 (20, 24) | 21 (18, 24) | 0.001 * |
135 degrees | 23 (20, 26) | 24 (21, 25) | 22 (19, 25) | <0.001 * |
LAA depth, mm | ||||
0 degree | 26 (21, 31) | 27 (21, 33) | 25 (20, 29) | <0.001 * |
45 degrees | 26 (21, 30) | 27 (22, 32) | 24 (18, 29) | <0.001 * |
90 degrees | 26 (20, 31) | 27 (22, 32) | 24 (19, 30) | <0.001 * |
135 degrees | 25 (21, 30) | 27 (23, 31) | 24 (19, 28) | <0.001 * |
LAA filling flow velocity, cm/sec | 27 (18, 44) | 21 (16, 38) | 34 (19, 51) | <0.001 * |
LAA emptying flow velocity, cm/sec | 24 (17, 43) | 21 (16, 34) | 32 (17, 52) | <0.001 * |
Complex aortic plaque | 28 (3%) | 17 (3%) | 11 (2%) | 0.21 |
Medications | ||||
OAC + DAPT | 20 (2%) | 12 (2%) | 8 (2%) | 0.32 |
OAC + SAPT | 269 (29%) | 153 (31%) | 116 (26%) | 0.040 * |
OAC alone | 608 (65%) | 299 (61%) | 309 (69%) | 0.007 * |
DAPT alone | 6 (1%) | 4 (1%) | 2 (0%) | 0.48 |
SAPT alone | 7 (1%) | 6 (1%) | 1 (0%) | 0.075 |
None | 8 (1%) | 6 (1%) | 2 (0%) | 0.20 |
High BNP (n = 489) | Low BNP (n = 448) | p-Value | |
---|---|---|---|
Implanted device, 2.5/FLX | 183/306 | 154/294 | 0.18 |
General data | |||
Anesthesia time, min | 93 (77, 111) | 93 (77, 112) | 0.91 |
Procedure time, min | 45 (35, 60) | 46 (37, 61) | 0.78 |
Fluoroscopy duration, min | 12 (9, 17) | 12 (9, 16) | 0.20 |
Contrast volume, mL | 50 (30, 66) | 55 (37, 80) | <0.001 * |
Implanted device size, mm | 31 (27, 33) | 30 (27, 31) | <0.001 * |
Maximum device diameter, mm | |||
0 degree | 25 (22, 27) | 24 (22, 27) | <0.001 * |
45 degrees | 25 (23, 27) | 24 (21, 27) | <0.001 * |
90 degrees | 25 (23, 27) | 24 (22, 27) | 0.001 * |
135 degrees | 25 (23, 28) | 24 (22, 27) | <0.001 * |
Device compression, % | |||
0 degree | 17 (13, 21) | 16 (13, 21) | 0.47 |
45 degrees | 17 (13, 21) | 17 (13, 21) | 0.52 |
90 degrees | 16 (13, 20) | 16 (13, 20) | 0.081 |
135 degrees | 15 (13, 19) | 15 (13, 20) | 0.84 |
Device protrusion, mm | |||
0 degree | 3.0 (0, 6.0) | 3.5 (0, 6.0) | 0.28 |
45 degrees | 3.2 (0, 5.8) | 3.2 (0, 5.0) | 0.49 |
90 degrees | 5.1 (2.0, 7.9) | 5.0 (2.0, 8.0) | 0.70 |
135 degrees | 6.0 (3.1, 8.3) | 6.0 (3.7, 9.0) | 0.58 |
Deep device implantation | 5 (1%) | 10 (2%) | 0.11 |
Residual trabeculation | 30 (6%) | 27 (6%) | 0.50 |
High BNP (n = 489) | Low BNP (n = 448) | p-Value | |
---|---|---|---|
Implantation outcome | |||
Implantation success | 476 (98%) | 438 (98%) | 0.42 |
Technical success | 476 (97%) | 436 (97%) | 0.57 |
Procedural success | 460 (94%) | 428 (96%) | 0.20 |
Peri-procedural complications | |||
Access site complication | 4 (1%) | 3 (1%) | 0.79 |
TEE-related complication | 2 (0%) | 0 (0%) | 0.18 |
Acute kidney injury | 2 (0%) | 0 (0%) | 0.18 |
Device embolization | 0 (0%) | 0 (0%) | - |
Infectious endocarditis | 0 (0%) | 0 (0%) | - |
Any strokes | 0 (0%) | 0 (0%) | - |
Major bleedings | 2 (0%) | 2 (0%) | 0.93 |
Length of hospital stay, days | 5 (4, 6) | 4 (4, 6) | <0.001 * |
High BNP (n = 489) | Low BNP (n = 447) | p-Value | |
---|---|---|---|
Discharge | |||
OAC + DAPT (3 medications) | 11 (2%) | 5 (1%) | 0.14 |
OAC + SAPT (2 medications) | 236 (48%) | 221 (49%) | 0.40 |
OAC alone (1 medication) | 228 (47%) | 212 (47%) | 0.44 |
DAPT alone (2 medications) | 2 (0%) | 1 (0%) | 0.62 |
SAPT alone (1 medication) | 4 (1%) | 2 (0%) | 0.48 |
None (0 medication) | 3 (0%) | 11 (2%) | 0.36 |
Three-month follow-up | |||
OAC + DAPT (3 medications) | 2 (0%) | 2 (0%) | 0.93 |
OAC + SAPT (2 medications) | 53 (11%) | 40 (9%) | 0.19 |
OAC alone (1 medication) | 107 (22%) | 95 (21%) | 0.43 |
DAPT alone (2 medications) | 141 (29%) | 139 (31%) | 0.25 |
SAPT alone (1 medication) | 144 (29%) | 140 (31%) | 0.30 |
None (0 medication) | 11 (2%) | 18 (4%) | 0.085 |
One-year follow-up | |||
OAC + DAPT (3 medications) | 0 (0%) | 0 (0%) | - |
OAC + SAPT (2 medications) | 17 (3%) | 9 (2%) | 0.12 |
OAC alone (1 medication) | 39 (8%) | 51 (11%) | 0.049 * |
DAPT alone (2 medications) | 13 (3%) | 15 (3%) | 0.33 |
SAPT alone (1 medication) | 229 (47%) | 235 (53%) | 0.049 * |
None (0 medication) | 20 (4%) | 33 (7%) | 0.021 * |
High BNP (n = 489) | Low BNP (n = 447) | p-Value | |
---|---|---|---|
Short-term follow-up | |||
Maximum device diameter, mm | |||
0 degree | 26 (24, 28) | 24 (22, 27) | 0.001 * |
45 degrees | 25 (23, 28) | 24 (22, 27) | 0.001 * |
90 degrees | 26 (24, 28) | 24 (22, 27) | 0.012 * |
135 degrees | 26 (24, 28) | 25 (22, 27) | 0.002 * |
Device compression, % | |||
0 degree | 14 (10, 18) | 14 (11, 17) | 0.49 |
45 degrees | 15 (12, 19) | 14 (11, 19) | 0.43 |
90 degrees | 15 (11, 18) | 13 (10, 19) | 0.002 * |
135 degrees | 14 (11, 18) | 13 (10, 17) | 0.077 |
Device protrusion, mm | |||
0 degree | 3.5 (0, 6.0) | 4.1 (0, 6.0) | 0.30 |
45 degrees | 4.0 (0, 6.1) | 3.9 (0, 6.0) | 0.73 |
90 degrees | 4.8 (0, 7.0) | 4.1 (0, 6.4) | 0.33 |
135 degrees | 5.4 (1.6, 7.7) | 4.9 (2.2, 6.8) | 0.38 |
Deep device implantation | 6 (1%) | 4 (1%) | 0.83 |
Device-related thrombus | 4 (1%) | 2 (0%) | 0.63 |
One-year follow-up | |||
Maximum device diameter, mm | |||
0 degree | 26 (24, 28) | 25 (22, 27) | 0.042 * |
45 degrees | 26 (23, 28) | 24 (22, 27) | 0.074 |
90 degrees | 25 (24, 28) | 24 (22, 28) | 0.032 * |
135 degrees | 26 (24, 28) | 25 (23, 28) | 0.13 |
Device compression, % | |||
0 degree | 15 (11, 19) | 14 (11, 18) | 0.020 * |
45 degrees | 17 (12, 21) | 15 (10, 19) | 0.008 * |
90 degrees | 16 (12, 20) | 13 (11, 19) | 0.032 * |
135 degrees | 14 (11, 18) | 12 (9, 16) | <0.001 * |
Device protrusion, mm | |||
0 degree | 3.0 (0, 5.5) | 1.5 (0, 5.0) | 0.19 |
45 degrees | 3.9 (0, 6.0) | 3.2 (0, 5.2) | 0.30 |
90 degrees | 4.1 (0, 7.5) | 3.9 (0, 6.0) | 0.38 |
135 degrees | 3.6 (0, 5.6) | 3.0 (0, 5.8) | 0.75 |
Deep device implantation | 6 (1%) | 2 (0%) | 0.18 |
Device-related thrombus | 11 (2%) | 6 (1%) | 0.33 |
Univariable Analysis | Multivariable Analysis | |||
---|---|---|---|---|
Hazard Ratio (95% CI) | p-Value | Hazard Ratio (95% CI) | p-Value | |
Age, years | 0.99 (0.98–1.02) | 0.84 | ||
Hypertension | 0.94 (0.69–1.28) | 0.68 | ||
Diabetes mellitus | 1.15 (0.82–1.61) | 0.41 | ||
Heart failure | 1.85 (1.33–2.58) | <0.001 * | - | - |
History of major bleeding | 1.48 (1.04–2.11) | 0.030 * | 1.48 (1.02–2.14) | 0.037 * |
History of ischemic stroke | 0.74 (0.52–1.04) | 0.082 | 0.85 (0.60–1.20) | 0.35 |
History of hemorrhagic stroke | 1.16 (0.73–1.84) | 0.53 | ||
CHADS2 score | 1.05 (0.93–1.19) | 0.40 | ||
CHA2DS2-VASc score | 1.01 (0.91–1.13) | 0.79 | ||
HAS-BLED score | 1.01 (0.85–1.19) | 0.95 | ||
Serum creatinine, mg/dL | 1.31 (1.15–1.50) | <0.001 * | 1.28 (1.09–1.51) | 0.002 * |
Common logarithm of plasma BNP, pg/mL | 1.65 (1.13–2.42) | 0.009 * | 1.46 (1.06–2.18) | 0.043 * |
Implanted device FLX vs. 2.5 | 0.86 (0.61–1.21) | 0.37 | ||
Number of medications | 0.78 (0.58–1.04) | 0.093 | 0.82 (0, 0.61–1.10) | 0.18 |
High BNP (n = 489) | Low BNP (n = 447) | p-Value | |
---|---|---|---|
Ischemic stroke | 20 (4%) | 7 (2%) | 0.016 * |
Systemic embolism | 2 (0%) | 1 (0%) | 0.62 |
Device-related thrombus | 15 (3%) | 14 (3%) | 0.55 |
Gastrointestinal bleeding | 22 (4%) | 27 (6%) | 0.18 |
Hemorrhagic stroke | 4 (1%) | 5 (1%) | 0.64 |
Other major bleeding events | 8 (2%) | 11 (2%) | 0.37 |
Death | 44 (9%) | 15 (3%) | <0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imamura, T.; Kataoka, N.; Tanaka, S.; Ueno, H.; Kinugawa, K.; Nakashima, M.; Yamamoto, M.; Sago, M.; Chatani, R.; Asami, M.; et al. Correlations Between Plasma BNP Level and Risk of Thrombotic-Hemorrhagic Events After Left Atrial Appendage Closure. J. Clin. Med. 2024, 13, 6232. https://doi.org/10.3390/jcm13206232
Imamura T, Kataoka N, Tanaka S, Ueno H, Kinugawa K, Nakashima M, Yamamoto M, Sago M, Chatani R, Asami M, et al. Correlations Between Plasma BNP Level and Risk of Thrombotic-Hemorrhagic Events After Left Atrial Appendage Closure. Journal of Clinical Medicine. 2024; 13(20):6232. https://doi.org/10.3390/jcm13206232
Chicago/Turabian StyleImamura, Teruhiko, Naoya Kataoka, Shuhei Tanaka, Hiroshi Ueno, Koichiro Kinugawa, Masaki Nakashima, Masanori Yamamoto, Mitsuru Sago, Ryuki Chatani, Masahiko Asami, and et al. 2024. "Correlations Between Plasma BNP Level and Risk of Thrombotic-Hemorrhagic Events After Left Atrial Appendage Closure" Journal of Clinical Medicine 13, no. 20: 6232. https://doi.org/10.3390/jcm13206232
APA StyleImamura, T., Kataoka, N., Tanaka, S., Ueno, H., Kinugawa, K., Nakashima, M., Yamamoto, M., Sago, M., Chatani, R., Asami, M., Hachinohe, D., Naganuma, T., Ohno, Y., Tani, T., Okamatsu, H., Mizutani, K., Watanabe, Y., Izumo, M., Saji, M., ... Hayashida, K., on behalf of the OCEAN-LAAC Investigators. (2024). Correlations Between Plasma BNP Level and Risk of Thrombotic-Hemorrhagic Events After Left Atrial Appendage Closure. Journal of Clinical Medicine, 13(20), 6232. https://doi.org/10.3390/jcm13206232