Evaluation of Lateral and Medial Parts of the Hamstring Muscle Fatigue Symmetry in Professional Footballers Cleared to Play After ACL Reconstruction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.2.1. sEMG Measurements
2.2.2. sEMG Signal Processing
2.3. Statistical Analysis
3. Results
3.1. Difference between Groups
3.2. Differences Between Limbs Within Each Group
3.3. Differences between BF and SEM Muscles
3.4. BF/SEM Ratio
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Theisen, D.; Rada, I.; Brau, A.; Gette, P.; Seil, R. Muscle Activity Onset Prior to Landing in Patients after Anterior Cruciate Ligament Injury: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0155277. [Google Scholar] [CrossRef] [PubMed]
- Guelich, D.R.; Xu, D.; Koh, J.L.; Nuber, G.W.; Zhang, L.Q. Different roles of the medial and lateral hamstrings in unloading the anterior cruciate ligament. Knee 2016, 23, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Kyritsis, P.; Bahr, R.; Landreau, P.; Miladi, R.; Witvrouw, E. Likelihood of ACL graft rupture: Not meeting six clinical discharge criteria before return to sport is associated with a four times greater risk of rupture. Br. J. Sports Med. 2016, 50, 946–951. [Google Scholar] [CrossRef]
- Barber-Westin, S.D.; Noyes, F.R. Factors used to determine return to unrestricted sports activities after anterior cruciate ligament reconstruction. Arthroscopy 2011, 27, 1697–1705. [Google Scholar] [CrossRef]
- Rush, J.L.; Norte, G.E.; Lepley, A.S. Limb differences in hamstring muscle function and morphology after anterior cruciate ligament reconstruction. Phys. Ther. Sport 2020, 45, 168–175. [Google Scholar] [CrossRef]
- Shalhoub, S.; Fitzwater, F.G.; Cyr, A.J.; Maletsky, L.P. Variations in medial-lateral hamstring force and force ratio influence tibiofemoral kinematics. J. Orthop. Res. 2016, 34, 1707–1715. [Google Scholar] [CrossRef]
- Toor, A.S.; Limpisvasti, O.; Ihn, H.E.; McGarry, M.H.; Banffy, M.; Lee, T.Q. The significant effect of the medial hamstrings on dynamic knee stability. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 2608–2616. [Google Scholar] [CrossRef]
- Oleksy, Ł.; Mika, A.; Sulowska-Daszyk, I.; Kielnar, R.; Dzięcioł-Anikiej, Z.; Zyznawska, J.; Adamska, O.; Stolarczyk, A. The Evaluation of Asymmetry in Isokinetic and Electromyographic Activity (sEMG) of the Knee Flexor and Extensor Muscles in Football Players after ACL Rupture Reconstruction and in the Athletes following Mild Lower-Limb Injuries. J. Clin. Med. 2023, 12, 1144. [Google Scholar] [CrossRef]
- Opar, D.A.; Serpell, B.G. Is there a potential relationship between prior hamstring strain injury and increased risk for future anterior cruciate ligament injury? Arch. Phys. Med. Rehabil. 2014, 95, 401–405. [Google Scholar] [CrossRef]
- Briem, K.; Ragnarsdóttir, A.M.; Árnason, S.I.; Sveinsson, T. Altered medial versus lateral hamstring muscle activity during hop testing in female athletes 1–6 years after anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 12–17. [Google Scholar] [CrossRef]
- Chumanov, E.S.; Heiderscheit, B.C.; Thelen, D.G. The effect of speed and influence of individual muscles on hamstring mechanics during the swing phase of sprinting. J. Biomech. 2007, 40, 3555–3562. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, D.; Baker, M. Lateral to medial hamstring activation ratio: Individuals with medial compartment knee osteoarthritis compared to asymptomatic controls during gait. Gait Posture 2019, 70, 95–97. [Google Scholar] [CrossRef]
- Lynn, S.K.; Costigan, P.A. Changes in the medial-lateral hamstring activation ratio with foot rotation during lower limb exercise. J. Electromyogr. Kinesiol. 2009, 19, e197–e205. [Google Scholar] [CrossRef]
- Rampichini, S.; Vieira, T.M.; Castiglioni, P.; Merati, G. Complexity Analysis of Surface Electromyography for Assessing the Myoelectric Manifestation of Muscle Fatigue: A Review. Entropy 2020, 22, 529. [Google Scholar] [CrossRef]
- Nogales, R.; Guilcapi, J.; Benalcazar, F.; Vargas, J. A Brief Literature Review of Mathematical Models of EMG Signals through Hierarchical Analytical Processing. In Advances and Applications in Computer Science, Electronics, and Industrial Engineering; Garcia, M.V., Fernández-Peña, F., Gordón-Gallegos, C., Eds.; CSEI 2021. Lecture Notes in Networks and Systems; Springer: Cham, Switzerland, 2022; Volume 433. [Google Scholar] [CrossRef]
- Merletti, R.; Parker, P. Electromyography: Physiology, Engineering, and Non-Invasive Applications; Wiley-IEEE Press: Hoboken, NJ, USA, 2004. [Google Scholar]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Bigliassi, M.; Scalassara, P.R.; Kanthack, T.F.D. Fourier and Wavelet Spectral Analysis of EMG Signals in 1-km Cycling Time-Trial. Appl. Math. 2014, 5, 1878–1886. [Google Scholar] [CrossRef]
- Camata, T.V.; Dantas, J.L.; Abrão, T. Fourier and Wavelet Spectral Analysis of EMG signals in Supramaximal Constant Load Dynamic Exercise. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010. [Google Scholar]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef]
- Andersen, H.N.; Dyhre-Poulsen, P. The anterior cruciate ligament does play a role in controlling axial rotation in the knee. Knee Surg. Sports Traumatol. Arthrosc. 1997, 5, 145–149. [Google Scholar] [CrossRef]
- Nielsen, S.; Ovesen, J.; Rasmussen, O. The anterior cruciate ligament of the knee: An experimental study of its importance in rotatory knee instability. Arch. Orthop. Trauma Surg. 1984, 103, 170–174. [Google Scholar] [CrossRef]
- Koulouris, G.; Connell, D. Evaluation of the hamstring muscle complex following acute injury. Skelet. Radiol. 2003, 32, 582–589. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R. Anterior cruciate ligament injuries in female athletes: Part 1, mechanisms and risk factors. Am. J. Sports Med. 2006, 34, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Burland, J.P.; Lepley, A.S.; DiStefano, L.J.; Lepley, L.K. No shortage of disagreement between biomechanical and clinical hop symmetry after anterior cruciate ligament reconstruction. Clin. Biomech. 2019, 68, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Sherman, D.A.; Glaviano, N.R.; Norte, G.E. Hamstrings Neuromuscular Function after Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-Analysis. Sports Med. 2021, 51, 1751–1769. [Google Scholar] [CrossRef] [PubMed]
- Rozzi, S.L.; Lephart, S.M.; Gear, W.S.; Fu, F.H. Knee joint laxity and neuromuscular characteristics of male and female soccer and basketball players. Am. J. Sport. Med. 1999, 27, 312–319. [Google Scholar] [CrossRef]
Group 1 | Group 2 | |
---|---|---|
Number of subjects (n) | 25 | 26 |
Height (cm) | 173 ± 6 | 178 ± 4 |
Weight (kg) | 75.2 ± 5.6 | 77.4 ± 6.2 |
Age | 22.9 ± 4.7 | 23.1 ± 3.2 |
Outcome Measure | BF | SEM | ||||||
---|---|---|---|---|---|---|---|---|
Group 1 | Group 2 | p | ES | Group 1 | Group 2 | p | ES | |
O/L MDF (Hz) | 80.14 ± 4.35 | 84.30 ± 5.08 | 0.005 | 0.87 | 80.72 ± 5.12 | 83.02 ± 3.66 | 0.09 | 0.51 |
O/L Slope (Hz) | −0.06 ± 0.05 | −0.07 ± 0.04 | 0.39 | 0.22 | −0.09 ± 0.03 | −0.11 ± 0.05 | 0.13 | 0.48 |
O/L dMDF (Hz) | 8.38 ± 5.79 | 9.03 ± 7.51 | 0.74 | 0.09 | 12.62 ± 7.99 | 14.44 ± 9.13 | 0.47 | 0.21 |
NO/R MDF (Hz) | 80.67 ± 3.58 | 83.01 ± 6.41 | 0.13 | 0.45 | 77.96 ± 5.23 | 82.06 ± 6.23 | 0.02 | 0.71 |
NO/R Slope (Hz) | −0.06 ± 0.03 | −0.07 ± 0.05 | 0.68 | 0.24 | −0.09 ± 0.05 | −0.12 ± 0.07 | 0.20 | 0.49 |
NO/R dMDF (Hz) | 9.63 ± 8.32 | 9.02 ± 8.07 | 0.80 | 0.07 | 15.79 ± 8.39 | 10.67 ± 10.32 | 0.07 | 0.54 |
Outcome Measure | Group 1 | Group 2 | ||||||
---|---|---|---|---|---|---|---|---|
O | NO | p | ES | L | R | p | ES | |
BF MDF (Hz) | 80.14 ± 4.35 | 80.67 ± 3.58 | 0.57 | 0.13 | 84.30 ± 5.08 | 83.01 ± 6.41 | 0.13 | 0.22 |
BF Slope (Hz) | −0.06 ± 0.05 | −0.06 ± 0.03 | 0.61 | 0.00 | −0.07 ± 0.04 | −0.07 ± 0.05 | 0.91 | 0.00 |
BF dMDF (Hz) | 8.38 ± 5.79 | 9.63 ± 8.32 | 0.47 | 0.17 | 9.03 ± 7.51 | 9.02 ± 8.07 | 0.99 | 0.00 |
SEM MDF (Hz) | 80.72 ± 5.12 | 77.96 ± 5.23 | 0.04 | 0.53 | 83.02 ± 3.66 | 82.06 ± 6.23 | 0.25 | 0.18 |
SEM Slope (Hz) | −0.09 ± 0.03 | −0.09 ± 0.05 | 0.59 | 0.00 | −0.11 ± 0.05 | −0.12 ± 0.07 | 0.65 | 0.16 |
SEM dMDF(Hz) | 12.62 ± 7.99 | 15.79 ± 8.39 | 0.15 | 0.38 | 14.44 ± 9.13 | 10.67 ± 10.32 | 0.09 | 0.38 |
Outcome Measure | Group 1 | Group 2 | ||||||
---|---|---|---|---|---|---|---|---|
BF | SEM | p | ES | BF | SEM | p | ES | |
O/L MDF (Hz) | 80.14 ± 4.35 | 80.72 ± 5.12 | 0.47 | 0.12 | 84.30 ± 5.08 | 83.02 ± 3.66 | 0.16 | 0.28 |
O/L Slope (Hz) | −0.06 ± 0.05 | −0.09 ± 0.03 | 0.0002 | 0.72 | −0.07 ± 0.04 | −0.11 ± 0.05 | 0.0001 | 0.88 |
O/L dMDF (Hz) | 8.38 ± 5.79 | 12.62 ± 7.99 | 0.009 | 0.60 | 9.03 ± 7.51 | 14.44 ± 9.13 | 0.007 | 0.64 |
NO/R MDF (Hz) | 80.67 ± 3.58 | 77.96 ± 5.23 | 0.003 | 0.60 | 83.01 ± 6.41 | 82.06 ± 6.23 | 0.20 | 0.15 |
NO/R Slope (Hz) | −0.06 ± 0.03 | −0.09 ± 0.05 | 0.005 | 0.72 | −0.07 ± 0.05 | −0.12 ± 0.07 | 0.005 | 0.82 |
NO/R dMDF (Hz) | 9.63 ± 8.32 | 15.79 ± 8.39 | 0.001 | 0.73 | 9.02 ± 8.07 | 10.67 ± 10.3 | 0.38 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oleksy, Ł.; Mika, A.; Sopa, M.; Stolarczyk, A.; Adamska, O.; Szczudło, M.; Kielnar, R.; Hagner-Derengowska, M.; Buryta, R.; Nowak, M.J.; et al. Evaluation of Lateral and Medial Parts of the Hamstring Muscle Fatigue Symmetry in Professional Footballers Cleared to Play After ACL Reconstruction. J. Clin. Med. 2024, 13, 6521. https://doi.org/10.3390/jcm13216521
Oleksy Ł, Mika A, Sopa M, Stolarczyk A, Adamska O, Szczudło M, Kielnar R, Hagner-Derengowska M, Buryta R, Nowak MJ, et al. Evaluation of Lateral and Medial Parts of the Hamstring Muscle Fatigue Symmetry in Professional Footballers Cleared to Play After ACL Reconstruction. Journal of Clinical Medicine. 2024; 13(21):6521. https://doi.org/10.3390/jcm13216521
Chicago/Turabian StyleOleksy, Łukasz, Anna Mika, Martyna Sopa, Artur Stolarczyk, Olga Adamska, Miłosz Szczudło, Renata Kielnar, Magdalena Hagner-Derengowska, Rafał Buryta, Michał Jakub Nowak, and et al. 2024. "Evaluation of Lateral and Medial Parts of the Hamstring Muscle Fatigue Symmetry in Professional Footballers Cleared to Play After ACL Reconstruction" Journal of Clinical Medicine 13, no. 21: 6521. https://doi.org/10.3390/jcm13216521
APA StyleOleksy, Ł., Mika, A., Sopa, M., Stolarczyk, A., Adamska, O., Szczudło, M., Kielnar, R., Hagner-Derengowska, M., Buryta, R., Nowak, M. J., Kowal, M., & Deszczyński, J. M. (2024). Evaluation of Lateral and Medial Parts of the Hamstring Muscle Fatigue Symmetry in Professional Footballers Cleared to Play After ACL Reconstruction. Journal of Clinical Medicine, 13(21), 6521. https://doi.org/10.3390/jcm13216521