Planning Accuracy and Stem Offset Assessment in Digital Two-Dimensional Versus Three-Dimensional Planning in Cementless Hip Arthroplasty: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. The Literature Search
2.3. Data Extraction and Collection
2.4. Statistical Analysis
2.5. Assessment of the Methodological Quality
3. Results
3.1. Results of the Search
3.2. Included Studies
3.3. Demographic Data
3.4. Implant Used
3.5. Planning Software
3.6. Cup Accuracy
3.7. Stem Accuracy
3.8. Stem Offset Prediction
3.9. Quality Assessment
4. Discussion
4.1. Overview
4.2. Advantages of 3D Preoperative Planning
4.3. Analysis of the Study
4.4. Challenges and Cost–Benefit Considerations
4.5. Future Directions and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Snell, D.L.; Dunn, J.A.; Hooper, G. Associations between pain, function and quality of life after total hip arthroplasty. Int. J. Orthop. Trauma Nurs. 2024, 54, 101121. [Google Scholar] [CrossRef] [PubMed]
- Learmonth, I.D.; Young, C.; Rorabeck, C. The operation of the century: Total hip replacement. Lancet 2007, 370, 1508–1519. [Google Scholar] [CrossRef] [PubMed]
- Zampogna, B.; Papalia, G.F.; Parisi, F.R.; Luciano, C.; Gregori, P.; Vorini, F.; Marinozzi, A.; Farsetti, P.; Papalia, R. Early return to activity of daily living after total hip arthroplasty: A systematic review and meta-analysis. Hip Int. J. Clin. Exp. Res. Hip Pathol. Ther. 2023, 33, 968–976. [Google Scholar] [CrossRef] [PubMed]
- Mellon, S.J.; Liddle, A.D.; Pandit, H. Hip replacement: Landmark surgery in modern medical history. Maturitas 2013, 75, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Petis, S.; Howard, J.L.; Lanting, B.L.; Vasarhelyi, E.M. Surgical approach in primary total hip arthroplasty: Anatomy, technique and clinical outcomes. Can. J. Surg. J. Can. Chir. 2015, 58, 128–139. [Google Scholar] [CrossRef]
- Müller, M.E. Lessons of 30 years of total hip arthroplasty. Clin. Orthop. 1992, 274, 12–21. [Google Scholar] [CrossRef]
- Colombi, A.; Schena, D.; Castelli, C.C. Total hip arthroplasty planning. EFORT Open Rev. 2019, 4, 626–632. [Google Scholar] [CrossRef]
- Conn, K.S.; Clarke, M.T.; Hallett, J.P. A simple guide to determine the magnification of radiographs and to improve the accuracy of preoperative templating. J. Bone Jt. Surg Br. 2002, 84, 269–272. [Google Scholar] [CrossRef]
- Scheerlinck, T. Primary hip arthroplasty templating on standard radiographs. A stepwise approach. Acta Orthop. Belg. 2010, 76, 432–442. [Google Scholar]
- Di Martino, A.; Rossomando, V.; Brunello, M.; D’Agostino, C.; Pederiva, D.; Frugiuele, J.; Pilla, F.; Faldini, C. How to perform correct templating in total hip replacement. Musculoskelet. Surg. 2023, 107, 19–28. [Google Scholar] [CrossRef]
- Lecerf, G.; Fessy, M.H.; Philippot, R.; Massin, P.; Giraud, F.; Flecher, X.; Girard, J.; Mertl, P.; Marchetti, E.; Stindel, E. Femoral offset: Anatomical concept, definition, assessment, implications for preoperative templating and hip arthroplasty. Orthop. Traumatol. Surg. Res. OTSR 2009, 95, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Vigdorchik, J.M.; Sharma, A.K.; Jerabek, S.A.; Mayman, D.J.; Sculco, P.K. Templating for Total Hip Arthroplasty in the Modern Age. J. Am. Acad. Orthop. Surg. 2021, 29, e208–e216. [Google Scholar] [CrossRef] [PubMed]
- Haddad, F.S.; Masri, B.A.; Garbuz, D.S.; Duncan, C.P. The Prevention of Periprosthetic Fractures in Total Hip and Knee Arthroplasty. Orthop. Clin. N. Am. 1999, 30, 191–207. [Google Scholar] [CrossRef] [PubMed]
- Knight, J.L.; Atwater, R.D. Preoperative planning for total hip arthroplasty. Quantitating its utility and precision. J. Arthroplast. 1992, 7, 403–409. [Google Scholar] [CrossRef]
- Shah, N.; Hodgkinson, J. Why do Orthopaedic surgeons get sued after total hip replacement? Bone Jt. 2014, 3, 42–45. [Google Scholar] [CrossRef]
- Jang, S.J.; Vigdorchik, J.M.; Windsor, E.W.; Schwarzkopf, R.; Mayman, D.J.; Sculco, P.K. Abnormal spinopelvic mobility as a risk factor for acetabular placement error in total hip arthroplasty using optical computer-assisted surgical navigation system. Bone Jt. Open 2022, 3, 475–484. [Google Scholar] [CrossRef]
- Eggli, S.; Pisan, M.; Müller, M.E. The value of preoperative planning for total hip arthroplasty. J. Bone Jt. Surg. Br. 1998, 80-B, 382–390. [Google Scholar] [CrossRef]
- Dammerer, D.; Keiler, A.; Herrnegger, S.; Putzer, D.; Strasser, S.; Liebensteiner, M. Accuracy of digital templating of uncemented total hip arthroplasty at a certified arthroplasty center: A retrospective comparative study. Arch. Orthop. Trauma Surg. 2021, 142, 2471–2480. [Google Scholar] [CrossRef]
- Iorio, R.; Siegel, J.; Specht, L.M.; Tilzey, J.F.; Hartman, A.; Healy, W.L. A Comparison of Acetate vs. Digital Templating for Preoperative Planning of Total Hip Arthroplasty. J. Arthroplast. 2009, 24, 175–179. [Google Scholar] [CrossRef]
- Lindgren, J.U.; Rysavy, J. Restoration of femoral offset during hip replacement. A radiographic cadaver study. Acta Orthop. Scand. 1992, 63, 407–410. [Google Scholar] [CrossRef]
- Sershon, R.A.; Diaz, A.; Bohl, D.D.; Levine, B.R. Effect of Body Mass Index on Digital Templating for Total Hip Arthroplasty. J. Arthroplast. 2017, 32, 1024–1026. [Google Scholar] [CrossRef] [PubMed]
- Luger, M.; Hochgatterer, R.; Klotz, M.C.; Hipmair, G.; Gotterbarm, T.; Schauer, B. Digital templating for the implantation of a curved short hip stem with an anterolateral MIS approach shows gender differences in digital templating. Arch. Orthop. Trauma Surg. 2022, 142, 1661–1668. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.B.V.; Bishi, H.; Wang, C.; Asopa, V.; Field, R.E.; Sochart, D.H. The accuracy and reliability of preoperative digital 2D templating in prosthesis size prediction in uncemented versus cemented total hip arthroplasty: A systematic review and meta-analysis. EFORT Open Rev. 2021, 6, 1020–1039. [Google Scholar] [CrossRef]
- LaCour, M.; Ta, M.; Nachtrab, J.; Nguyen, T.; Komistek, R. Determination of optimal component positioning in THA using 3D preoperative planning. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2024, 42, 1557–1565. [Google Scholar] [CrossRef]
- Bachour, F.; Marchetti, E.; Bocquet, D.; Vasseur, L.; Migaud, H.; Girard, J. Radiographic preoperative templating of extra-offset cemented THA implants: How reliable is it and how does it affect survival? Orthop. Traumatol. Surg. Res. OTSR 2010, 96, 760–768. [Google Scholar] [CrossRef]
- Flecher, X.; Ollivier, M.; Argenson, J.N. Lower limb length and offset in total hip arthroplasty. Orthop. Traumatol. Surg. Res. 2016, 102 (Suppl. S1), S9–S20. [Google Scholar] [CrossRef] [PubMed]
- Della Valle, A.G.; Padgett, D.E.; Salvati, E.A. Preoperative planning for primary total hip arthroplasty. J. Am. Acad. Orthop. Surg. 2005, 13, 455–462. [Google Scholar] [CrossRef]
- Huang, J.; Zhu, Y.; Ma, W.; Zhang, Z.; Shi, W.; Lin, J. A Novel Method for Accurate Preoperative Templating for Total Hip Arthroplasty Using a Biplanar Digital Radiographic (EOS) System. JBJS Open Access 2020, 5, e20.00078. [Google Scholar] [CrossRef] [PubMed]
- Mayr, H.O.; Schmidt, J.P.; Haasters, F.; Bernstein, A.; Schmal, H.; Prall, W.C. Anteversion Angle Measurement in Suspected Torsional Malalignment of the Femur in 3-Dimensional EOS vs. Computed Tomography—A Validation Study. J. Arthroplast. 2021, 36, 379–386. [Google Scholar] [CrossRef]
- Rivière, C.; Lazic, S.; Dagneaux, L.; Van Der Straeten, C.; Cobb, J.; Muirhead-Allwood, S. Spine–hip relations in patients with hip osteoarthritis. EFORT Open Rev. 2018, 3, 39–44. [Google Scholar] [CrossRef]
- Lattanzi, R.; Baruffaldi, F.; Zannoni, C.; Viceconti, M. Specialised CT scan protocols for 3-D pre-operative planning of total hip replacement. Med. Eng. Phys. 2004, 26, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Moralidou, M.; Di Laura, A.; Henckel, J.; Hothi, H.; Hart, A.J. Three-dimensional pre-operative planning of primary hip arthroplasty: A systematic literature review. EFORT Open Rev. 2020, 5, 845–855. [Google Scholar] [CrossRef] [PubMed]
- Ghotra, S.S.; Cottier, Y.; Bruguier, C.; Dominguez, A.; Monnin, P.; dos Reis, C.S. A Pilot Study to Identify Suitable MRI Protocols for Preoperative Planning of Total Hip Arthroplasty. Eur. J. Radiol. 2024, 178, 111620. Available online: https://www.ejradiology.com/article/S0720-048X(24)00336-X/fulltext (accessed on 11 August 2024). [CrossRef] [PubMed]
- Crone, T.P.; Cornelissen, B.M.W.; Van Oldenrijk, J.; Bos, P.K.; Veltman, E.S. Intraoperative application of three-dimensional printed guides in total hip arthroplasty: A systematic review. World J. Orthop. 2024, 15, 660–667. [Google Scholar] [CrossRef]
- Olmedo-Garcia, N.I.; Vergara, J.L.M.; Miralles, T.L.A.; Andrés, J.V.S.; Vives, A.M.; Renovell, E.C.; Beltran, V.G. Assessment of magnification of digital radiographs in total HIP arthroplasty. J. Orthop. 2018, 15, 931–934. [Google Scholar] [CrossRef]
- Holliday, M.; Steward, A. Pre-operative templating for total hip arthroplasty: How does radiographic technique and calibration marker placement affect image magnification? J. Med. Radiat. Sci. 2021, 68, 228–236. [Google Scholar] [CrossRef]
- Huppertz, A.; Radmer, S.; Asbach, P.; Juran, R.; Schwenke, C.; Diederichs, G.; Hamm, B.; Sparmann, M. Computed tomography for preoperative planning in minimal-invasive total hip arthroplasty: Radiation exposure and cost analysis. Eur. J. Radiol. 2011, 78, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Brenneis, M.; Braun, S.; van Drongelen, S.; Fey, B.; Tarhan, T.; Stief, F.; Meurer, A. Accuracy of Preoperative Templating in Total Hip Arthroplasty With Special Focus on Stem Morphology: A Randomized Comparison Between Common Digital and Three-Dimensional Planning Using Biplanar Radiographs. J. Arthroplast. 2021, 36, 1149–1155. [Google Scholar] [CrossRef]
- Fontalis, A.; Yasen, A.T.; Kayani, B.; Luo, T.D.; Mancino, F.; Magan, A.; Plastow, R.; Haddad, F.S. Two-Dimensional Versus Three-Dimensional Preoperative Planning in Total Hip Arthroplasty. J. Arthroplast. 2024, 39, S80–S87. [Google Scholar] [CrossRef] [PubMed]
- Crutcher, J.P.; Hameed, D.; Dubin, J.; Mont, M.A. Comparison of three-versus two-dimensional pre-operative planning for total hip arthroplasty. J. Orthop. 2024, 47, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Aubert, T.; Galanzino, G.; Gerard, P.; Le Strat, V.; Rigoulot, G.; Lhotellier, L. Accuracy of Preoperative 3D vs. 2D Digital Templating for Cementless Total Hip Arthroplasty Using a Direct Anterior Approach. Arthroplast. Today 2023, 24, 101260. [Google Scholar] [CrossRef]
- Sariali, E.; Mauprivez, R.; Khiami, F.; Pascal-Mousselard, H.; Catonné, Y. Accuracy of the preoperative planning for cementless total hip arthroplasty. A randomised comparison between three-dimensional computerised planning and conventional templating. Orthop. Traumatol. Surg. Res. 2012, 98, 151–158. [Google Scholar] [CrossRef]
- Schiffner, E.; Latz, D.; Jungbluth, P.; Grassmann, J.P.; Tanner, S.; Karbowski, A.; Windolf, J.; Schneppendahl, J. Is computerised 3D templating more accurate than 2D templating to predict size of components in primary total hip arthroplasty? HIP Int. 2019, 29, 270–275. [Google Scholar] [CrossRef]
- Bishi, H.; Smith, J.B.V.; Asopa, V.; Field, R.E.; Wang, C.; Sochart, D.H. Comparison of the accuracy of 2D and 3D templating methods for planning primary total hip replacement: A systematic review and meta-analysis. EFORT Open Rev. 2022, 7, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Grammatopoulos, G.; Innmann, M.; Phan, P.; Bodner, R.; Meermans, G. Spinopelvic challenges in primary total hip arthroplasty. EFORT Open Rev. 2023, 8, 298–312. [Google Scholar] [CrossRef]
- Schapira, B.; Madanipour, S.; Iranpour, F.; Subramanian, P. Accuracy of Total Hip Arthroplasty Templating Using Set Calibration Magnifications. Cureus 2023, 15, e34883. [Google Scholar] [CrossRef] [PubMed]
- Fujishiro, T.; Hayashi, S.; Kanzaki, N.; Hashimoto, S.; Kurosaka, M.; Kanno, T.; Masuda, T. Computed tomographic measurement of acetabular and femoral component version in total hip arthroplasty. Int. Orthop. 2014, 38, 941–946. [Google Scholar] [CrossRef]
- Holzer, L.A.; Scholler, G.; Wagner, S.; Friesenbichler, J.; Maurer-Ertl, W.; Leithner, A. The accuracy of digital templating in uncemented total hip arthroplasty. Arch. Orthop. Trauma Surg. 2019, 139, 263–268. [Google Scholar] [CrossRef]
- Zampogna, B.; Parisi, F.R.; Zampoli, A.; Prezioso, A.; Vorini, F.; Laudisio, A.; Papalia, M.; Papapietro, N.; Falez, F.; Papalia, R. Accuracy of two-dimensional digital planning in uncemented primary hip arthroplasty: Monocentric analysis of eight hundred implants. Int. Orthop. 2024, 48, 1979–1985. [Google Scholar] [CrossRef] [PubMed]
- Shaarani, S.R.; McHugh, G.; Collins, D.A. Accuracy of digital preoperative templating in 100 consecutive uncemented total hip arthroplasties: A single surgeon series. J. Arthroplast. 2013, 28, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Gamble, P.; de Beer, J.; Petruccelli, D.; Winemaker, M. The Accuracy of Digital Templating in Uncemented Total Hip Arthroplasty. J. Arthroplast. 2010, 25, 529–532. [Google Scholar] [CrossRef]
- Mainard, D.; Barbier, O.; Knafo, Y.; Belleville, R.; Mainard-Simard, L.; Gross, J.B. Accuracy and reproducibility of preoperative three-dimensional planning for total hip arthroplasty using biplanar low-dose radiographs: A pilot study. Orthop. Traumatol. Surg. Res. 2017, 103, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Hassani, H.; Cherix, S.; Ek, E.T.; Rüdiger, H.A. Comparisons of Preoperative Three-Dimensional Planning and Surgical Reconstruction in Primary Cementless Total Hip Arthroplasty. J. Arthroplast. 2014, 29, 1273–1277. [Google Scholar] [CrossRef]
- Buller, L.T.; McLawhorn, A.S.; Maratt, J.D.; Carroll, K.M.; Mayman, D.J. EOS Imaging is Accurate and Reproducible for Preoperative Total Hip Arthroplasty Templating. J. Arthroplast. 2021, 36, 1143–1148. [Google Scholar] [CrossRef]
- Knafo, Y.; Houfani, F.; Zaharia, B.; Egrise, F.; Clerc-Urmès, I.; Mainard, D. Value of 3D Preoperative Planning for Primary Total Hip Arthroplasty Based on Biplanar Weightbearing Radiographs. BioMed Res. Int. 2019, 2019, 1932191. [Google Scholar] [CrossRef]
- Anderson, C.G.; Brilliant, Z.R.; Jang, S.J.; Sokrab, R.; Mayman, D.J.; Vigdorchik, J.M.; Sculco, P.K.; Jerabek, S.A. Validating the use of 3D biplanar radiography versus CT when measuring femoral anteversion after total hip arthroplasty: A comparative study. Bone Jt. J. 2022, 104-B, 1196–1201. [Google Scholar] [CrossRef]
- Klim, S.M.; Reinbacher, P.; Smolle, M.A.; Hecker, A.; Maier, M.; Friesenbichler, J.; Leithner, A.; Leitner, L.; Draschl, A.; Lewis, J.; et al. Femoral Anteversion in Total Hip Arthroplasty: Retrospective Comparison of Short- and Straight-Stem Models Using CT Scans. J. Clin. Med. 2023, 12, 2391. [Google Scholar] [CrossRef]
- Huppertz, A.; Lembcke, A.; Sariali, E.H.; Durmus, T.; Schwenke, C.; Hamm, B.; Sparmann, M.; Baur, A.D. Low Dose Computed Tomography for 3D Planning of Total Hip Arthroplasty: Evaluation of Radiation Exposure and Image Quality. J. Comput. Assist. Tomogr. 2015, 39, 649. [Google Scholar] [CrossRef]
- Kaiser, D.; Hoch, A.; Rahm, S.; Stern, C.; Sutter, R.; Zingg, P.O. Combining the advantages of 3-D and 2-D templating of total hip arthroplasty using a new tin-filtered ultra-low-dose CT of the hip with comparable radiation dose to conventional radiographs. Arch. Orthop. Trauma Surg. 2023, 143, 5345–5352. [Google Scholar] [CrossRef] [PubMed]
- Geijer, M.; Rundgren, G.; Weber, L.; Flivik, G. Effective dose in low-dose CT compared with radiography for templating of total hip arthroplasty. Acta Radiol. 2017, 58, 1276–1282. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, A.; Di Laura, A.; Henckel, J.; Hart, A. The variability of CT scan protocols for total hip arthroplasty: A call for harmonisation. EFORT Open Rev. 2023, 8, 809–817. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Luo, Y.; Zhang, J.; Zhang, C.; Wang, X.; Chen, J.; Chai, W. Can Robotic Arm-assisted Total Knee Arthroplasty Remain Cost-effective in Volume-based Procurement System in China? A Markov Model-based Study. Orthop. Surg. 2024, 16, 1434–1444. [Google Scholar] [CrossRef]
- Rajan, P.V.; Khlopas, A.; Klika, A.; Molloy, R.; Krebs, V.; Piuzzi, N.S. The Cost-Effectiveness of Robotic-Assisted Versus Manual Total Knee Arthroplasty: A Markov Model–Based Evaluation. JAAOS J. Am. Acad. Orthop. Surg. 2022, 30, 168. [Google Scholar] [CrossRef]
- Huo, J.; Huang, G.; Han, D.; Wang, X.; Bu, Y.; Chen, Y.; Cai, D.; Zhao, C. Value of 3D preoperative planning for primary total hip arthroplasty based on artificial intelligence technology. J. Orthop. Surg. 2021, 16, 156. [Google Scholar] [CrossRef]
- Zampogna, B.; Torre, G.; Zampoli, A.; Parisi, F.; Ferrini, A.; Shanmugasundaram, S.; Franceschetti, E.; Papalia, R. Can machine learning predict the accuracy of preoperative planning for total hip arthroplasty, basing on patient-related factors? An explorative investigation on Supervised machine learning classification models. J. Clin. Orthop. Trauma 2024, 53, 102470. Available online: https://www.journal-cot.com/article/S0976-5662(24)00139-5/fulltext (accessed on 11 August 2024). [CrossRef]
- Xie, H.; Yi, J.; Huang, Y.; Guo, R.; Liu, Y.; Kong, X.; Chai, W. Application and evaluation of artificial intelligence 3D preoperative planning software in developmental dysplasia of the hip. J. Orthop. Surg. 2024, 19, 176. [Google Scholar] [CrossRef]
Author | Year | Counry | (n) | Cup (n) | Stem (n) | Comparison | Number | Software | Age | BMI (Kg/m2) | Implanted Accuracy Cup % | Implanted Accuracy Stem % | Cup Accuracy | Stem Accuracy | Accuracy Offset | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | sd | Mean | sd | Same | ±1 | ≥2 | Same | ±1 | ≥2 | Same ± 1 | Same ± 1 | ||||||||||
Brenneis et al. [40] | 2020 | Germany | 51 | 51 | 51 | 2D Planning | 28 | TraumaCAD | 63.5 | 27.7 | 60.7 | 28.6 | 10.7 | 35.7 | 50 | 14.3 | 89.3 | 85.7 | |||
3D Planning | 23 | HipEOS | 60.2 | 27.8 | 43.5 | 56.5 | 0 | 34.8 | 56.5 | 8.7 | 100 | 91.3 | |||||||||
Fontalis et al. [41] | 2024 | UK | 60 | 60 | 60 | 2D Planning | 60 | TraumaCAD | 65 | 26.7 | 41.7 | 45 | 13.3 | 31.7 | 38.3 | 30 | 86.7 | 69.6 | 60 | ||
3D Planning | 60 | Mako (Stryker) | 75 | 23.4 | 1.6 | 43.4 | 50 | 6.6 | 98.4 | 93.4 | 96.3 | ||||||||||
Crutcher et al. [42] | 2024 | USA | 290 | 290 | 255 | 2D Planning | 290 | - | 39 | 46.5 | 14.5 | 52.9 | 41.6 | 5.5 | 85.5 | 94.5 | 82.3 | ||||
3D Planning | 290 | Mako (Stryker) | 99.7 | 0.3 | 0 | 63.1 | 33.3 | 3.6 | 100 | 96.9 | 100 | ||||||||||
Aubert et al. [43] | 2023 | France | 200 | 200 | 200 | 2D Planning | 100 | MediCad | 66 | 21.8 | 56 | 38 | 6 | 69 | 29 | 2 | 94 | 98 | 89 | ||
3D Planning | 100 | 3D OPSInsight | 63 | 22.1 | 93 | 7 | 0 | 88 | 10 | 2 | 100 | 98 | 97 | ||||||||
Sariali et al. [44] | 2012 | France | 60 | 60 | 60 | 2D Planning | 30 | Imagika | 57.2 | 13 | 25.8 | 6.7 | 43 | 43 | |||||||
3D Planning | 30 | HipPlan | 60 | 15 | 27.1 | 3.7 | 96 | 100 | |||||||||||||
Schiffner et al. [45] | 2018 | Germany | 116 | 116 | 116 | 2D Planning | 116 | MediCad | 69.2 | 44.8 | 35.4 | 19.8 | 45.7 | 37.9 | 16.3 | 80.2 | 83.6 | ||||
3D Planning | 116 | 3D ZedHip | 56.9 | 29.3 | 13.8 | 58.6 | 35.4 | 6 | 86.2 | 94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parisi, F.R.; Zampogna, B.; Zampoli, A.; Ferrini, A.; Albimonti, G.; Del Monaco, A.; Za, P.; Papalia, G.F.; Papalia, R. Planning Accuracy and Stem Offset Assessment in Digital Two-Dimensional Versus Three-Dimensional Planning in Cementless Hip Arthroplasty: A Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 13, 6566. https://doi.org/10.3390/jcm13216566
Parisi FR, Zampogna B, Zampoli A, Ferrini A, Albimonti G, Del Monaco A, Za P, Papalia GF, Papalia R. Planning Accuracy and Stem Offset Assessment in Digital Two-Dimensional Versus Three-Dimensional Planning in Cementless Hip Arthroplasty: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2024; 13(21):6566. https://doi.org/10.3390/jcm13216566
Chicago/Turabian StyleParisi, Francesco Rosario, Biagio Zampogna, Andrea Zampoli, Augusto Ferrini, Giorgio Albimonti, Alessandro Del Monaco, Pierangelo Za, Giuseppe Francesco Papalia, and Rocco Papalia. 2024. "Planning Accuracy and Stem Offset Assessment in Digital Two-Dimensional Versus Three-Dimensional Planning in Cementless Hip Arthroplasty: A Systematic Review and Meta-Analysis" Journal of Clinical Medicine 13, no. 21: 6566. https://doi.org/10.3390/jcm13216566
APA StyleParisi, F. R., Zampogna, B., Zampoli, A., Ferrini, A., Albimonti, G., Del Monaco, A., Za, P., Papalia, G. F., & Papalia, R. (2024). Planning Accuracy and Stem Offset Assessment in Digital Two-Dimensional Versus Three-Dimensional Planning in Cementless Hip Arthroplasty: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 13(21), 6566. https://doi.org/10.3390/jcm13216566