Osteoporosis and Normocalcemic Primary Hyperparathyroidism (Conservatively or Surgically Managed)
Abstract
:1. Introduction
Objective
2. Methods
3. Results: Studies-Focused Analysis in NPHPT
3.1. Analysis of the Serum Calcium, Phosphorus, PTH, and 24 h Urinary Calcium at NPHPT Diagnosis
3.2. Vitamin D Status: Analysis of 25-Hydroxyvitamin D Levels in Patients with NPHPT
3.3. Prevalence of Osteoporosis/Osteopenia Among Subjects with NPHPT
3.4. Central DXA-Based BMD and T-Score in NPHPT
3.5. Bone Quality Assessment: Trabecular Bone Score (TBS) and Bone Strain Index (BSI)
3.6. Fractures and Normocalcemic PHPT
3.7. Bone Turnover Markers
3.8. The Impact of Parathyroidectomy on the Bone Status in NPHPT
4. Discussion
4.1. Definition and Management Pitfalls in NPHPT
4.2. Vitamin D Interplay in NPHPT
4.3. NPHPT Versus Hypercalcemic (Typical) PHPT: Sample-Focused Results in the Bone Profile
4.4. The Impact of Parathyroidectomy on Bone Status
4.5. Current Limits and Further Expansion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kowalski, G.J.; Buła, G.; Żądło, D.; Gawrychowska, A.; Gawrychowski, J. Primary hyperparathyroidism. Endokrynol. Pol. 2020, 71, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Minisola, S.; Arnold, A.; Belaya, Z.; Brandi, M.L.; Clarke, B.L.; Hannan, F.M.; Hofbauer, L.C.; Insogna, K.L.; Lacroix, A.; Liberman, U.; et al. Epidemiology, Pathophysiology, and Genetics of Primary Hyperparathyroidism. J. Bone Miner. Res. 2022, 37, 2315–2329. [Google Scholar] [CrossRef]
- Carpentier, L.; Bouillet, B. Primary hyperparathyroidism: From diagnosis to treatment. Rev. Med. Interne 2024, Online ahead of print. [CrossRef]
- Palermo, A.; Tabacco, G.; Makras, P.; Zavatta, G.; Trimboli, P.; Castellano, E.; Yavropoulou, M.P.; Naciu, A.M.; Anastasilakis, A.D. Primary hyperparathyroidism: From guidelines to outpatient clinic. Rev. Endocr. Metab. Disord. 2024, 25, 875–896. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, S.J.; Bilezikian, J.P. “Incipient” primary hyperparathyroidism: A “forme fruste” of an old disease. J. Clin. Endocrinol. Metab. 2003, 88, 5348–5352. [Google Scholar] [CrossRef] [PubMed]
- Lowe, H.; McMahon, D.J.; Rubin, M.R.; Bilezikian, J.P.; Silverberg, S.J. Normocalcemic primary hyperparathyroidism: Further characterization of a new clinical phenotype. J. Clin. Endocrinol. Metab. 2007, 92, 3001–3005. [Google Scholar] [CrossRef]
- Bilezikian, J.P.; Khan, A.A.; Potts, J.T., Jr. Third International Workshop on the Management of Asymptomatic Primary Hyperthyroidism. Guidelines for the management of asymptomatic primary hyperparathyroidism: Summary statement from the third international workshop. J. Clin. Endocrinol. Metab. 2009, 94, 335–339. [Google Scholar] [CrossRef]
- Bilezikian, J.P. Primary Hyperparathyroidism. J. Clin. Endocrinol. Metab. 2018, 103, 3993–4004. [Google Scholar] [CrossRef]
- Silva, B.C.; Cusano, N.E.; Bilezikian, J.P. Primary hyperparathyroidism. Best Pract. Res. Clin. Endocrinol. Metab. 2024, 38, 101247. [Google Scholar] [CrossRef]
- Cusano, N.E.; Cetani, F. Normocalcemic primary hyperparathyroidism. Arch. Endocrinol. Metab. 2022, 66, 666–677. [Google Scholar] [CrossRef]
- Kontogeorgos, G.; Trimpou, P.; Laine, C.M.; Oleröd, G.; Lindahl, A.; Landin-Wilhelmsen, K. Normocalcaemic, vitamin D-sufficient hyperparathyroidism-high prevalence and low morbidity in the general population: A long-term follow-up study, the WHO MONICA project, Gothenburg, Sweden. Clin. Endocrinol. 2015, 83, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Dumitru, N.; Carsote, M.; Cocolos, A.; Petrova, E.; Olaru, M.; Dumitrache, C.; Ghemigian, A. The Link Between Bone Osteocalcin and Energy Metabolism in a Group of Postmenopausal Women. Curr. Health Sci. J. 2019, 45, 47–51. [Google Scholar] [CrossRef]
- Bilezikian, J.P.; Khan, A.A.; Silverberg, S.J.; Fuleihan, G.E.; Marcocci, C.; Minisola, S.; Perrier, N.; Sitges-Serra, A.; Thakker, R.V.; Guyatt, G.; et al. International Workshop on Primary Hyperparathyroidism. Evaluation and Management of Primary Hyperparathyroidism: Summary Statement and Guidelines from the Fifth International Workshop. J. Bone Miner. Res. 2022, 37, 2293–2314. [Google Scholar] [CrossRef] [PubMed]
- Messa, P.; Alfieri, C.M. Secondary and Tertiary Hyperparathyroidism. Front. Horm. Res. 2019, 51, 91–108. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, C.; Pepe, J.; Colangelo, L.; Minisola, S. Vitamin D and Secondary Hyperparathyroid States. Front. Horm. Res. 2018, 50, 138–148. [Google Scholar] [CrossRef]
- Wilhelm, S.M.; Wang, T.S.; Ruan, D.T.; Lee, J.A.; Asa, S.L.; Duh, Q.Y.; Doherty, G.M.; Herrera, M.F.; Pasieka, J.L.; Perrier, N.D.; et al. The American Association of Endocrine Surgeons Guidelines for Definitive Management of Primary Hyperparathyroidism. JAMA Surg. 2016, 151, 959–968. [Google Scholar] [CrossRef]
- Ma, Y.; Xiao, X.B.; Liu, Y.S.; Chen, X.L.; Yuan, S.Z.; Zhao, S.H.; Lu, Y.; Yin, H.; Chen, J.L.; Wang, Y.Q.; et al. Analysis of the efficacy and safety of bone disease treatment in patients with newly diagnosed multiple myeloma treated with denosumab or zoledronic acid. Zhonghua Xue Ye Xue Za Zhi 2024, 45, 345–350. [Google Scholar] [CrossRef]
- Nasser, S.M.; Sahal, A.; Hamad, A.; Elazzazy, S. Effect of denosumab versus zoledronic acid on calcium levels in cancer patients with bone metastasis: A retrospective cohort study. J. Oncol. Pharm. Pract. 2019, 25, 1846–1852. [Google Scholar] [CrossRef]
- Ciacci, C.; Bilancio, G.; Russo, I.; Iovino, P.; Cavallo, P.; Santonicola, A.; Bucci, C.; Cirillo, M.; Zingone, F. 25-Hydroxyvitamin D, 1,25-Dihydroxyvitamin D, and Peripheral Bone Densitometry in Adults with Celiac Disease. Nutrients 2020, 12, 929. [Google Scholar] [CrossRef]
- Walker, M.D.; Silverberg, S.J. Primary hyperparathyroidism. Nat. Rev. Endocrinol. 2018, 14, 115–125. [Google Scholar] [CrossRef]
- Cormier, C.; Koumakis, E. Bone and primary hyperparathyroidism. Jt. Bone Spine 2022, 89, 105129. [Google Scholar] [CrossRef] [PubMed]
- Rosário, P.W.; Calsolari, M.R. Normocalcemic Primary Hyperparathyroidism in Adults without a History of Nephrolithiasis or Fractures: A Prospective Study. Horm. Metab. Res. 2019, 51, 243–247. [Google Scholar] [CrossRef] [PubMed]
- García-Martín, A.; Reyes-García, R.; Muñoz-Torres, M. Normocalcemic primary hyperparathyroidism: One-year follow-up in one hundred postmenopausal women. Endocrine 2012, 42, 764–766. [Google Scholar] [CrossRef] [PubMed]
- Trinh, G.; Rettig, E.; Noureldine, S.I.; Russell, J.O.; Agrawal, N.; Mathur, A.; Prescott, J.D.; Zeiger, M.A.; Tufano, R.P. Surgical Management of Normocalcemic Primary Hyperparathyroidism and the Impact of Intraoperative Parathyroid Hormone Testing on Outcome. Otolaryngol. Head Neck Surg. 2018, 159, 630–637. [Google Scholar] [CrossRef]
- Salcuni, A.S.; Battista, C.; Pugliese, F.; Columbu, C.; Guarnieri, V.; Carnevale, V.; Scillitani, A. Normocalcemic primary hyperparathyroidism: An update. Minerva Endocrinol. 2021, 46, 262–271. [Google Scholar] [CrossRef]
- El-Hajj Fuleihan, G.; Chakhtoura, M.; Cipriani, C.; Eastell, R.; Karonova, T.; Liu, J.M.; Minisola, S.; Mithal, A.; Moreira, C.A.; Peacock, M.; et al. Classical and Nonclassical Manifestations of Primary Hyperparathyroidism. J. Bone Miner. Res. 2022, 37, 2330–2350. [Google Scholar] [CrossRef]
- Corbetta, S. Normocalcemic Hyperparathyroidism. Front. Horm. Res. 2019, 51, 23–39. [Google Scholar] [CrossRef]
- Tuna, M.M.; Çalışkan, M.; Ünal, M.; Demirci, T.; Doğan, B.A.; Küçükler, K.; Özbek, M.; Berker, D.; Delibaşı, T.; Güler, S. Normocalcemic hyperparathyroidism is associated with complications similar to those of hypercalcemic hyperparathyroidism. J. Bone Miner. Metab. 2016, 34, 331–335. [Google Scholar] [CrossRef]
- Chen, G.; Xue, Y.; Zhang, Q.; Xue, T.; Yao, J.; Huang, H.; Liang, J.; Li, L.; Lin, W.; Lin, L.; et al. Is Normocalcemic Primary Hyperparathyroidism Harmful or Harmless? J. Clin. Endocrinol. Metab. 2015, 100, 2420–2424. [Google Scholar] [CrossRef]
- Karras, S.N.; Koufakis, T.; Tsekmekidou, X.; Antonopoulou, V.; Zebekakis, P.; Kotsa, K. Increased parathyroid hormone is associated with higher fasting glucose in individuals with normocalcemic primary hyperparathyroidism and prediabetes: A pilot study. Diabetes Res. Clin. Pract. 2020, 160, 107985. [Google Scholar] [CrossRef]
- Shaker, J.L.; Wermers, R.A. The Eucalcemic Patient with Elevated Parathyroid Hormone Levels. J. Endocr. Soc. 2023, 7, bvad013. [Google Scholar] [CrossRef] [PubMed]
- Zenoaga-Barbăroșie, C.; Berca, L.; Vassu-Dimov, T.; Toma, M.; Nica, M.I.; Alexiu-Toma, O.A.; Ciornei, C.; Albu, A.; Nica, S.; Nistor, C.; et al. The Predisposition for Type 2 Diabetes Mellitus and Metabolic Syndrome. Balk. J. Med Genet. 2023, 26, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Anghel, A.; Stanciu, S.; Ciobica, M.L.; Stoicescu, D.; Muresan, M.M. Contrast-enhanced ultrasound-clinical applications. Rom. J. Mil. Med. 2011, 114, 25–30. [Google Scholar]
- Stanciu, S.; Enciu, C.; Raduta, I.; Stoicescu, D.; Anghel, A.; Anghel, D.; Olan, B.; Ciobica, L. The role of contrast-enhanced ultrasound in risk assessment of carotid atheroma. Rom. J. Mil. Med. 2016, 119, 9–11. [Google Scholar] [CrossRef]
- Halimi, C.; Bor, C.; Chieze, R.; Saint-Jacques, C.; Périé, S.; Wagner, I.; Talbot, J.N.; Montravers, F.; Letavernier, E.; Buob, D.; et al. Comparison of normocalcemic versus hypercalcemic primary hyperparathyroidism in a hypercalciuric renal stone population. J. Clin. Endocrinol. Metab. 2024, 109, 2553–2560. [Google Scholar] [CrossRef]
- Yankova, I.; Lilova, L.; Petrova, D.; Dimitrova, I.; Stoynova, M.; Shinkov, A.; Kovatcheva, R. Biochemical characteristics and clinical manifestation of normocalcemic primary hyperparathyroidism. Endocrine 2024, 85, 341–346. [Google Scholar] [CrossRef]
- Armstrong, V.L.; Hangge, P.T.; Butterfield, R.; Norain, A.; Wasif, N.; Stucky, C.H.; Cronin, P.A. Phenotypes of primary hyperparathyroidism: Does parathyroidectomy improve clinical outcomes for all? Surgery 2023, 173, 173–179. [Google Scholar] [CrossRef]
- Chertok Shacham, E.; Maman, N.; Lazareva, T.; Masalha, R.; Mahagna, L.; Sela, G.; Ishay, A. Normocalcemic primary hyperparathyroidism is an early stage of primary hyperparathyroidism according to fibroblast growth factor 23 level. Front. Endocrinol. 2023, 14, 1152464. [Google Scholar] [CrossRef]
- Koumakis, E.; Gauthé, M.; Martinino, A.; Sindayigaya, R.; Delbot, T.; Wartski, M.; Clerc, J.; Roux, C.; Borderie, D.; Cochand-Priollet, B.; et al. FCH-PET/CT in Primary Hyperparathyroidism with Discordant/Negative MIBI Scintigraphy and Ultrasonography. J. Clin. Endocrinol. Metab. 2023, 108, 1958–1967. [Google Scholar] [CrossRef]
- Tabacco, G.; Naciu, A.M.; Messina, C.; Sanson, G.; Rinaudo, L.; Cesareo, R.; Falcone, S.; Napoli, N.; Ulivieri, F.M.; Palermo, A. DXA-based bone strain index in normocalcemic primary hyperparathyroidism. Osteoporos. Int. 2023, 34, 999–1003. [Google Scholar] [CrossRef]
- Choi, H.R.; Choi, S.H.; Hong, N.; Rhee, Y.; Kim, J.K.; Lee, C.R.; Kang, S.W.; Lee, J.; Jeong, J.J.; Nam, K.H.; et al. Comparisons Between Normocalcemic Primary Hyperparathyroidism and Typical Primary Hyperparathyroidism. J. Korean Med Sci. 2022, 37, e99. [Google Scholar] [CrossRef] [PubMed]
- Osorio-Silla, I.; Gómez-Ramírez, J.; Valdazo-Gómez, A.; Salido Fernández, S.; Sánchez García, C.; Pardo García, R. What happens to the bone structure after normocalcemic primary hyperparathyroidism surgery? Surgery 2022, 171, 932–939. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Ramírez, J.; Gómez-Valdazo, A.; Luengo, P.; Porrero, B.; Osorio, I.; Rivas, S. Comparative prospective study on the presentation of normocalcemic primary hyperparathyroidism. Is it more aggressive than the hypercalcemic form? Am. J. Surg. 2020, 219, 150–153. [Google Scholar] [CrossRef] [PubMed]
- Kontogeorgos, G.; Welin, L.; Fu, M.; Hansson, P.O.; Landin-Wilhelmsen, K.; Laine, C.M. Hyperparathyroidism in men—Morbidity and mortality during 21 years’ follow-up. Scand. J. Clin. Lab. Investig. 2020, 80, 6–13. [Google Scholar] [CrossRef]
- Liu, M.; Sum, M.; Cong, E.; Colon, I.; Bucovsky, M.; Williams, J.; Kepley, A.; Kuo, J.; Lee, J.A.; Lazar, R.M.; et al. Cognition and cerebrovascular function in primary hyperparathyroidism before and after parathyroidectomy. J. Endocrinol. Investig. 2020, 43, 369–379. [Google Scholar] [CrossRef]
- Palermo, A.; Naciu, A.M.; Tabacco, G.; Falcone, S.; Santonati, A.; Maggi, D.; D’Onofrio, L.; Briganti, S.I.; Castellitto, D.; Casini, A.; et al. Clinical, Biochemical, and Radiological Profile of Normocalcemic Primary Hyperparathyroidism. J. Clin. Endocrinol. Metab. 2020, 105, dgaa174. [Google Scholar] [CrossRef]
- Schini, M.; Jacques, R.M.; Oakes, E.; Peel, N.F.A.; Walsh, J.S.; Eastell, R. Normocalcemic Hyperparathyroidism: Study of its Prevalence and Natural History. J. Clin. Endocrinol. Metab. 2020, 105, e1171–e1186. [Google Scholar] [CrossRef]
- Voss, L.; Nóbrega, M.; Bandeira, L.; Griz, L.; Rocha-Filho, P.A.S.; Bandeira, F. Impaired physical function and evaluation of quality of life in normocalcemic and hypercalcemic primary hyperparathyroidism. Bone 2020, 141, 115583. [Google Scholar] [CrossRef]
- Li, S.R.; McCoy, K.L.; Levitt, H.E.; Kelley, M.L.; Carty, S.E.; Yip, L. Is routine 24-hour urine calcium measurement useful during the evaluation of primary hyperparathyroidism? Surgery 2022, 171, 17–22. [Google Scholar] [CrossRef]
- Bilezikian, J.P.; Brandi, M.L.; Eastell, R.; Silverberg, S.J.; Udelsman, R.; Marcocci, C.; Potts, J.T., Jr. Guidelines for the management of asymptomatic primary hyperparathyroidism: Summary statement from the Fourth International Workshop. J. Clin. Endocrinol. Metab. 2014, 99, 3561–3569. [Google Scholar] [CrossRef]
- Brown, J.P.; Don-Wauchope, A.; Douville, P.; Albert, C.; Vasikaran, S.D. Current use of bone turnover markers in the management of osteoporosis. Clin. Biochem. 2022, 109–110, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Carsote, M.; Valea, A.; Dumitru, N.; Terzea, D.; Petrova, E.; Albu, S.; Buruiana, A.; Ghemigian, A. Metastases in daily endocrine practice. Arch. Balk. Med. Union. 2016, 51, 476–480. [Google Scholar]
- Nistor, C.E.; Gavan, C.S.; Pantile, D.; Tanase, N.V.; Ciuche, A. Cervico-Thoracic Air Collections in COVID-19 Pneumonia Patients—Our Experience and Brief Review. Chirurgia 2022, 117, 317–327. [Google Scholar] [CrossRef]
- Cusano, N.E.; Silverberg, S.J.; Bilezikian, J.P. Normocalcemic primary hyperparathyroidism. J. Clin. Densitom. 2013, 16, 33–39. [Google Scholar] [CrossRef]
- Cusano, N.E.; Maalouf, N.M.; Wang, P.Y.; Zhang, C.; Cremers, S.C.; Haney, E.M.; Bauer, D.C.; Orwoll, E.S.; Bilezikian, J.P. Normocalcemic hyperparathyroidism and hypoparathyroidism in two community-based nonreferral populations. J. Clin. Endocrinol. Metab. 2013, 98, 2734–2741. [Google Scholar] [CrossRef]
- Zavatta, G.; Clarke, B.L. Normocalcemic Hyperparathyroidism: A Heterogeneous Disorder Often Misdiagnosed? JBMR Plus 2020, 4, e10391. [Google Scholar] [CrossRef]
- Díaz-Soto, G.; Romero, E.; Castrillón, J.L.; Jauregui, O.I.; de Luis Román, D. Clinical Expression of Calcium Sensing Receptor Polymorphism (A986S) in Normocalcemic and Asymptomatic Hyperparathyroidism. Horm. Metab. Res. 2016, 48, 163–168. [Google Scholar] [CrossRef]
- Wang, X.; Meng, L.; Su, C.; Shapses, S.A. Low free (but not total) 25-hydroxyvitamin D levels in subjects with normocalcemic hyperpaathyoidism. Endocr. Pract. 2020, 26, 174–178. [Google Scholar] [CrossRef]
- Nistor, C.E.; Găvan, C.S.; Ciritel, A.A.; Nemes, A.F.; Ciuche, A. The Association of Minimally Invasive Surgical Approaches and Mortality in Patients with Malignant Pleuropericarditis-A 10 Year Retrospective Observational Study. Medicina 2022, 58, 718. [Google Scholar] [CrossRef]
- Baird, G.S. Ionized calcium. Clin. Chim. Acta 2011, 412, 696–701. [Google Scholar] [CrossRef]
- James, M.T.; Zhang, J.; Lyon, A.W.; Hemmelgarn, B.R. Derivation and internal validation of an equation for albumin-adjusted calcium. BMC Clin. Pathol. 2008, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Mohd Ariffin, Z.A.; Jamaluddin, F.A. Albumin adjusted calcium: Study in a tertiary care hospital. Malays. J. Pathol. 2020, 42, 395–400. [Google Scholar] [PubMed]
- Albert, S.G.; Scott Isbell, T. Reconsideration of “Albumin corrected total calcium” Determinations: Potential errors in the Clinical management of disorders of calcium metabolism. Clin. Chim. Acta 2023, 544, 117353. [Google Scholar] [CrossRef] [PubMed]
- Pekar, J.D.; Grzych, G.; Durand, G.; Haas, J.; Lionet, A.; Brousseau, T.; Glowacki, F.; Maboudou, P. Calcium state estimation by total calcium: The evidence to end the never-ending story. Clin. Chem. Lab. Med. 2020, 58, 222–231. [Google Scholar] [CrossRef]
- Tee, M.C.; Holmes, D.T.; Wiseman, S.M. Ionized vs serum calcium in the diagnosis and management of primary hyperparathyroidism: Which is superior? Am. J. Surg. 2013, 205, 591–596. [Google Scholar] [CrossRef]
- Schini, M.; Hannan, F.M.; Walsh, J.S.; Eastell, R. Reference interval for albumin-adjusted calcium based on a large UK population. Clin. Endocrinol. 2021, 94, 34–39. [Google Scholar] [CrossRef]
- Nilsson, I.L. Primary hyperparathyroidism: Should surgery be performed on all patients? Current evidence and residual uncertainties. J. Intern. Med. 2019, 285, 149–164. [Google Scholar] [CrossRef]
- Kitamura, N.; Shigeno, C.; Shiomi, K.; Lee, K.; Ohta, S.; Sone, T.; Katsushima, S.; Tadamura, E.; Kousaka, T.; Yamamoto, I.; et al. Episodic fluctuation in serum intact parathyroid hormone concentration in men. J. Clin. Endocrinol. Metab. 1990, 70, 252–263. [Google Scholar] [CrossRef]
- Schini, M.; Jacques, R.; Oakes, E.; Peel, N.; Walsh, J.S.; Eastell, R. Normocalcaemic hyperparathyroidism and primary hyperparathyroidism: Least significant change for adjusted serum calcium. Eur. J. Endocrinol. 2021, 184, K7–K10. [Google Scholar] [CrossRef]
- Kalaria, T.; Fenn, J.; Sanders, A.; Yates, A.; Duff, C.; Ashby, H.; Mohammed, P.; Ford, C.; Gama, R. The Diagnosis of Normocalcaemic Hyperparathyroidism is Strikingly Dissimilar Using Different Commercial Laboratory Assays. Horm. Metab. Res. 2022, 54, 429–434. [Google Scholar] [CrossRef]
- Cavalier, E.; Delanaye, P.; Nyssen, L.; Souberbielle, J.C. Problems with the PTH assays. Ann. Endocrinol. 2015, 76, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Portillo, M.R.; Rodríguez-Ortiz, M.E. Secondary Hyperparthyroidism: Pathogenesis, Diagnosis, Preventive and Therapeutic Strategies. Rev. Endocr. Metab. Disord. 2017, 18, 79–95. [Google Scholar] [CrossRef] [PubMed]
- Šiprová, H.; Fryšák, Z.; Souček, M. Primary hyperparathyroidism, with a focus on management of the normocalcemic form: To treat or not to treat? Pract. 2016, 22, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Delrue, C.; Speeckaert, M.M. Vitamin D and Vitamin D-Binding Protein in Health and Disease. Int. J. Mol. Sci. 2023, 24, 4642. [Google Scholar] [CrossRef]
- Rochel, N. Vitamin D and Its Receptor from a Structural Perspective. Nutrients 2022, 14, 2847. [Google Scholar] [CrossRef]
- Lee, S.M.; Meyer, M.B.; Benkusky, N.A.; O’Brien, C.A.; Pike, J.W. Mechanisms of Enhancer-mediated Hormonal Control of Vitamin D Receptor Gene Expression in Target Cells. J. Biol. Chem. 2015, 290, 30573–30586. [Google Scholar] [CrossRef]
- Bienaimé, F.; Prié, D.; Friedlander, G.; Souberbielle, J.C. Vitamin D metabolism and activity in the parathyroid gland. Mol. Cell Endocrinol. 2011, 347, 30–41. [Google Scholar] [CrossRef]
- Stack, B.C., Jr. Secondary Hyperparathyroidism. Otolaryngol. Clin. N. Am. 2024, 57, 99–110. [Google Scholar] [CrossRef]
- Yao, L.; Guyatt, G.; Ye, Z.; Bilezikian, J.P.; Brandi, M.L.; Clarke, B.L.; Mannstadt, M.; Khan, A.A. Methodology for the Guidelines on Evaluation and Management of Hypoparathyroidism and Primary Hyperparathyroidism. J. Bone Miner. Res. 2022, 37, 2404–2410. [Google Scholar] [CrossRef]
- Meng, L.; Su, C.; Shapses, S.A.; Wang, X. Total and free vitamin D metabolites in patients with primary hyperparathyroidism. J. Endocrinol. Investig. 2022, 45, 301–307. [Google Scholar] [CrossRef]
- Nuti, R.; Merlotti, D.; Gennari, L. Vitamin D deficiency and primary hyperparathyroidism. J. Endocrinol. Investig. 2011, 34, 45–49. [Google Scholar]
- Yedla, N.; Kim, H.; Sharma, A.; Wang, X. Vitamin D Deficiency and the Presentation of Primary Hyperparathyroidism: A Mini Review. Int. J. Endocrinol. 2023, 2023, 1169249. [Google Scholar] [CrossRef] [PubMed]
- Eastell, R.; Brandi, M.L.; Costa, A.G.; D’Amour, P.; Shoback, D.M.; Thakker, R.V. Diagnosis of asymptomatic primary hyperparathyroidism: Proceedings of the Fourth International Workshop. J. Clin. Endocrinol. Metab. 2014, 99, 3570–3579. [Google Scholar] [CrossRef]
- Crowley, R.K.; Gittoes, N.J. Elevated PTH with normal serum calcium level: A structured approach. Clin. Endocrinol. 2016, 84, 809–813. [Google Scholar] [CrossRef] [PubMed]
- Bhadada, S.K.; Ghosh, J.; Pal, R.; Mukherjee, S. Phosphate: An underrated component of primary hyperparathyroidism. Best. Pract. Res. Clin. Endocrinol. Metab. 2024, 38, 101837. [Google Scholar] [CrossRef]
- Castellano, E.; Attanasio, R.; Boriano, A.; Pellegrino, M.; Borretta, G. Serum Phosphate: A Neglected Test in the Clinical Management of Primary Hyperparathyroidism. J. Clin. Endocrinol. Metab. 2022, 107, e612–e618. [Google Scholar] [CrossRef]
- Tabbikha, O.; Chamy, J.; El Khoury, M. Incidental Normocalcemic Primary Hyperparathyroidism Presenting With Symptomatic Hypophosphatemia: A Case Report. Cureus 2023, 15, e44378. [Google Scholar] [CrossRef]
- Shevroja, E.; Cafarelli, F.P.; Guglielmi, G.; Hans, D. DXA parameters, Trabecular Bone Score (TBS) and Bone Mineral Density (BMD), in fracture risk prediction in endocrine-mediated secondary osteoporosis. Endocrine 2021, 74, 20–28. [Google Scholar] [CrossRef]
- Kanis, J.A.; Harvey, N.C.; Liu, E.; Vandenput, L.; Lorentzon, M.; McCloskey, E.V.; Bouillon, R.; Abrahamsen, B.; Rejnmark, L.; Johansson, H. Danish Primary Hyperparathyroidism Study Group. Primary hyperparathyroidism and fracture probability. Osteoporos. Int. 2023, 34, 489–499. [Google Scholar] [CrossRef]
- Ejlsmark-Svensson, H.; Rolighed, L.; Harsløf, T.; Rejnmark, L. Risk of fractures in primary hyperparathyroidism: A systematic review and meta-analysis. Osteoporos. Int. 2021, 32, 1053–1060. [Google Scholar] [CrossRef]
- Kanis, J.A.; Harvey, N.C.; Johansson, H.; Liu, E.; Vandenput, L.; Lorentzon, M.; Leslie, W.D.; McCloskey, E.V. A decade of FRAX: How has it changed the management of osteoporosis? Aging Clin. Exp. Res. 2020, 32, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Schini, M.; Johansson, H.; Harvey, N.C.; Lorentzon, M.; Kanis, J.A.; McCloskey, E.V. An overview of the use of the fracture risk assessment tool (FRAX) in osteoporosis. J. Endocrinol. Investig. 2024, 47, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Zerikly, R.; Demetriou, E.W. Use of Fracture Risk Assessment Tool in clinical practice and Fracture Risk Assessment Tool future directions. Womens Health 2024, 20, 17455057241231387. [Google Scholar] [CrossRef] [PubMed]
- Bilezikian, J.P.; Silverberg, S.J.; Bandeira, F.; Cetani, F.; Chandran, M.; Cusano, N.E.; Ebeling, P.R.; Formenti, A.M.; Frost, M.; Gosnell, J.; et al. Management of Primary Hyperparathyroidism. J. Bone Miner. Res. 2022, 37, 2391–2403. [Google Scholar] [CrossRef]
- Kužma, M.; Jackuliak, P.; Killinger, Z.; Payer, J. Parathyroid Hormone-Related Changes of Bone Structure. Physiol. Res. 2021, 70 (Suppl. S1), S3–S11. [Google Scholar] [CrossRef]
- Palomo, T.; Muszkat, P.; Weiler, F.G.; Dreyer, P.; Brandão, C.M.A.; Silva, B.C. Update on trabecular bone score. Arch. Endocrinol. Metab. 2022, 66, 694–706. [Google Scholar] [CrossRef]
- Halupczok-Żyła, J.; Gojny, Ł.; Bolanowski, M. Trabecular bone score (TBS) as a noninvasive and complementary tool for clinical diagnosis of bone structure in endocrine disorders. Endokrynol. Pol. 2019, 70, 350–356. [Google Scholar] [CrossRef]
- Muñoz-Torres, M.; Manzanares Córdova, R.; García-Martín, A.; Avilés-Pérez, M.D.; Nieto Serrano, R.; Andújar-Vera, F.; García-Fontana, B. Usefulness of Trabecular Bone Score (TBS) to Identify Bone Fragility in Patients with Primary Hyperparathyroidism. J. Clin. Densitom. 2019, 22, 162–170. [Google Scholar] [CrossRef]
- Jones, A.R.; Simons, K.; Harvey, S.; Grill, V. Bone Mineral Density Compared to Trabecular Bone Score in Primary Hyperparathyroidism. J. Clin. Med. 2022, 11, 330. [Google Scholar] [CrossRef]
- Arboiro-Pinel, R.; Mahíllo-Fernández, I.; Díaz-Curiel, M. Bone Analysis Using Trabecular Bone Score and Dual-Energy X-Ray Absorptiometry-Based 3-Dimensional Modeling in Postmenopausal Women with Primary Hyperparathyroidism. Endocr. Pract. 2022, 28, 83–89. [Google Scholar] [CrossRef]
- Gazzotti, S.; Aparisi Gómez, M.P.; Schileo, E.; Taddei, F.; Sangiorgi, L.; Fusaro, M.; Miceli, M.; Guglielmi, G.; Bazzocchi, A. High-resolution peripheral quantitative computed tomography: Research or clinical practice? Br. J. Radiol. 2023, 96, 20221016. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Nie, M.; Jiang, Y.; Li, M.; Meng, X.; Xing, X.; Wang, O.; Xia, W. Impaired geometry, volumetric density, and microstructure of cortical and trabecular bone assessed by HR-pQCT in both sporadic and MEN1-related primary hyperparathyroidism. Osteoporos. Int. 2020, 31, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Ulivieri, F.M.; Rinaudo, L. Beyond Bone Mineral Density: A New Dual X-Ray Absorptiometry Index of Bone Strength to Predict Fragility Fractures, the Bone Strain Index. Front. Med. 2021, 7, 590139. [Google Scholar] [CrossRef] [PubMed]
- Messina, C.; Rinaudo, L.; Cesana, B.M.; Maresca, D.; Piodi, L.P.; Sconfienza, L.M.; Sardanelli, F.; Ulivieri, F.M. Prediction of osteoporotic fragility re-fracture with lumbar spine DXA-based derived bone strain index: A multicenter validation study. Osteoporos. Int. 2021, 32, 85–91. [Google Scholar] [CrossRef]
- Sornay-Rendu, E.; Duboeuf, F.; Ulivieri, F.M.; Rinaudo, L.; Chapurlat, R. The bone strain index predicts fragility fractures. OFELY Study. Bone 2022, 157, 116348. [Google Scholar] [CrossRef]
- Tabacco, G.; Naciu, A.M.; Messina, C.; Sanson, G.; Rinaudo, L.; Cesareo, R.; Falcone, S.; Manfrini, S.; Napoli, N.; Bilezikian, J.P.; et al. DXA-Based Bone Strain Index: A New Tool to Evaluate Bone Quality in Primary Hyperparathyroidism. J. Clin. Endocrinol. Metab. 2021, 106, 2304–2312. [Google Scholar] [CrossRef]
- Schini, M.; Vilaca, T.; Gossiel, F.; Salam, S.; Eastell, R. Bone Turnover Markers: Basic Biology to Clinical Applications. Endocr. Rev. 2023, 44, 417–473. [Google Scholar] [CrossRef]
- Eastell, R.; Szulc, P. Use of bone turnover markers in postmenopausal osteoporosis. Lancet Diabetes Endocrinol. 2017, 5, 908–923. [Google Scholar] [CrossRef]
- Christiansen, P.; Steiniche, T.; Brixen, K.; Hessov, I.; Melsen, F.; Charles, P.; Mosekilde, L. Primary hyperparathyroidism: Biochemical markers and bone mineral density at multiple skeletal sites in Danish patients. Bone 1997, 21, 93–99. [Google Scholar] [CrossRef]
- Costa, A.G.; Bilezikian, J.P. Bone turnover markers in primary hyperparathyroidism. J. Clin. Densitom. 2013, 16, 22–27. [Google Scholar] [CrossRef]
- Rajeev, P.; Movseysan, A.; Baharani, A. Changes in bone turnover markers in primary hyperparathyroidism and response to surgery. Ann. R. Coll. Surg. Engl. 2017, 99, 559–562. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.Y.; Thomas, W.E.; al-Dehaimi, A.W.; Assiri, A.M.; Eastell, R. Longitudinal changes in bone mineral density and bone turnover in postmenopausal women with primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 1996, 81, 3487–3491. [Google Scholar] [CrossRef] [PubMed]
- Maruani, G.; Hertig, A.; Paillard, M.; Houillier, P. Normocalcemic primary hyperparathyroidism: Evidence for a generalized target-tissue resistance to parathyroid hormone. J. Clin. Endocrinol. Metab. 2003, 88, 4641–4648. [Google Scholar] [CrossRef] [PubMed]
- Sitges-Serra, A.; García, L.; Prieto, R.; Peña, M.J.; Nogués, X.; Sancho, J.J. Effect of parathyroidectomy for primary hyperparathyroidism on bone mineral density in postmenopausal women. Br. J. Surg. 2010, 97, 1013–1019. [Google Scholar] [CrossRef]
- Rolighed, L.; Vestergaard, P.; Heickendorff, L.; Sikjaer, T.; Rejnmark, L.; Mosekilde, L.; Christiansen, P. BMD improvements after operation for primary hyperparathyroidism. Langenbecks Arch. Surg. 2013, 398, 113–120. [Google Scholar] [CrossRef]
- das Neves, M.C.; Santos, R.O.; Ohe, M.N. Surgery for primary hyperparathyroidism. Arch. Endocrinol. Metab. 2022, 66, 678–688. [Google Scholar] [CrossRef]
- Muñoz de Nova, J.L.; Sampedro-Nuñez, M.; Huguet-Moreno, I.; Marazuela Azpiroz, M. A practical approach to normocalcemic primary hyperparathyroidism. Endocrine 2021, 74, 235–244. [Google Scholar] [CrossRef]
- Koumakis, E.; Souberbielle, J.C.; Sarfati, E.; Meunier, M.; Maury, E.; Gallimard, E.; Borderie, D.; Kahan, A.; Cormier, C. Bone mineral density evolution after successful parathyroidectomy in patients with normocalcemic primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 2013, 98, 3213–3220. [Google Scholar] [CrossRef]
- Koumakis, E.; Souberbielle, J.C.; Payet, J.; Sarfati, E.; Borderie, D.; Kahan, A.; Cormier, C. Individual site-specific bone mineral density gain in normocalcemic primary hyperparathyroidism. Osteoporos. Int. 2014, 25, 1963–1968. [Google Scholar] [CrossRef]
- Lee, D.; Walker, M.D.; Chen, H.Y.; Chabot, J.A.; Lee, J.A.; Kuo, J.H. Bone mineral density changes after parathyroidectomy are dependent on biochemical profile. Surgery 2019, 165, 107–113. [Google Scholar] [CrossRef]
- Sho, S.; Kuo, E.J.; Chen, A.C.; Li, N.; Yeh, M.W.; Livhits, M.J. Biochemical and Skeletal Outcomes of Parathyroidectomy for Normocalcemic (Incipient) Primary Hyperparathyroidism. Ann. Surg. Oncol. 2019, 26, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Nistor, C.; Ciuche, A.; Constantinescu, I. Emergency surgical tracheal decompression in a huge retrosternal goiter. Acta Endocrinol. 2017, 13, 370–374. [Google Scholar] [CrossRef] [PubMed]
- Christakis, I.; Parsons, S.; Chadwick, D. Safe provision of elective endocrine surgery operations amid the COVID-19 crisis. Ann. R. Coll. Surg. Engl. 2022, 104, 456–464. [Google Scholar] [CrossRef]
- Aojula, N.; Ready, A.; Gittoes, N.; Hassan-Smith, Z. Management of Parathyroid Disease during the COVID-19 Pandemic. J. Clin. Med. 2021, 10, 920. [Google Scholar] [CrossRef]
- Alfadhli, E.M. Management of Primary Hyperparathyroidism with Severe Hypercalcemia During the COVID-19 Pandemic. Clin. Ther. 2021, 43, 711–719. [Google Scholar] [CrossRef]
- Nistor, C.E.; Pantile, D.; Gavan, C.S.; Ciuche, A. Pneumothorax on COVID-19 patients-retrospective clinical observations. Rom. J. Leg. Med. 2022, 30, 112–116. [Google Scholar] [CrossRef]
- Khan, A.A.; Bilezikian, J.P.; Kung, A.W.; Ahmed, M.M.; Dubois, S.J.; Ho, A.Y.; Schussheim, D.; Rubin, M.R.; Shaikh, A.M.; Silverberg, S.J.; et al. Alendronate in primary hyperparathyroidism: A double-blind, randomized, placebo-controlled trial. J. Clin. Endocrinol. Metab. 2004, 89, 3319–3325. [Google Scholar] [CrossRef]
- Leere, J.S.; Karmisholt, J.; Robaczyk, M.; Lykkeboe, S.; Handberg, A.; Steinkohl, E.; Brøndum Frøkjær, J.; Vestergaard, P. Denosumab and cinacalcet for primary hyperparathyroidism (DENOCINA): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 2020, 8, 407–417. [Google Scholar] [CrossRef]
- Rolighed, L.; Rejnmark, L.; Sikjaer, T.; Heickendorff, L.; Vestergaard, P.; Mosekilde, L.; Christiansen, P. Vitamin D treatment in primary hyperparathyroidism: A randomized placebo controlled trial. J. Clin. Endocrinol. Metab. 2014, 99, 1072–1080. [Google Scholar] [CrossRef]
- Chandran, M.; Bilezikian, J.P.; Lau, J.; Rajeev, R.; Yang, S.P.; Samuel, M.; Parameswaran, R. The efficacy and safety of cinacalcet in primary hyperparathyroidism: A systematic review and meta-analysis of randomized controlled trials and cohort studies. Rev. Endocr. Metab. Disord. 2022, 23, 485–501. [Google Scholar] [CrossRef]
- Cesareo, R.; Di Stasio, E.; Vescini, F.; Campagna, G.; Cianni, R.; Pasqualini, V.; Romitelli, F.; Grimaldi, F.; Manfrini, S.; Palermo, A. Effects of alendronate and vitamin D in patients with normocalcemic primary hyperparathyroidism. Osteoporos. Int. 2015, 26, 1295–1302. [Google Scholar] [CrossRef] [PubMed]
- Konrade, I.; Dambrova, G.; Dambrova, M. Denosumab-induced hypophosphataemia in a case of normocalcaemic primary hyperparathyroidism. Intern. Med. J. 2017, 47, 974–975. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Torres, M.; García-Martín, A. Primary hyperparathyroidism. Med. Clin. 2018, 150, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Anastasilakis, D.A.; Makras, P.; Polyzos, S.A.; Anastasilakis, A.D. Part of the COMBO ENDO TEAM: 2017. Asymptomatic and normocalcemic hyperparathyroidism, the silent attack: A combo-endocrinology overview. Hormones 2019, 18, 65–70. [Google Scholar] [CrossRef]
- Kalla, A.; Krishnamoorthy, P.; Gopalakrishnan, A.; Garg, J.; Patel, N.C.; Figueredo, V.M. Primary hyperparathyroidism predicts hypertension: Results from the National Inpatient Sample. Int. J. Cardiol. 2017, 227, 335–337. [Google Scholar] [CrossRef]
- Schillaci, G.; Pucci, G.; Pirro, M.; Monacelli, M.; Scarponi, A.M.; Manfredelli, M.R.; Rondelli, F.; Avenia, N.; Mannarino, E. Large-artery stiffness: A reversible marker of cardiovascular risk in primary hyperparathyroidism. Atherosclerosis 2011, 218, 96–101. [Google Scholar] [CrossRef]
- Koubaity, O.; Mandry, D.; Nguyen-Thi, P.L.; Bihain, F.; Nomine-Criqui, C.; Demarquet, L.; Croise-Laurent, V.; Brunaud, L. Coronary artery disease is more severe in patients with primary hyperparathyroidism. Surgery 2020, 167, 149–154. [Google Scholar] [CrossRef]
- Corbetta, S.; Mantovani, G.; Spada, A. Metabolic Syndrome in Parathyroid Diseases. Front. Horm. Res. 2018, 49, 67–84. [Google Scholar] [CrossRef]
- Kong, S.K.; Tsai, M.C.; Yeh, C.L.; Tsai, Y.C.; Chien, M.N.; Lee, C.C.; Tsai, W.H. Association between primary hyperparathyroidism and cardiovascular outcomes: A systematic review and meta-analysis. Bone 2024, 185, 117130. [Google Scholar] [CrossRef]
- Frey, S.; Mirallié, É.; Cariou, B.; Blanchard, C. Impact of parathyroidectomy on cardiovascular risk in primary hyperparathyroidism: A narrative review. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 981–996. [Google Scholar] [CrossRef]
- Elbuken, G.; Aydin, C.; Ozturk, B.O.; Aykac, H.; Topcu, B.; Zuhur, S.S. B-mode ultrasound assessment of carotid artery structural features in patients with normocalcaemic hyperparathyroidism. Endokrynol. Pol. 2023, 74, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Beysel, S.; Caliskan, M.; Kizilgul, M.; Apaydin, M.; Kan, S.; Ozbek, M.; Cakal, E. Parathyroidectomy improves cardiovascular risk factors in normocalcemic and hypercalcemic primary hyperparathyroidism. BMC Cardiovasc. Disord. 2019, 19, 106. [Google Scholar] [CrossRef] [PubMed]
- Yener Ozturk, F.; Erol, S.; Canat, M.M.; Karatas, S.; Kuzu, I.; Dogan Cakir, S.; Altuntas, Y. Patients with normocalcemic primary hyperparathyroidism may have similar metabolic profile as hypercalcemic patients. Endocr. J. 2016, 63, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Tournis, S.; Makris, K.; Cavalier, E.; Trovas, G. Cardiovascular Risk in Patients with Primary Hyperparathyroidism. Curr. Pharm. Des. 2020, 26, 5628–5636. [Google Scholar] [CrossRef]
- Pepe, J.; Cipriani, C.; Sonato, C.; Raimo, O.; Biamonte, F.; Minisola, S. Cardiovascular manifestations of primary hyperparathyroidism: A narrative review. Eur. J. Endocrinol. 2017, 177, R297–R308. [Google Scholar] [CrossRef]
First Author, Year of Publication, Reference Number Study Number | Study Design, Studied Population | Criteria Used for NPHPT Selection | Category of Findings Regarding Bone Metabolism (Outcomes) |
---|---|---|---|
Halimi 2024 [35] 1. | Retrospective study N = 91 with PHPT and kidney stones and hypercalciuria N1 = 56 with hPHPT N2 = 35 with nPHPT | PHPT: Serum iCa > 1.31 mmol/L and PTH > 30 pg/mL after Ca load test nPHPT: iCa < 1.31 mmol/L pre-test | BTM |
Yankova 2024 [36] 2. | Retrospective study N = 316 consecutive patients with PHPT N1 = 266 with hPHPT F:M = 234:32 (Mean age = 59.0 ± 11.8 y) N2 = 48 with nPHPT F:M = 42:6 (Mean age = 56.9 ± 13.4 y) | High PTH and high-normal Ca, at 2 measurements Normal 24 h urinary calcium 25OHD > 20 ng/mL (50 nmol/L) eGFR > 60 mL/min/1.73 m2 Without other secondary causes (malabsorption, drugs) | Osteoporosis prevalence Fracture prevalence BMD BTM |
Armstrong 2023 [37] 3. | Retrospective study N = 421 with PHPT referred for parathyroidectomy F:M = 307:114 (Mean age = 65.6 ± 12.2 y) N1 = 340 with hPHPT F:M = 244:96 (Mean age = 65.6 ± 12.4 y) N2 = 39 with nPHPT F:M = 32:7 (Mean age = 67.3 ± 9.0 y) N3 = 42 with nhPHPT F:M = 31:11 (Mean age = 64.0 ± 13.3 y) | High PTH and normal serum calcium at ≥2 measurements | Osteoporosis prevalence Fracture prevalence |
Chertok Shacham 2023 [38] 4. | Prospective, observational study N = 105 referred for PHPT, osteoporosis, or elevated PTH level with normal serum calcium F:M = 98:7 (Mean age = 69 ± 7.9 y) N1 = 30 with hPHPT F:M = 27:3 (Mean age = 69.3 ± 9.1 y) N2 = 30 with nPHPT F:M = 28:2 (Mean age = 69.7 ± 7.2 y) N3 = 45 with osteoporosis without PHPT F:M = 43:2 (Mean age = 68.4 ± 7.7 y) | High PTH and normal serum-corrected calcium Without secondary causes and 25OHD > 60 nmol/L (24 ng/mL) | Fracture prevalence BMD and T-scores BTM |
Koumakis 2023 [39] 5. | Longitudinal retrospective cohort study N = 109 with PHPT and osteoporosis who underwent parathyroidectomy F:M = 97:12 [Median age = 68 (26–92) y] N1 = 32 with hPHPT F:M = 29:3 [Median age = 69 (26–84) y] N2 = 39 with nPHPT with elevated ionized calcium F:M = 34:5 [Median age = 69 (43–92) y] N3 = 38 with nPHPT with normal ionized calcium F:M = 34:4 [Median age = 65 (51–85) y] | High PTH and normal total calcium Calcium load test: increased ionized calcium with minimal reduction in PTH 25OHD > 30 ng/mL (75 nmol/L) eGFR > 60 mL/min no malabsorption | Osteoporosis prevalence Fracture prevalence BTM |
Tabacco 2023 [40] 6. | Case–control study N = 170 with PHPT and controls F:M = 159:11 (Mean age = 64.9 ± 9.3 y) N1 = 50 with hPHPT F:M = 47:3 (Mean age = 65.2 ± 11.6 y) N2 = 40 with nPHPT F:M = 37:3 (Mean age = 63.4 ± 9.0 y) N3 = 80 age-matched controls F:M = 75:5 (Mean age = 65.4 ± 7.8 y) | High PTH and normal albumin-corrected and ionized serum calcium at ≥2 determinations Without secondary causes 25OHD > 30 ng/mL (75 nmol/L) | Fracture prevalence BMD TBS and bone strain index |
Choi 2022 [41] 7. | Cross-sectional study N = 280 (with indication for parathyroidectomy) N1 = 158 with hPHPT F:M = 120:38 (Mean age = 59.3 ± 14.0 y) N2 = 122 with nPHPT F:M = 105:17 (Mean age = 54.3 ± 13.1 y) N3 = 95 with elevated ionized Ca in nPHPT F:M = 82:13 (Mean age = 54.2 ± 12.1 y) N4 = 27 with normal ionized Ca in nPHPT F:M = 23:4 (Mean age = 54.6 ± 16.3 y) | High PTH and normal corrected serum calcium with normal or high ionized calcium | Osteoporosis prevalence Fracture prevalence T-scores |
Osorio-Silla 2022 [42] 8. | Prospective study N = 87 with PHPT referred for parathyroidectomy (at the indication of an endocrinologist) (30 patients were lost to follow-up) F:M = 68:19 N1 = 71 with hPHPT (28 patients were lost to follow-up) F:M = 55:16 (Mean age = 61.4 ± 11 y) N2 = 16 with nPHPT (2 lost to follow-up) F:M = 13:3 (Mean age = 61.6 ± 11 y) | High PTH and normal albumin-adjusted calcium and ionized calcium at ≥3 measurements No secondary causes 25OH > 30 ng/mL (75 nmol/L)) | BMD and T-scores BTM BMD and BTM following parathyroidectomy |
Gomez-Ramírez 2020 [43] 9. | Comparative prospective study N = 104 with PHPT who underwent parathyroidectomy N1 = 88 with hPHPT F:M = 68:20 (Mean age = 60.6 ± 11 y) N2 = 16 with nPHPT F:M = 13:3 (Mean age = 60.9 ± 10.4 y) | High PTH and normal ionized and albumin-corrected serum calcium No secondary causes Normal renal function 25OHD > 30 ng/mL (75 nmol/L) | BMD BTM BMD and BTM following parathyroidectomy |
Kontogeorgos 2020 [44] 10. | Prospective cohort study N = 750 men (population sample) Age = 50 y N1 = 3 with hPHPT N2 = 21 with nPHPT N3 = 3 with secondary HPT N4 = 680 with normal PTH N5 = 312 with normal calcium, PTH and vitamin D | High PTH and normal albumin-corrected calcium 25OHD ≥ 50 nmol/L (20 ng/mL) | Fracture prevalence—in men |
Liu 2020 [45] 11. | Observational study N = 43 women with PHPT N1 = 29 with hPHPT (Mean age = 6.9 ± 7.3 y) N2 = 7 with nPHPT (Mean age = 66.7 ± 6.2 y) N3 = 7 controls (Mean age = 61.6 ± 5.6 y) | High PTH and normal ionized and albumin-corrected serum calcium No secondary causes Normal renal function 25OHD ≥ 20 ng/mL (50 nmol/L) | Osteoporosis prevalence Fracture prevalence |
Palermo 2020 [46] 12. | Multicenter cross-sectional N = 127 with PHPT and controls F:M = 115:12 (Mean age = 64.1 ± 9.6 y) N1 = 41 with hPHPT F:M = 38:3 (Mean age = 63.9 ± 12 y) N2 = 47 with nPHPT F:M = 43:4 (Mean age = 63.8 ± 9.3 y) N3 = 39 controls F:M = 35:4 (Mean age = 64.7 ± 7 y) | High PTH and normal albumin-corrected and ionized calcium at ≥2 measurements No secondary causes 25OHD > 30 ng/mL (75 nmol/L) | Fracture prevalence BMD and T-scores BTM |
Schini 2020 [47] 13. | Retrospective study N = 6280 referred for BMD measurements, out of which: N1 = 17 with hPHPT F:M = 15:2 (Mean age = 67 ± 6 y) N2 = 11 with nPHPT F:M = 10:1 (Mean age = 68 ± 11 y) N3 = 300 controls F:M = 214:86 (Mean age = 70 ± 20 y) | High PTH and normal albumin-corrected Normal kidney function 25OHD ≥ 50 nmol/L (20 ng/mL) | Z-scores |
Voss 2020 [48] 14. | Case–control study N = 40 postmenopausal women with PHPT and controls N1 = 7 with hPHPT (Mean age = 57.71 ± 13.24 y) N2 = 13 with nPHPT (Mean age = 65.77 ± 12.74 y) N3 = 7 controls for N1 (Mean age = 57.00 ± 13.10 y) N4 = 13 controls for N2 (Mean age = 65.46 ± 12.83 y) | High PTH and normal albumin-corrected calcium No secondary causes 25OHD > 30 ng/mL (75 nmol/L) | Osteoporosis prevalence |
Reference Number | Studied Population | Serum Total Calcium Mean ± SD or Median (IQR) | Ionized Serum Calcium Mean ± SD | Serum Phosphorus Mean ± SD or Median (IQR) | PTH Mean ± SD or Median (IQR) | 24 h Urinary Calcium Mean ± SD or Median (IQR) |
---|---|---|---|---|---|---|
[35] | N = 91 with PHPT and kidney stones and hypercalciuria N1 = 56 with hPHPT N2 = 35 with nPHPT | Total Ca (mmol/L): N: 2.58 (2.47–2.67) N1: 2.63 (2.57–2.7) N2: 2.46 (2.37–2.51) p < 0.0001 | N: 1.33 (1.29–1.41) mmol/L N1: 1.38 (1.35–1.43) mmol/L N2: 1.28 (1.25–1.29) mmol/L p < 0.0001 | N: 0.78 (0.67–0.85) mmol/L N1: 0.77 (0.65–0.85) mmol/L N2: 0.8 (0.69–0.85) mmol/L) p = 0.53 | N: 80 (58–109) ng/mL N1: 82 (61–113) ng/mL N2: 66 (55–94) ng/mL p = 0.13 | N: 7.2 (4.8–11.6) mmol/24 h (288.5 (192.3–464.9) mg/24 h) N1: 7.8 (4.7–12.7) mmol/24 h (312.6 (188.3–508.9 mg/24 h) N2: 7.0 (4.9–11.2) mmol/24 h (280.5–448.8 mg/24 h) p = 0.75 |
[36] | N = 316 with PHPT N1 = 266 with hPHPT N2 = 48 with nPHPT | Albumin-adjusted Ca (mmol/L): N1: 2.85 (2.72–2.98) N2: 2.57 (2.51–2.60) p < 0.001 | NA | N1: 0.89 (0.81–1.01) mmol/L N2: 0.98 ± 0.2 mmol/L p = 0.006 | N1: 12.4 (8.9–20.6) pmol/L (116.93 (83.9–194.25) pg/mL) N2: 9.6 (8.3–12.8) pmol/L (90.5 (78.26–120.7) pg/mL) p = 0.001 | N1: 5.8 (3.6–8.3) mmol/24 h (232.3 (144.2–332.6 mg/24 h) N2: 5.2 ± 2.4 mmol/24 h (208.4 ± 96.18 mg/24 h p < 0.001 |
[37] | N = 421 with PHPT referred for parathyroidectomy N1 = 340 with hPHPT N2 = 39 with nPHPT N3 = 42 with nhPHPT | Ca <11.2 mg/dL (2.79 mmol/L) N: 80.5% N1: 78.5% N2: 100% N3: 78.6% p = 0.99 | NA | NA | NA | ≤400 mg/24 h N: 82.4% N1: 83.1% N2: 89.5% N3: 70.3% p = 0.8 |
[38] | N = 105 referred for primary hyperparathyroidism, osteoporosis, or elevated PTH level with normal serum calcium N1 = 30 with hPHPT N2 = 30 with nPHPT N3 = 45 with osteoporosis without PHPT | Albumin-adjusted Ca: N: 9.9 ± 0.8 mg/dL (2.47 ± 0.2 mmol/L) N1: 10.9 ± 0.5 mg/dL (2.72 ± 0.12 mmol/L) N2: 9.5 ± 0.4mg/dL (2.37 ± 0.1 mmol/L) N3: 9.4 ± 0.3 mg/dL (2.34 ± 0.07 mmol/L) p = 0.00 | NA | N: 3.5 ± 0.6 mg/dL (1.13 ± 0.19 mmol/L) N1: 2.9 ± 0.6 mg/dL (0.94 ± 0.19 mmol/L) N2: 3.4 ± 0.4 mg/dL (1.1 ± 0.13 mmol/L) N3: 3.8 ± 0.5 mg/dL (1.23 ± 0.16 mmol/L) p = 0.00 | N: 107 ± 89 pg/mL N1: 164 ± 131 pg/mL N2: 129 ± 55 pg/mL N3: 55 ± 16 pg/mL p = 0.000 | Urinary Ca/Cr ratio N: 0.13 ± 0.18 N1: 0.25 ± 0.19 N2: 0.14 ± 0.1 N3: 0.15 ± 0.08 p = 0.01 |
[39] | N = 109 with PHPT and osteoporosis who underwent parathyroidectomy N1 = 32 with hPHPT N2 = 39 with nPHPT with elevated ionized calcium N3 = 38 with nPHPT with normal ionized calcium | Total Ca (mmol/L) N: 2.51 (2.47–2.55) N1: 2.70 (2.67–2.75) N2: 2.51 (2.48–2.54) N3: 2.39 (2.37–2.42) p < 0.001 | N: 1.34 (1.31–1.36) mmol/L N1: 1.43 (1.40–1.46) mmol/L N2: 1.34 (1.33–1.35) mmol/L N3: 1.28 (1.27–1.29) mmol/L p < 0.001 | N: 0.93 (0.88–0.97) mmol/L N1: 0.88 (0.81–0.97) mmol/L N2: 0.89 (0.86–1.00) mmol/L N3: 0.97 (0.92–1.04) mmol/L p = 0.009 | N: 8.15 (35.65–41.25) pg/mL N1: 44.15 (36.25–48.60) pg/mL N2: 39.2 (35.9–41.5) pg/mL N3: 34.9 (33.5–37.8) pg/mL p = 0.07 normal = (9–29) pg/mL | N: 4.15 (3.6–4.8) mmol/24 h (166.32 (144.2–192.3 mg/24 h) N1: 5.75 (4.60–6.54) mmol/24 h (230.4 (184.3–262.11) mg/24 h) N2: 4.2 (3.40–4.95) mmol/24 h (168.3 (136.2–198.3) mg/24 h) N3: 3.6 (2.5–3.9) mmol/24 h (144.2 (100.2–156.3) mg/24 h) p < 0.001 |
[40] | N = 170 with PHPT and controls N1 = 50 with hPHPT N2 = 40 with nPHPT N3 = 80 age-matched controls | Albumin-adjusted Ca: N: 9. 8 ± 0.7 N1: 10.8 ± 0.4 mg/dL (2.69 ± 0.1 mmol/L) N2: 9.4 ± 0.5 mg/dL (2.35 ± 0.12 mmol/L) N3: 9.4 ± 0.4 mg/dL (2.35 ± 0.1 mmol/L) p < 0.001 | N: 1.3 (1.2–1.3) mmol/L N1: 1.3 (1.3–1.4) mmol/L N2: 1.2 (1.2–1.2) mmol/L N3: 1.2 (1.2–1.3) mmol/L p < 0.001 | N: 3.2 ± 0.6 mg/dL (1.03 ± 0.19 mmol/L) N1: 2.8 ± 0.5 mg/dL (0.9 ± 0.16 mmol/L) N2: 3.1 ± 0.5 mg/dL (1 ± 0.16 mmol/L) N3: 3.6 ± 0.5 mg/dL (1.16 ± 0.16 mmol/L) p < 0.001 | N: 81.6 (56.0–120.0) pg/mL N1: 116.9(104–153.2) pg/mL N2: 120.0 (109.3–141.0) pg/mL N3: 55.0 (44.5–64.0) pg/mL p < 0.001 | NA |
[41] | N = 280 (With indication for parathyroidectomy) N1 = 158 with hPHPT Mean age = 59.3 ± 14.0 y N2 = 122 with nPHPT N3 = 95 with elevated ionized Ca nPHPT N4 = 27 with normal ionized Ca nPHPT | Albumin-adjusted Ca: N1: 11.4 ± 1.1 mg/dL (2.84 ± 0.27 mmol/L) N2: 9.9 ± 0.5 mg/dL (2.47 ± 0.12 mmol/L) p = 0.000 N3: 10.1 ± 0.3 mg/dL (2.52 ± 0.07 mmol/L) N4: 9.5 ± 0.6 mg/dL (2.37 ± 0.15 mmol/L) p = 0.000 N1 vs. N4: p < 0.001 | N1: 5.8 ± 0.4 mg/dL (1.45 ± 0.1 mmol/L) N2: 5.4 ± 0.3 mg/dL (1.35 ± 0.07 mmol/L) p = 0.000 N3: 5.5 ± 0.2 mg/dL (1.37 ± 0.05 mmol/L) N4: 4.9 ± 0.3 mg/dL (1.22 ± 0.07 mmol/L) p = 0.000 N1 vs. N4: p < 0.001 | N1: 2.6 ± 0.5 mg/dL (0.84 ± 0.16 mmol/L) N2: 2.9 ± 0.5 mg/dL(0.93 ± 0.16 mmol/L) p = 0.000 N3: 2.8 ± 0.5 mg/dL (0.9 ± 0.16 mmol/L) N4: 3.2 ± 0.5 mg/dL (1.03 ± 0.16 mmol/L) p = 0.000 N1 vs. N4: p < 0.001 | N1: 212.7 ± 219.3 pg/mL N2: 115.9 ± 45.7 pg/mL p = 0.000 N3: 120.6 ± 49.2 pg/mL N4: 99.1 ± 24.5 pg/mL p = 0.002 N1 vs. N4: p = 0.008 | N1: 324.3 ± 178.2 mg/24 h N2: 285.8 ± 159.9 mg/24 h p = 0.105 N4: 315.7 ± 169.3 mg/24 h N1 vs. N4: p = 0.848 |
[42] | N = 87 with PHPT referred for parathyroidectomy (at the indication of an endocrinologist) (30 lost to follow-up) N1 = 71 with hPHPT (28 lost to follow-up) N2 = 16 with nPHPT (2 lost to follow-up) | Albumin-adjusted Ca: N1: 10.8 ± 0.7 mg/dL (2.69 ± 0.17 mmol/L) N2: 9.8 ± 0.3 mg/dL (2.45 ± 0.07 mmol/L) p = 0.001 | N1: 5.6 ± 0.4 mg/dL (1.4 ± 0.1 mmol/L) N2: 4.9 ± 0.5 mg/dL (1.22 ± 0.12 mmol/L) p = 0.001 | NA | N1: 209.7 ± 127.1 N2: 153.3 ± 28.9 p = 0.07 | N1: 286.6 ± 104.6 mg/24 h N2: 314 ± 116.6 mg/24 h p = 0.55 |
[43] | N = 104 with PHPT who underwent parathyroidectomy N1 = 88 with hPHPT N2 = 16 with nPHPT | Albumin-adjusted Ca (mmol/L): N1: 2.7 ± 0.14 N2: 2.41 ± 0.06 p < 0.001 | N1: 1.39 ± 0.09 mmol/L N2: 1.19 ± 0.02 mmol/L p < 0.001 | NA | N1: 20.8 ± 11.2 pmol/L (196.14 ± 105.2 pg/mL) N2: 15.9 ± 4.1 pmol/L (149.9 ± 38.6 pg/mL) p = 0.06 | N1: 294.4 ± 110 mg/24 h N2: 313.7 ± 122.4 mg/24 h p = 0.53 |
[44] | N = 750 men (population sample) N1 = 3 with hPHPT N2 = 21 with nPHPT N3 = 3 with secondary HPT N4 = 680 with normal PTH N5 = 312 with normal calcium, PTH and vitamin D | Albumin-adjusted Ca (mmol/L): N2: 2.26 ± 0.07 N5: 2.30 ± 0.07 p = 0.025 | NA | NA | N2: 8.04 ± 0.88 pmol/L (75.8 ± 8.3 pg/mL) N5: 4.41 ± 0.97 pmol/L (41.58 ± 9.14 pg/mL) p < 0.001 | NA |
[45] | N = 43 women with PHPT N1 = 29 with hPHPT N2 = 7 with nPHPT N3 = 7 controls | Albumin-adjusted Ca: N1: 10.5 ± 0.5 mg/dL (2.62 ± 0.12) mmol/L) N2: 9.4 ± 0.9 mg/dL (2.35 ± 0.22 mmol/L) N3: 9.5 ± 0.9 mg/dL (2.37 ± 0.22 mmol/L) p < 0.001 | NA | N1: 3.2 ± 0.5 mg/dL (1.03 ± 0.16 mmol/L) N2:3.3 ± 1.1 mg/dL (1.06 ± 0.35 mmol/L) N3:3.7 ± 1.1 mg/dL (1.19 ± 0.35 mmol/L) p = 0.11 | N1: 93 ± 6 pg/mL N2: 102 ± 121 pg/mL N3: 36 ± 11 pg/mL p = 0.002 | NA |
[46] | N = 127 with PHPT and controls N1 = 41 with hPHPT N2 = 47 with nPHPT N3 = 39 controls | Albumin-adjusted Ca: N1: 10.8 ± 0.4 mg/dL (2.69 ± 0.1 mmol/L) N2: 9.4 ± 0.4 mg/dL (2.35 ± 0.1 mmol/L) N3: 9.5 ± 0.4 mg/dL (2.37 ± 0.1 mmol/L) N1 vs. N3: p < 0.001 N1 vs. N2: p < 0.001 | N1: 1.35 ± 0.05 mmol/L N2: 1.19 ± 0.05 mmol/L N3: 1.22 ± 0.05 mmol/L N1 vs. N3: p < 0.001 N2 vs. N3: p < 0.05 N1 vs. N2: p < 0.001 | N1: 2.8 ± 0.5 mg/dL (0.9 ± 0.16 mmol/L) N2: 3.2 ± 0.5 mg/dL (1.03 ± 0.16 mmol/L) N3: 3.8 ± 0.4 mg/dL (1.22 ± 0.13 mmol/L) N1 vs. N3: p < 0.001 N2 vs. N1: p < 0.001 N2 vs. N3: p < 0.001 | N1: 139.1 ± 49.7 pg/mL N2: 126.8 ± 29.5 pg/mL N3: 52.4 ± 15.4 pg/mL N1 vs. N3: p < 0.001 N2 vs. N3: p < 0.001 | N1: 293.5 ± 146.3 mg/24 h N2: 196.1 ± 49.2 mg/24 h N3: 192.3 ± 76 mg/24 h N1 vs. N3: p < 0.001 N1 vs. N2: p < 0.001 |
[47] | N = 6280 referred for BMD measurements N1 = 17 with hPHPT N2 = 11 with nPHPT N3 = 300 controls F:M = 214:86 | Albumin-adjusted Ca (mmol/L): N1: 2.75 ± 0.11 N2: 2.55 ± 0.05 N3: 2.37 ± 0.08 p < 0.001 | NA | N1: 0.89 ± 0.16 mmol/L N2: 1.04 ± 0.14 mmol/L N3: 1.12 ± 0.18 mmol/L p < 0.001 | N1: 102.4 (89.0, 112.4) pg/mL N2: 106.8 (86.9, 123.9) pg/mL N3: 42.5 (40.8, 44.2) pg/mL p < 0.001 | NA |
[48] | N = 40 postmenopausal women with PHPT and controls N1 = 7 with hPHPT N2 = 13 with nPHPT N3 = 7 controls for N1 N4 = 13 controls for N2 | Albumin-adjusted Ca: N1: 10.91 ± 0.38 mg/dL (2.72 ± 0.09 mmol/L) N3: 9.03 ± 0.32 mg/dL (2.25 ± 0.08 mmol/L) p < 0.001 N2: 9.42 ± 0.48 mg/dL (2.35 ± 0.12 mmol/L) N4: 9.13 ± 0.48 mg/dL (2.28 ± 0.12 mmol/L) p = 0.181 N1 vs. N2: p = 0.001 | NA | N1: 3.31 ± 0.93 mg/dL (1.06 ± 0.3 1.11 ± 0.1 mmol/L) N3: 3.46 ± 0.83 mg/dL (1.11 ± 0.26 mmol/L) p = 0.782 N2: 3.55 ± 0.41 mg/dL (1.14 ± 0.13 mmol/L) N4: 3.52 ± 0.42 mg/dL (1.13 ± 0.13 mmol/L) p = 0.874 N1 vs. N2: p = 0.267 | N1: 127.87 ± 64.88 pg/mL N3: 55.81 ± 12.53 pg/mL p = 0.039 N2: 84.75 ± 13.37 pg/mL N4: 45.48 ± 11.12 pg/mL p = 0.001 N1 vs. N2: p = 0.190 | N1: 248.14 ± 179.32 mg/24 h N3: 177.31 ± 71.03 mg/24 h p = 0.499 N2: 136.31 ± 90.66 mg/24 h N4: 110.13 ± 61.65 mg/24 h p = 0.399 N1 vs. N2: p = 0.052 |
Reference Number | Studied Population | 25OHD Threshold for Sufficiency | Vitamin D Status (25-Hydroxyvitamin D Assays) | |
---|---|---|---|---|
Mean ± SD or Median (IQR) | p-Value Between the Analyzed Subgroups | |||
[35] | N = 91 with PHPT and kidney stones and hypercalciuria N1 = 56 with hPHPT N2 = 35 with nPHPT | NA | N: 24 (17–30) ng/mL N1: 21 (12–25) ng/mL N2: 26 (23–37) ng/mL | p = 0.04 |
[36] | N = 316 with PHPT N1 = 266 with hPHPT N2 = 48 with nPHPT | >20 ng/mL | N1: 20.1 (13.1–26.6) ng/mL N2: 25.9 (22.3–31.3) ng/mL | p < 0.001 |
[37] | N = 105 patients with PHPT (surgery candidates) N1 = 30 with hPHPT N2 = 30 with nPHPT N3 = 45 with osteoporosis without PHPT | >60 nmol/L (24 ng/mL) | N: 87 ± 29 nmol/L (24.86 ± 11.62 ng/mL) N1: 89 ± 37 nmol/L (35.66 ± 14.82 ng/mL) N2: 85 ± 19 nmol/L (34 ± 7.61 ng/mL) N3: 86 ± 28 nmol/L (34.46 ± 11.22 ng/mL) | p = 0.88 |
[39] | N = 109 with PHPT and osteoporosis who underwent parathyroidectomy N1 = 32 with hPHPT N2 = 39 with nPHPT with elevated ionized calcium N3 = 38 with nPHPT with normal ionized calcium | >30 ng/mL | N: 37.2 (34–40) ng/mL N1: 31 (27–34.8) ng/mL N2: 35.5 (32.25–41.0) ng/mL N3: 40 (39.5–43.2) ng/mL | p < 0.001 |
[40] | N = 170 with PHPT and controls N1 = 50 with hPHPT N2 = 40 with nPHPT N3 = 80 age-matched controls | >30 ng/mL | N: 33.0 (27.0–38.0) ng/mL N1: 32.7 (27.0–36.4) ng/mL N2: 35.3 (32.0–37.9) ng/mL (Oral cholecalciferol supplementation in N2) N3: 31.0 (23.5–40.0) ng/mL | p = 0.013 |
[41] | N = 280 with PHPT (surgery candidates) N1 = 158 with hPHPT N2 = 122 with nPHPT N3 = 95 with elevated ionized Ca nPHPT N4 = 27 with normal ionized Ca nPHPT | NA | N1: 19.3 ± 9.4 ng/mL N2: 21.4 ± 9.2 ng/mL N4: 20.1 ± 8.6 ng/mL | N1 vs. N2: p = 0.065 N1 vs. N4: p = 0.682 |
[42] | N = 87 with PHPT (30 lost to follow-up) N1 = 71 with hPHPT (28 lost to follow-up) N2 = 16 with nPHPT (2 lost to follow-up) | >30 ng/mL | N1: 21.2 ± 10.2 nmol/L (8.49 ± 4.08 ng/mL) N2: 32 ± 5.8 nmol/L (12.82 ± 2.32 ng/mL) | p = 0.001 |
[43] | N = 104 with PHPT who underwent parathyroidectomy N1 = 88 with hPHPT N2 = 16 with nPHPT | >30 ng/mL | N1: 21.5 ± 11.1 nmol/L (8.61 ± 4.44 ng/mL) N2: 33.1 ± 5.7 nmol/L (13.26 ± 2.28 ng/mL) | p < 0.001 |
[44] | N = 750 men with PHPT N1 = 3 with hPHPT N2 = 21 with nPHPT N3 = 3 with secondary HPT N4 = 680 with normal PTH N5 = 312 with normal calcium, PTH and vitamin D | ≥50 nmol/L (20 ng/mL) | N2: 63.1 ± 10.4 nmol/L (25.28 ± 4.166 ng/mL) N5: 64.4 ± 14.2 nmol/L (25.8 ± 5.68 ng/mL) | p = 0.596 |
[45] | N = 43 women with PHPT N1 = 29 with hPHPT N2 = 7 with nPHPT N3 = 7 controls | ≥20 ng/mL | N1: 37.1 ± 15.4 ng/mL N2: 38.1 ± 30.7 ng/mL N3: 36.6 ± 30.7 ng/mL | p = 0.82 |
[46] | N = 127 with PHPT N1 = 41 with hPHPT N2 = 47 with nPHPT N3 = 39 controls | >30 ng/mL | N1: 31.1 ± 7.8 ng/mL N2: 36.7 ± 6.6 ng/mL N3: 28.6 ± 12.8 ng/mL | N1 vs. N3: p < 0.05 N2 vs. N3: p < 0.001 |
[47] | N = 6280, including: N1 = 17 with hPHPT N2 = 11 with nPHPT N3 = 300 controls | ≥50 nmol/L (20 ng/mL) | N1: 71.4 (30.5) nmol/L (28.6 (12.22) ng/mL) N2: 62.8 (23.5) nmol/L (25.16 (9.4) ng/mL) N3: 78.9 (32.9) nmol/L (31.6 (13.18) ng/mL) | p = 0.83 |
[48] | N = 40 postmenopausal women with PHPT N1 = 7 with hPHPT N2 = 13 with nPHPT N3 = 7 controls for N1 N4 = 13 controls for N2 | >30 ng/mL | N1: 35.07 ± 5.57 ng/mL N3: 35.50 ± 10.58 ng/mL N2: 39.03 ± 7.87 ng/mL N4: 36.92 ± 12.98 ng/mL | N1 vs. N3: p = 0.942 N2 vs. N4: p = 0.5 |
Reference Number | Studied Population | Osteoporosis Prevalence | Osteopenia Prevalence | Osteoporosis Criteria |
---|---|---|---|---|
[36] | N = 316 with PHPT N1 = 266 with hPHPT N2 = 48 with nPHPT | N1: 44.7% N2: 41.7% p = 0.575 | NA | |
[37] | N = 421 with PHPT referred for parathyroidectomy N1 = 340 with hPHPT N2 = 39 with nPHPT N3 = 42 with nhPHPT | N1: 37.7% N2: 58.8% N3: 38.2% | N1:51.4% N2:32.4% N3:47.1% | DXA T-score |
[39] | N = 109 with PHPT and osteoporosis who underwent parathyroidectomy N1 = 32 with hPHPT N2 = 39 with nPHPT with elevated ionized calcium N3 = 38 with nPHPT with normal ionized calcium | Osteoporosis was an inclusion criterion (defined by osteoporotic fracture and/or T-score ≤ −2.5) Criteria based on T-score ≤ −2.5: N1: 69% N2: 77% N3: 97% p = 0.03 | Osteoporotic fracture and/or a T-score below −2.5SD | |
[41] | N = 280 (with indication for parathyroidectomy) N1 = 158 with hPHPT N2 = 122 with nPHPT N3 = 95 with elevated ionized Ca nPHPT N4 = 27 with normal ionized Ca nPHPT | N1: 50% N2: 42.4% N3: 38.8% N4: 57.9% N1 vs. N2: p = 0.008 N3 vs. N4: p = 0.074 N1 vs. N4: p = 0.012 | N1: 38.6% N2: 30.3% N3: 35% N4: 10.5% | DXA-BMD |
[45] | N = 43 women with PHPT N1 = 29 with hPHPT N2 = 7 with nPHPT N3 = 7 controls | N1: 31% N2: 100% p = 0.008 | NA | |
[48] | N = 40 postmenopausal women with PHPT and controls N1 = 7 with hPHPT N2 = 13 with nPHPT N3 = 7 controls for N1 N4 = 13 controls for N2 | N1: 57.1% N2: 53.8% N3: 0% N4: 23.1% N2 vs. N4: p = 0.072 | N1: 28.6% N2: 38.5% N3: 42.9% N4: 69.2% | DXA-BMD |
Reference Number | Studied Population | Lumbar BMD and T-Score (or Z-Score) | Femoral Neck/Hip BMD and T-Score (or Z-Score) | 1/3 Radius BMD and T-Score |
---|---|---|---|---|
[36] | N1 = 266 with hPHPT F:M = 234:32 Mean age = 59.0 ± 11.8 y N2 = 48 with nPHPT F:M = 42:6 Mean age = 56.9 ± 13.4 y | BMD (g/cm2) N1: 0.91 (0.80–1.00) N2: 0.92 (0.82–1.06) p = 0.690 | Femoral neck BMD (g/cm2) N1: 0.76 (0.65–0.86) N2: 0.78 (0.68–0.86) p = 0.530 Total hip BMD (g/cm2) N1: 0.77 (0.71–0.91) N2: 0.82 (0.75–0.97) p = 0.533 | BMD (g/cm2) N1: 0.51 (0.44–0.58) N2: 0.54 (0.48–0.58) p = 0.957 |
[38] | N1 = 30 with hPHPT F:M = 27:3 Mean age = 69.3 ± 9.1 y N2 = 30 with nPHPT F:M = 28:2 Mean age = 69.7 ± 7.2 y N3 = 45 with osteoporosis without PHPT F:M = 43:2 Mean age = 68.4 ± 7.7 y | BMD (g/cm2) N1: −0.99 ± 0.16 N2: −0.97 ± 0.13 N3: −0.99 ± 0.16 p = 0.13 T-score N1: −1.7 ± 1 N2: −1.9 ± 0.9 N3: −2.3 ± 0.9 p = 0.04 | Femoral neck BMD (g/cm2) BMD (g/cm2) N1: 0.795 ± 0.14 N2: 0.777 ± 0.1 N3: 0.75 ± 0.088 p = 0.313 Femoral neck T-score N1: −2.2 ± 0.88 N2: −2.1 ± 0.66 N3: −2.2 ± 0.49 p = 0.6 | NA |
[40] | N1 = 50 with hPHPT F:M = 47:3 Mean age = 65.2 ± 11.6 y N2 = 40 with nPHPT F:M = 37:3 Mean age = 63.4 ± 9.0 y N3 = 80 age-matched controls F:M = 75:5 Mean age = 65.4 ± 7.8 y | BMD (g/cm2) N1: 0.82 ± 0.19 N2: 0.88 ± 0.18 N3: 0.87 ± 0.14 p = 0.327 | Femoral neck BMD (g/cm2) N1: 0.63 ± 0.11 N2: 0.67 ± 0.11 N3: 0.67 ± 0.08 p = 0.101 Total hip BMD (g/cm2) N1: 0.79 ± 0.14 N2: 0.84 ± 0.12 N3: 0.84 ± 0.10 p = 0.1 | NA |
[41] | N1 = 158 with hPHPT F:M = 120:38 Mean age = 59.3 ± 14.0 y N2 = 122 with nPHPT F:M = 105:17 Mean age = 54.3 ± 13.1 y | T-score N1: −2.4 ± 1.2 N2: −2.0 ± 1.3 p = 0.024 | NA | NA |
[42] | N1 = 71 with hPHPT (28 lost to follow-up) F:M = 55:16 Mean age = 61.4 ± 11 y N2 = 16 with nPHPT (2 lost to follow-up) F:M = 13:3 Mean age = 61.6 ± 11 y | BMD (g/cm2) N1: 0.8 ± 0.1 N2: 0.8 ± 0.2 p = 0.7 T-score N1: −2.1 ± 1.3 N2: −2.3 ± 1.5 p = 0.62 | Femoral neck BMD (g/cm2) N1: 0.7 ± 0.1 N2: 0.6 ± 0.1 p = 0.08 Femoral neck T-score N1: −1.7 ± 0.9 N2: −1.9 ± 1.1 p = 0.36 | BMD (g/cm2) N1: 0.5 ± 0.1 N2: 0.5 ± 0.1 p = 0.7 T-score N1: −2.0 ± 1.3 N2: −2.2 ± 1.2 p = 0.7 |
[43] | N1 = 88 with hPHPT F:M = 68:20 Mean age = 60.6 ± 11 y N2 = 16 with nPHPT F:M = 13:3 Mean age = 60.9 ± 10.4 y | T-score N1: 2.1 ± 1.1 N2: 2.4 ± 0.9 p = 0.4 | Femoral neck T-score N1: 1.8 ± 1.0 N2: 2.0 ± 0.9 p = 0.3 | T-score N1: 2.2 ± 1.2 N2: 2.0 ± 0.9 p = 0.95 |
[46] | N1 = 41 with hPHPT F:M = 38:3 Mean age = 63.9 ± 12 y N2 = 47 with nPHPT F:M = 43:4 Mean age = 63.8 ± 9.3 y N3 = 39 controls F:M = 35:4 Mean age = 64.7 ± 7 y | BMD (g/cm2) N1: 0.880 ± 0.184 N2: 0.893 ± 0.186 N3: 0.904 ± 0.149 p > 0.05 (N2 vs. N1, N2 vs. N3, N3 vs. N1) T-score N1: −1.5 ± 1.6 N2: −1.4 ± 1.7 N3: −1.3 ± 1.3 p > 0.05 (N2 vs. N1, N2 vs. N3, N3 vs. N1) | Femoral neck BMD (g/cm2) N1: 0.633 ± 0.107 N2: 0.659 ± 0.108 N3: 0.671 ± 0.075 p > 0.05 (N2 vs. N1, N2 vs. N3, N3 vs. N1) Femoral neck T-score N1: −2.0 ± 1.0 N2: −1.8 ± 0.9 N3: −1.6 ± 0.7 p > 0.05 (N2 vs. N1, N2 vs. N3, N3 vs. N1) Total hip BMD (g/cm2) N1: 0.795 ± 0.126 N2: 0.819 ± 0.125 N3: 0.872 ± 0.097 p < 0.05 (N1 vs. N3) Total hip T-score N1: −1.2 ± 1 N2: −1.1 ± 0.9 N3: −0.6 ± 0.7 p < 0.05 (N1 vs. N3) | BMD (g/cm2) N1: 0.563 ± 0.078 N2: 0.605 ± 0.08 N3: 0.620 ± 0.065 p < 0.05 (N1 vs. N2, N1 vs. N3) T-score N1: −2.3 ± 1.3 N2: −1.6 ± 1.2 N3: −1.3 ± 0.8 p < 0.05 (N1 vs. N2) p < 0.001 (N1 vs. N3) |
[47] | N1 = 17 with hPHPT F:M = 15:2 Mean age = 67 ± 6 y N2 = 11 with nPHPT F:M = 10:1 Mean age = 68 ± 11 y N3 = 300 controls F:M = 214:86 Mean age = 70 ± 20 y | Z-score N1: −0.2 ± 1.3 N2: 0.2 ± 2.2 N3: −0.1 ± 1.7 p = 0.932 | Femoral neck Z-score N1: −0.4 ± 0.8 N2: −0.1 ± 1.3 N3: −0.4 ± 1.0 p = 0.770 | NA |
Reference Number | Studied Population | TBS | Bone Strain Index: Lumbar Spine | Bone Strain Index: Femoral Neck | Bone Strain Index: Total Hip |
---|---|---|---|---|---|
[46] | N1 = 50 with hPHPT F:M = 47:3 (Mean age = 65.2 ± 11.6 y) N2 = 40 with nPHPT F:M = 37:3 (Mean age = 63.4 ± 9.0 y) N3 = 80 age-matched controls F:M = 75:5 (Mean age = 65.4 ± 7.8 y) | N1: 1.24 ± 0.10 N2: 1.29 ± 0.14 N3: 1.30 ± 0.07 N1 vs. N2: p > 0.05 N1 vs. N3: p = 0.009 N2 vs. N3: p > 0.05 | BMD (g/cm2) N1: 2.28 ± 0.60 N2: 2.11 ± 0.65 N3: 2.01 ± 0.44 p = 0.023 N1 vs. N2: p > 0.05 N1 vs. N3: p = 0.017 N2 vs. N3: p > 0.05 | BMD (g/cm2) N1: 1.72 ± 0.42 N2: 1.52 ± 0.31 N3: 1.47 ± 0.35 p = 0.001 N1 vs. N2: p = 0.031 N1 vs. N3: p = 0.001 N2 vs. N3: p > 0.05 | BMD (g/cm2) N1: 1.52 ± 0.34 N2: 1.36 ± 0.23 N3: 1.34 ± 0.26 p = 0.001 N1 vs. N2: p = 0.030 N1 vs. N3: p = 0.001 N2 vs. N3: p > 0.05 |
Reference Number | Studied Subgroups | History of Osteoporotic Fracture as Defined by the Original Authors |
---|---|---|
[36] | N1 = 266 with hPHPT N2 = 48 with nPHPT | Low energy fractures: N1: 7% vs. N2: 8.3% (p = 0.483) |
[37] | N1 = 340 with hPHPT N2 = 39 with nPHPT N3 = 42 with nhPHPT | Previous fractures: N1: 9.8% vs. N2: 12.8% vs. N3: 24.4% (p = 0.02) |
[38] | N1 = 30 with hPHPT N2 = 30 with nPHPT N3 = 45 with osteoporosis without PHPT | Previous fractures: N1: 6.7% vs. N2: 26.7% vs. N3: 40% (p = 0.06) |
[39] | N1 = 32 with hPHPT N2 = 39 with nPHPT with elevated ionized calcium N3 = 38 with nPHPT with normal ionized calcium | Fracture in the past 5 y: N1:34% vs. N2:41% vs. N3: 42% (p = 0.3) |
[40] | N1 = 50 with hPHPT N2 = 40 with nPHPT N3 = 80 age-matched controls | Vertebral fractures: N1: 36.7% vs. N2: 20% vs. N3: 12.5% (N1 vs. N2: p = 0.005; N1 vs. N3: p < 0.05) Moderate–severe vertebral fractures: N1: 20.4% vs. N2: 5.0% vs. N3: 5.1% (N1 vs. N2: p < 0.05; N1 vs. N3: p < 0.05) |
[41] | N1 = 158 with hPHPT N2 = 122 with nPHPT N3 = 95 with elevated ionized Ca nPHPT N4 = 27 with normal ionized Ca nPHPT | Prevalent fractures: N1: 8.2% vs. N2: 7.4% vs. N3: 7.4% vs. N4: 7.4% (N1 vs. N2: p = 0.793; N3 vs. N4: p = 0.995; N1 vs. N4: p = 0.885) |
[44] | N1 = 3 with hPHPT N2 = 21 with nPHPT N3 = 3 with secondary HPT N4 = 680 with normal PTH N5 = 312 with normal calcium, PTH and vitamin D | After 21 years (any fracture): N2: 5% vs. N5: 6% (p > 0.5) |
[45] | N1 = 29 with hPHPT N2 = 7 with nPHPT | Fragility fractures: N1: 13.8% vs. N2: 42.8% (p = 0.23) |
[46] | N1 = 41 with hPHPT N2 = 47 with nPHPT N3 = 39 controls | Vertebral fractures: N1: 60% vs. N2: 28% vs. N3: 23% (N3 vs. N1: p < 0.05) Fracture risk (vs. N3) N1: OR = 5.87 (2.16–17.3) vs. N2: OR = 1.32 (0.48–3.72) Moderate–severe fracture risk (vs. N3) N1: OR = 3.81 (1.15–15.12) vs. N2: OR = 1.04 (0.25–4.55) >1 fractures risk (vs. N3) N1: RR = 2.24 (1.22–4.32) vs. N2: RR = 1.12 (0.56–2.27) >1 moderate–severe fractures risk (vs. N3) N1: RR = 2.60 (0.99–8.08) vs. N2: RR = 0.83 (0.23–2.97) |
Reference Number | Studied Subgroups | Bone Formation Markers | Bone Resorption Markers | ||
---|---|---|---|---|---|
ALP or BALP * (IU/L) or ALP Activity ** mean ± SD or Median (IQR) | P1NP (ng/mL) Mean ± SD or Median (IQR) | Osteocalcin (ng/mL) Mean ± SD or Median (IQR) | β-CTX (ng/mL or pmol/L ***) Mean ± SD or Median (IQR) | ||
[35] | N1 = 56 with hPHPT N2 = 35 with nPHPT | N1: 17 (12–24) * N2: 15 (11–23) p = 0.29 | |||
[36] | N1 = 266 with hPHPT N2 = 48 with nPHPT | N1: 94.1 (74.0–116.1) N2: 86.9 ± 29.6 p = 0.016 | N1: 0.84 (0.54–1.39) N2: 0.89 ± 0.5 p = 0.483 | ||
[38] | N1 = 30 with hPHPT N2 = 30 with nPHPT N3 = 45 with osteoporosis without PHPT | N1: 51 ± 24.6 N2: 42.5 ± 28 N3: 41 ± 20 p = 0.62 | N1: 0.46 ± 0.33 N2: 0.3 ± 0.22 N3: 0.31 ± 0.24 p = 0.37 | ||
[39] | N1 = 32 with hPHPT N2 = 39 with nPHPT with elevated ionized calcium N3 = 38 with nPHPT with normal ionized calcium | N1: 69 (64–79) *** N2: 64 (58–75) N3: 60 (52–72) p = 0.07 | N1: 34 (39.7–40.2) N2: 32 (24.6–35.8) N3: 29 (24.9–34.0) p = 0.1 | N1: 653 (572–845) *** N2: 639 (582–745) N3: 643 (570–767) p = 0.9 | |
[42] | N1 = 71 with hPHPT (28 lost to follow-up) N2 = 16 with nPHPT (2 lost to follow-up) | N1: 112.6 ± 94.4 *** N2: 91.9 ± 35.9 p = 0.4 | N1: 71.2 ± 30.6 N2: 55.4 ± 30.2 p = 0.03 | N1: 37 ± 17.4 N2: 24.4 ±11.2 p = 0.007 | N1: 0.7 ± 0.4 N2: 0.4 ± 0.3 p = 0.01 |
[43] | N1 = 88 with hPHPT N2 = 16 with nPHPT | N1: 104.7 ± 65.5 N2: 86.1 ± 31.2 p = 0.1 | N1: 73.5 ± 32.1 N2: 49.2 ± 24.8 p = 0.005 | N1: 37.4 ± 17.1 N2: 23.5 ± 8.7 p = 0.02 | N1: 0.68 ± 0.35 N2: 0.38 ± 0.2 p = 0.001 |
[46] | N1 = 41 with hPHPT N2 = 47 with nPHPT N3 = 39 controls | N1: 73.09 ± 42.09 N2: 61.33 ± 25.41 N3: 50.12 ± 24.14 p < 0.05 (N1 vs. N3) | N1: 0.49 ± 0.27 N2: 0.37 ± 0.18 N3: 0.33 ± 0.21 p < 0.05 (N1 vs. N3) | ||
[47] | N1 = 17 with hPHPT N2 = 11 with nPHPT N3 = 300 controls | N1: 88 ± 27 N2: 98 ± 33 N3: 78 ± 37 p = 0.070 |
Reference Number | Study Design, Studied Population | DXA-BMD | Bone Turnover Markers |
---|---|---|---|
[42] | Prospective N = 87 with PHPT referred for parathyroidectomy (at the indication of an endocrinologist) (30 lost to follow-up) F:M = 68:19 N1 = 71 with hPHPT (28 lost to follow-up) F:M = 55:16 Mean age = 61.4 ± 11 y N2 = 16 with nPHPT (2 lost to follow-up) F:M = 13:3 Mean age = 61.6 ± 11 y | At 12 months: Lumbar spine—mean increase N1: 3.6% (0.03 g/cm2, [0.018 to 0.042], p < 0.001) N2: 2.8% (0.024 g/cm2, [−0.016 to 0.063], p = 0.05) Femoral neck—mean increase N1: 3.3% (0.022 g/cm2, [−0.004 to 0.0478], p < 0.001) N2: 4.2% (0.045 g/cm2, [−0.009 to 0.117], p < 0.001) Third distal radius—mean increase N1: 0.2% (−0.001 g/cm2; [−0.006 to 0.0035], p > 0.05) N2: −2.1% (−0.011 g/cm2; [−0.036 to 0.0144], p > 0.05) At 24 months: Improvement only for N1 in lumbar spine BMD: 1.1% (0.01 g/cm2, [−0.01 to 0.031], p = 0.02 | At 12 months: N: osteocalcin: −17.7 (−21 to 14.4) P1NP: −33 (−39 to 26.5) BCTX −0.37 (−0.44 to 0.3) BTM remained in the normal range for N1 and N2 |
[43] | Comparative prospective N = 104 with PHPT who underwent parathyroidectomy N1 = 88 with hPHPT F:M = 68:20 Mean age = 60.6 ± 11 y N2 = 16 with nPHPT F:M = 13:3 Mean age = 60.9 ± 10.4 y | At 12 months: Lumbar spine T-score N1: 1.7 ± 1 N2: 1.6 ± 0.9 p = 0.92 Femoral neck T-score N1: 1.7 ± 1 N2: 1.6 ± 0.9 p = 0.9 Third distal radius N1: 2 ± 1.4 N2: 1.7 ± 1.25 p = 0.09 | At 12 months: Alkaline phosphatase activity (IU/L) N1: 71.3 ± 27.5 N2: 61.6 ± 7 p = 0.4 Osteocalcin (ng/mL) N1: 15.8 ± 6.6 N2: 16.2 ± 4.8 p = 0.9 β-CTX (ng/mL) N1: 0.26 ± 0.1 N2: 0.31 ± 0.2 p = 0.54 P1NP (ng/mL) N1: 31.6 ± 14 N2: 35.7 ± 4.5 p = 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gheorghe, A.-M.; Nistor, C.; Ranetti, A.-E.; Ciuche, A.; Ciobica, M.-L.; Stanciu, M.; Tanasescu, D.; Popa, F.L.; Carsote, M. Osteoporosis and Normocalcemic Primary Hyperparathyroidism (Conservatively or Surgically Managed). J. Clin. Med. 2024, 13, 6325. https://doi.org/10.3390/jcm13216325
Gheorghe A-M, Nistor C, Ranetti A-E, Ciuche A, Ciobica M-L, Stanciu M, Tanasescu D, Popa FL, Carsote M. Osteoporosis and Normocalcemic Primary Hyperparathyroidism (Conservatively or Surgically Managed). Journal of Clinical Medicine. 2024; 13(21):6325. https://doi.org/10.3390/jcm13216325
Chicago/Turabian StyleGheorghe, Ana-Maria, Claudiu Nistor, Aurelian-Emil Ranetti, Adrian Ciuche, Mihai-Lucian Ciobica, Mihaela Stanciu, Denisa Tanasescu, Florina Ligia Popa, and Mara Carsote. 2024. "Osteoporosis and Normocalcemic Primary Hyperparathyroidism (Conservatively or Surgically Managed)" Journal of Clinical Medicine 13, no. 21: 6325. https://doi.org/10.3390/jcm13216325
APA StyleGheorghe, A. -M., Nistor, C., Ranetti, A. -E., Ciuche, A., Ciobica, M. -L., Stanciu, M., Tanasescu, D., Popa, F. L., & Carsote, M. (2024). Osteoporosis and Normocalcemic Primary Hyperparathyroidism (Conservatively or Surgically Managed). Journal of Clinical Medicine, 13(21), 6325. https://doi.org/10.3390/jcm13216325