The Efficacy of Different Tenotomies in the Treatment of Lateral Epicondylitis: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Exclusion Criteria
2.3. Study Selection
2.4. Data Extraction
2.5. Quality Assessment
2.6. Data Synthesis and Analysis
3. Results
4. Discussion
4.1. Grip Strength Outcomes
4.2. VAS Pain Outcomes
4.3. Mayo Elbow Performance Score (MEPS) Outcomes
4.4. Disabilities of the Arm, Shoulder, and Hand (DASH) Outcomes
4.5. Patient Satisfaction Outcomes
4.6. Return-to-Work Outcomes
4.7. Complication Outcomes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Herquelot, E.; Bodin, J.; Roquelaure, Y.; Ha, C.; Leclerc, A.; Goldberg, M.; Zins, M.; Descatha, A. Work-related risk factors for lateral epicondylitis and other cause of elbow pain in the working population. Am. J. Ind. Med. 2013, 56, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Bisset, L.; Beller, E.; Jull, G.; Brooks, P.; Darnell, R.; Vicenzino, B. Mobilisation with movement and exercise, corticosteroid injection, or wait and see for tennis elbow: Randomised trial. BMJ 2006, 333, 939. [Google Scholar] [CrossRef]
- Nirschl, R.P. Tennis elbow. Orthop. Clin. N. Am. 1973, 4, 787–800. [Google Scholar] [CrossRef]
- Verhaar, J.A. Tennis elbow. Anatomical, epidemiological and therapeutic aspects. Int. Orthop. 1994, 18, 263–267. [Google Scholar] [CrossRef]
- Lenoir, H.; Mares, O.; Carlier, Y. Management of lateral epicondylitis. Orthop. Traumatol. Surg. Res. 2019, 105, S241–S246. [Google Scholar] [CrossRef]
- Shergill, R.; Choudur, H.N. Ultrasound-Guided Interventions in Lateral Epicondylitis. JCR J. Clin. Rheumatol. 2019, 25, e27. [Google Scholar] [CrossRef] [PubMed]
- Gregory, B.P.; Wysocki, R.W.; Cohen, M.S. Controversies in Surgical Management of Recalcitrant Enthesopathy of the Extensor Carpi Radialis Brevis. J. Hand Surg. 2016, 41, 856–859. [Google Scholar] [CrossRef] [PubMed]
- Cucchiarini, M.; de Girolamo, L.; Filardo, G.; Oliveira, J.M.; Orth, P.; Pape, D.; Reboul, P. Basic science of osteoarthritis. J. Exp. Orthop. 2016, 3, 22. [Google Scholar] [CrossRef]
- Nirschl, R.P.; Pettrone, F.A. Tennis elbow. The surgical treatment of lateral epicondylitis. JBJS 1979, 61, 832. [Google Scholar] [CrossRef]
- Clark, T.; McRae, S.; Leiter, J.; Zhang, Y.; Dubberley, J.; MacDonald, P. Arthroscopic Versus Open Lateral Release for the Treatment of Lateral Epicondylitis: A Prospective Randomized Controlled Trial. Arthrosc. J. Arthrosc. Relat. Surg. 2018, 34, 3177–3184. [Google Scholar] [CrossRef]
- Jacobson, J.A.; Kim, S.M.; Brigido, M.K. Ultrasound-Guided Percutaneous Tenotomy. Semin. Musculoskelet. Radiol. 2016, 20, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Chiavaras, M.M.; Jacobson, J.A. Ultrasound-guided tendon fenestration. Semin. Musculoskelet. Radiol. 2013, 17, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Vajapey, S.; Ghenbot, S.; Baria, M.R.; Magnussen, R.A.; Vasileff, W.K. Utility of Percutaneous Ultrasonic Tenotomy for Tendinopathies: A Systematic Review. Sports Health 2020, 13, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Ankem, H.K.; Kamineni, S. Arthroscopic Tennis Elbow Release: Outcomes Correlated to Associated Lesions (SS-50). Arthroscopy 2012, 28, e27. [Google Scholar] [CrossRef]
- Arrigoni, P.; Fossati, C.; Zottarelli, L.; Brady, P.C.; Cabitza, P.; Randelli, P. 70° Frontal Visualization of Lateral Compartment of the Elbow Allows Extensor Carpi Radialis Brevis Tendon Release With Preservation of the Radial Lateral Collateral Ligament. Arthroscopy 2014, 30, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Babaqi, A.A.; Kotb, M.M.; Said, H.G.; AbdelHamid, M.M.; ElKady, H.A.; ElAssal, M.A. Short-term evaluation of arthroscopic management of tennis elbow; including resection of radio-capitellar capsular complex. J. Orthop. 2014, 11, 82–86. [Google Scholar] [CrossRef]
- Baraza, N.; Robinson, M.P.; Sakaleshpura Chandrashekar, N.K.; Perry, J.A.; Regan, W.D. Extra-articular arthroscopic release of lateral epicondylitis: A prospective study. JSES Rev. Rep. Tech. 2021, 1, 398–401. [Google Scholar] [CrossRef]
- Behazin, M.; Kachooei, A.R. Arthroscopic Recession Technique in the Surgery of Tennis Elbow by Sharp Cutting the Extensor Carpi Radialis Brevis (ECRB) Tendon Origin. Arch. Bone Jt. Surg. 2021, 9, 174–179. [Google Scholar] [CrossRef]
- Das, D.; Maffulli, N. Surgical management of tennis elbow. J. Sports Med. Phys. Fitness 2002, 42, 190–197. [Google Scholar]
- Martynetz, F.A.; Faria, F.F.; Superti, M.J.; Filho, S.M.; Oliveira, L.M.M. Evaluation of patients submitted to the arthroscopic treatment of the lateral epicondylitis refractory to the conservative treatment. Rev. Bras. Ortop. 2013, 48, 532–537. [Google Scholar] [CrossRef] [PubMed]
- Matache, B.A.; Berdusco, R.; Momoli, F.; Lapner, P.L.C.; Pollock, J.W. A randomized, double-blind sham-controlled trial on the efficacy of arthroscopic tennis elbow release for the management of chronic lateral epicondylitis. BMC Musculoskelet. Disord. 2016, 17, 239. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, A.N.; Fregoneze, M.; Santos, P.D.; da Silva, L.A.; Pires, D.C.; Neto, J.d.M.; Rossato, L.H.; Checchia, S.L. Evaluation of the results from arthroscopic treatment of the lateral epicondylitis. Rev. Bras. Ortop. 2015, 45, 136–140. [Google Scholar] [CrossRef]
- Oki, G.; Iba, K.; Sasaki, K.; Yamashita, T.; Wada, T. Time to functional recovery after arthroscopic surgery for tennis elbow. J. Shoulder Elb. Surg. 2014, 23, 1527–1531. [Google Scholar] [CrossRef]
- Saremi, H.; Seydan, M.A.; Seifrabiei, M.A. Midterm Results of Arthroscopic Treatment for Recalcitrant Lateral Epicondylitis of the Elbow. Arch. Bone Jt. Surg. 2020, 8, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.W.; Jeon, N.; Jang, M.C.; Park, M.J. Clinical Outcomes of Arthroscopic Debridement for Lateral Epicondylitis with Partial Injury of the Lateral Collateral Ligament Complex. Clin. Orthop. Surg. 2022, 14, 434. [Google Scholar] [CrossRef] [PubMed]
- Soeur, L.; Desmoineaux, P.; Devillier, A.; Pujol, N.; Beaufils, P. Outcomes of arthroscopic lateral epicondylitis release: Should we treat earlier? Orthop. Traumatol. Surg. Res. OTSR 2016, 102, 775–780. [Google Scholar] [CrossRef]
- Torudom, Y.; Thepchatri, A. Open Tennis Elbow Release Surgery (in Chronic Case). J. Med. Assoc. Thail. Chotmaihet Thangphaet. 2013, 96 (Suppl. S1), S101–S103. [Google Scholar]
- Vander Voort, W.D.; Saad, M.; Falgout, D.; Blaine, T.A.; Kassam, H.F. Small-Bore Needle Arthroscopic Extensor Carpi Radialis Brevis Release Results in Improved Outcomes at One Year Postoperatively. Arthrosc. Sports Med. Rehabil. 2023, 5, e159–e164. [Google Scholar] [CrossRef]
- Verhaar, J.; Walenkamp, G.; Kester, A.; Mameren, H.; Linden, T. Lateral Extensor Release for Tennis Elbow. A Prospective Long-Term. Follow-up Study. J. Bone Jt. Surg. Am. 1993, 75, 1034–1043. [Google Scholar] [CrossRef]
- Amroodi, M.N.; Mahmuudi, A.; Salariyeh, M.; Amiri, A. Surgical Treatment of Tennis Elbow; Minimal Incision Technique. Arch. Bone Jt. Surg. 2016, 4, 366–370. [Google Scholar] [PubMed]
- Lungu, E.; Grondin, P.; Tétreault, P.; Desmeules, F.; Cloutier, G.; Choinière, M.; Bureau, N.J. Ultrasound-guided tendon fenestration versus open-release surgery for the treatment of chronic lateral epicondylosis of the elbow: Protocol for a prospective, randomised, single blinded study. BMJ Open 2018, 8, e021373. [Google Scholar] [CrossRef] [PubMed]
- Solheim, E.; Hegna, J.; Øyen, J. Extensor tendon release in tennis elbow: Results and prognostic factors in 80 elbows. Knee Surg. Sports Traumatol. Arthrosc. 2011, 19, 1023–1027. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Broome, G. Patient satisfaction after open release of common extensor origin in treating resistant tennis elbow. Acta Orthop. Belg. 2007, 73, 443–445. [Google Scholar] [PubMed]
- Carlier, Y.; Bonichon, F.; Peuchant, A. Recalcitrant lateral epicondylitis: Early results with a new technique combining ultrasonographic percutaneous tenotomy with platelet-rich plasma injection. Orthop. Traumatol. Surg. Res. OTSR 2021, 107, 102604. [Google Scholar] [CrossRef]
- Kaleli, T.; Ozturk, C.; Temiz, A.; Tirelioglu, O. Surgical treatment of tennis elbow: Percutaneous release of the common extensor origin. Acta Orthop. Belg. 2004, 70, 131–133. [Google Scholar]
- Nazar, M.; Lipscombe, S.; Morapudi, S.; Tuvo, G.; Kebrle, R.; Marlow, W.; Waseem, M. Percutaneous Tennis Elbow Release Under Local Anaesthesia. Open Orthop. J. 2012, 6, 129–132. [Google Scholar] [CrossRef]
- Yigit, S. Medium-term results after treatment of percutaneous tennis elbow release under local anaesthesia. Acta Bio Medica Atenei Parm. 2020, 91, 305–309. [Google Scholar] [CrossRef]
- Bhandari, L.; Bouri, F.; Ozyurekoglu, T. Open Versus Arthroscopic Treatment of Chronic Lateral Epicondylitis and Worker’s Compensation. Arthrosc. Sports Med. Rehabil. 2020, 2, e771–e778. [Google Scholar] [CrossRef]
- Boden, A.L.; Scott, M.T.; Dalwadi, P.P.; Mautner, K.; Mason, R.A.; Gottschalk, M.B. Platelet-rich plasma versus Tenex in the treatment of medial and lateral epicondylitis. J. Shoulder Elb. Surg. 2019, 28, 112–119. [Google Scholar] [CrossRef]
- Choudhury, A.K.; Niraula, B.B.; Bansal, S.; Gupta, T.; Das, L.; Goyal, T. Arthroscopic release and decortication provide earlier return to work with similar patient satisfaction compared to continued intensive conservative therapy for recalcitrant tennis elbow: A retrospective observational study. Eur. J. Orthop. Surg. Traumatol. Orthop. Traumatol. 2024, 34, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Dabkara, P.; Daniel, J.; Sharma, M.; Bose, A. Study to Compare the Effectiveness of Active Release Technique Versus Deep Friction Massage on Pain, Grip Strength and Functional Performance in Patients with Chronic Lateral Epicondylitis. Indian J. Public Health Res. Dev. 2022, 13, 222–227. [Google Scholar] [CrossRef]
- Kim, D.S.; Chung, H.J.; Yi, C.H.; Kim, S.H. Comparison of the Clinical Outcomes of Open Surgery Versus Arthroscopic Surgery for Chronic Refractory Lateral Epicondylitis of the Elbow. Orthopedics 2018, 41, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Park, I.; Hyun, H.S.; Shin, S.J. A Comparison of Radiofrequency-Based Microtenotomy and Arthroscopic Release of the Extensor Carpi Radialis Brevis Tendon in Recalcitrant Lateral Epicondylitis: A Prospective Randomized Controlled Study. Arthrosc. J. Arthrosc. Relat. Surg. Off. Publ. Arthrosc. Assoc. N. Am. Int. Arthrosc. Assoc. 2018, 34, 1439–1446. [Google Scholar] [CrossRef] [PubMed]
- Meknas, K.; Al Hassoni, T.N.; Odden-Miland, Å.; Castillejo, M.; Kartus, J. Medium-Term Results After Treatment of Recalcitrant Lateral Epicondylitis. Orthop. J. Sports Med. 2013, 1, 2325967113505433. [Google Scholar] [CrossRef]
- Merolla, G.; Dellabiancia, F.; Ricci, A.; Mussoni, M.P.; Nucci, S.; Zanoli, G.; Paladini, P.; Porcellini, G. Arthroscopic Debridement Versus Platelet-Rich Plasma Injection: A Prospective, Randomized, Comparative Study of Chronic Lateral Epicondylitis With a Nearly 2-Year Follow-Up. Arthroscopy 2017, 33, 1320–1329. [Google Scholar] [CrossRef]
- Othman, A.M.A. Arthroscopic versus percutaneous release of common extensor origin for treatment of chronic tennis elbow. Arch. Orthop. Trauma. Surg. 2011, 131, 383–388. [Google Scholar] [CrossRef]
- Radwan, Y.A.; ElSobhi, G.; Badawy, W.S.; Reda, A.; Khalid, S. Resistant tennis elbow: Shock-wave therapy versus percutaneous tenotomy. Int. Orthop. 2008, 32, 671–677. [Google Scholar] [CrossRef]
- Solheim, E.; Hegna, J.; Øyen, J. Arthroscopic versus open tennis elbow release: 3- to 6-year results of a case-control series of 305 elbows. Arthrosc. J. Arthrosc. Relat. Surg. Off. Publ. Arthrosc. Assoc. N. Am. Int. Arthrosc. Assoc. 2013, 29, 854–859. [Google Scholar] [CrossRef]
- Watts, A.C.; Morgan, B.W.; Birch, A.; Nuttall, D.; Trail, I.A. Comparing leukocyte-rich platelet-rich plasma injection with surgical intervention for the management of refractory tennis elbow. A prospective randomised trial. Shoulder Elb. 2020, 12, 46–53. [Google Scholar] [CrossRef]
- Degen, R.M.; Cancienne, J.M.; Camp, C.L.; Altchek, D.W.; Dines, J.S.; Werner, B.C. Three or more preoperative injections is the most significant risk factor for revision surgery after operative treatment of lateral epicondylitis: An analysis of 3863 patients. J. Shoulder Elb. Surg. 2017, 26, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Delgado, D.A.; Lambert, B.S.; Boutris, N.; McCulloch, P.C.; Robbins, A.B.; Moreno, M.R.; Harris, J.D. Validation of Digital Visual Analog Scale Pain Scoring With a Traditional Paper-based Visual Analog Scale in Adults. J. Am. Acad. Orthop. Surg. Glob. Res. Rev. 2018, 2, e088. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.K.W.; King, G.J.W. Chapter 44—The Management of the Failed Total Elbow Arthroplasty. In Operative Elbow Surgery; Stanley, D., Trail, I.A., Eds.; Churchill Livingstone: London, UK, 2012; pp. 665–694. [Google Scholar] [CrossRef]
- Gummesson, C.; Atroshi, I.; Ekdahl, C. The disabilities of the arm, shoulder and hand (DASH) outcome questionnaire: Longitudinal construct validity and measuring self-rated health change after surgery. BMC Musculoskelet. Disord. 2003, 4, 11. [Google Scholar] [CrossRef] [PubMed]
Study | Surgical Technique | Number of Elbows, Total, Individual Treatment Group (Treatment) | Age, Years, Mean ± SD (Min − Max) | Sex (n, %) | Symptom Duration, Months, Mean ± SD (Min − Max) | Duration of Nonoperative Treatment, Months, Mean ± SD (Min − Max) | Dominant Hand Affected (%) | Mean Follow-Up, Months, Mean ± SD (Min − Max) |
---|---|---|---|---|---|---|---|---|
Ankem et al. [15] | A | 102 | NA | NA | NR | ≥6 | NR | 36 (24–45) |
Arrigoni et al. [16] | A | 18 | 46 (25–59) | M (5, 27.7%); F (13, 72.3%) | NR | ≥12 | 55% | 24 (24–30) |
Babaqi et al. [17] | A | 33 | 33.7 (24–42) | M (22, 66.7%); F (11, 33.3%) | NR | 16.3 (6–36) | 55% | 14.4 (12–24) |
Baraza et al. [18] | A | 26 | 48 (27–57) | NA | NR | ≥6 | NR | 72 (12–132) |
Behazin et al. [19] | A | 11 | 42 ± 6.8 | M (3, 27%); F (8, 73%) | 18 | NR | 90% | 12 |
Das et al. [20] | A | 125 | M, 47 F, 45 | M (40, 36%); F (71, 64%) | NR | NR | NR | 52.8 (≥24) |
Martynetz et al. [21] | A | 15 | 46 (23–56) | M (8, 57%); F (6, 43%) | NR | 30 (18–72) | 80% | 41 (24–72) |
Matache et al. [22] | A | 68 | NA | NA | ≥6 | 3 | NR | 24 |
Miyazaki et al. [23] | A | 20 | 41.7 | M (8, 40%); F (12, 60%) | 28.5 (6–136) | ≥6 | 65% | 20 (12–48) |
Oki et al. [24] | A | 23 | 49 | M (5, 21.7%); F (18, 78.3%) | 32 (6–338) | ≥6 | NR | 24 |
Saremi et al. [25] | A | 40 | 42.9 ± 6.4 | M (12, 30%); F (28, 70%) | 10 (6–18) | ≥6 | 55% | 42 |
Shim et al. [26] | A | 53 | 50 (27–77) | M (23, 43.4%); F (30, 56.6%) | NR | >12 | 58% | 30 (24–49) |
Soeur et al. [27] | A | 35 | 48 ± 8.4 | M (20, 57%); F (15, 43%) | 18 (6–106) | ≥6 | NR | 48 (12–144) |
Torudom et al. [28] | A | 22 | 44.9 ± 8.5 | M (8, 46.3%); F (14, 53.7%) | 20.6 ± 5.5 | 18.3 ± 3.3 | NR | NR |
Vander Voort et al. [29] | A | 13 | NA | NA | NR | 6 | NR | 12 |
Verhaar et al. [30] | A | 63 | 45 (25–67) | M (42, 66.7%); F (21, 33.3%) | 12 | 0.96 (0.3–48) | 84% | 59 (50–65) |
Amroodi et al. [31] | O1 | 24 | 38.5 (25–64) | M (9, 37.5%); F (15, 62.5%) | 44.4 | ≥12 | 62.5% | 34.8 |
Lungu et al. [32] | O1 | 64 | NA | NA | ≥6 | ≥6 | NR | 12 |
Solheim et al. 2011 [33] | O1 | 80 | 46 (34–64) | M (38, 49%); F (39, 51%) | 13 (6–72) | ≥6 | 71% | 48 |
Thomas et al. [34] | O1 | 24 | (38–59) | M (10, 55.5%); F (8, 44.6%) | 23 | NR | 58% | NR |
Carlier et al. [35] | P | 261 | 47.6 ± 8.3 | M (127, 50.4%); F (125, 49.6%) | 28.9 ± 24.4 | ≥6 | NR | 3 |
Kaleli et al. [36] | P | 26 | NA | M (12, 46%); F (14, 54%) | 8.9 | Conservative methods before surgery | NR | 32 |
Nazar et al. [37] | P | 30 | 55 (26–71) | M (7, 29%); F (17, 71%) | 40 (7–120) | ≥2 | 77% | 36 (1–71) |
Yigit et al. [38] | P | 47 | 46 (28–66) | M (19, 46.3%); F (22, 53.7%) | NR | >6 | 74% | NR |
Bhandari et al. [39] | A, O1 | 72, 30 (A), 42 (O1) | NA | M (32, 44%); F (40, 56%) | 9 | 9 | NR | ≥3 |
Boden et al. [40] | R, T | 62, 32 (R), 30 (T) | 47 ± 12 (R) 51 ± 8 (T) | M (22, 69%) (R), F (10, 31%) (R) M (18, 60%) (T), F (12, 40%) (T) | 26 ± 24 (R) 25 ± 21 (T) | NR | NR | 17 (R) 10 (T) |
Choudhury et al. [41] | A, C | 47, 24 (A), 23 (C) | NA | NA | NR | NR | NR | ≥42 |
Dabkara et al. [42] | C, A | 47, 23 (C), 24 (A) | NA | NA | NR | >6 | NR | ≥42 |
Kim et al. [43] | O2, A | 68, 34 (O2), 34 (A) | 48 ± 8.1 (O2) 49 ± 7.8 (A) | O2 [M (16, 47%); F (18, 53%)] A [M (12, 35%); F (22, 65%)] | 25.4 ± 6.1 (O2) 26.1 ± 6.8 (A) | NR | 76% (O2) 71% (A) | NR |
Lee et al. [44] | A, U | 46, 24 (A), 22 (U) | 51.25 ± 8.57 (A) 51.59 ± 5.75 (U) | A [M (11, 46%); F (13, 34%)] U [ M (8) (36%); F (14, 64%)] | 26.17 ± 8.14 (A) 23.91 ± 6.98 (U) | ≥6 | 63% (A) 68% (U) | 24 |
Meknas et al. [45] | O1, U | 24, 11 (O1), 13 (U) | 49.2 (36–62) (O1) 46.2 (30–64) (U) | M (13, 54%); F (11, 46%) | 28 (12–60) (O1) 22 (12–50) (U) | ≥12 | NR | 75.5 (O1) 68.4 (U) |
Merolla et al. [46] | A, R | 101, 50 (A), 51 (R) | all >18 | NA | 0.56 (A) 0.44 (R) | ≥4 | NR | 24 |
Othman et al. [47] | A, P | 33, 14 (A), 19 (P) | 42 48 | A [M (8, 57%); F (6, 43%)] P [M (12, 63%); F (7, 37%)] | >6 | >6 | NR | 12 (A) 10 (P) |
Radwan et al. [48] | U, P | 56 29 (U), 27 (P) | 40.14 (U) 39.26 (P) | U [M (15, 52%); F (14, 48%)] P [M (18, 67%); F (9, 33%)] | 16.72 (U) 18.26 (P) | ≥6 | 66% (U) 63% (P) | 12 |
Solheim et al. 2013 [49] | A, O1 | 305 225 (A), 80 (O1) | 46 ± 8 | ~50% females in both groups | 24 ± 23 (A) 19 ± 15 (O1) | ≥6 | 71% (A) 76% (O1) | 48 |
Watts et al. [50] | O2, R | 81 41 (O2), 40 (R) | NA | NA | ≥6 | ≥4 | NR | ≥12 |
Degen et al. [51] | NA | 3863 | 71.6% aged <65 years | M (1654, 42.8%); F (2209, 57.2%) | NR | NR | NR | ≥24 |
Study | Patient Outcome Measurements |
---|---|
Amroodi et al. [31] | VAS |
Ankem et al. [15] | Grip Strength, MEPS, DASH |
Arrigoni et al. [16] | MEPS, DASH, Andrews–Carson Score |
Babaqi et al. [17] | MEPS, VAS, DASH, PRTEE |
Baraza et al. [18] | MEPS |
Behazin et al. [19] | MEPS, DASH, PRTEE |
Bhandari et al. [39] | NA |
Boden et al. [40] | VAS, DASH, EuroQol-5D (EQ5D) Scores |
Carlier et al. [35] | Grip Strength, MEPS, VAS, DASH, PRTEE, Elbow Self-Assessment Score (ESAS) |
Choudhury et al. [41] | NA |
Dabkara et al. [42] | NA |
Das et al. [20] | NA |
Degen et al. [51] | Incidence of Failure/Revision Surgery, Time to Revision Surgery |
Kaleli et al. [36] | Pain Relief |
Kim et al. [43] | Grip Strength, VAS, DASH |
Lee et al. [44] | Grip Strength, MEPS, VAS, DASH, Flexion–Extension Arc |
Lungu et al. [32] | NA |
Martynetz et al. [21] | MEPS, DASH |
Matache et al. [22] | NA |
Meknas et al. [45] | Grip Strength, MEPS, VAS |
Merolla et al. [46] | Grip Strength, VAS, PRTEE |
Miyazaki et al. [23] | AMA Criteria |
Nazar et al. [37] | NA |
Oki et al. [24] | Grip Strength, VAS, DASH, JOA score |
Othman [47] | VAS, DASH |
Radwan et al. [48] | NA |
Saremi et al. [25] | Grip Strength, VAS, DASH |
Shim et al. [26] | Grip Strength, DASH, Nirschl Score |
Soeur et al. [27] | DASH |
Solheim et al. 2011 [33] | DASH |
Solheim et al. 2013 [49] | DASH |
Thomas et al. [34] | Excellent Pain Relief |
Torudom et al. [28] | Grip Strength, VAS |
Vander Voort et al. [29] | DASH, Single Assessment Numerical Evaluation (SANE) Scores |
Verhaar et al. [30] | Grip Strength, Pain, and Tenderness |
Watts et al. [50] | Improvement in Pain |
Yigit [38] | MEPS, Postoperative Pain Score |
Open | Arthroscopic | Percutaneous | Ultrasonic | Tenex | |
---|---|---|---|---|---|
Grip strength [Pre; Post (Difference)] | |||||
Ankem et al. [15] | NR; >35% (−) | ||||
Carlier et al. [35] | 8.3 lbs; 8.3 ± 10 lbs (0) | ||||
Kim et al. [43] | 79.4% ± 3.5%; 94.4% ± 4.1% (+15) | 77.3% ± 3.3%; 91% ± 3.7% (+13.7%) | |||
Lee et al. [44] | 20.2 ± 6.35 lbs; 25.32 ± 6.55 lbs (+5.12) | 19.97 ± 6.74 lbs; 26.00 ± 6.91 lbs (+6.03) | |||
Meknas et al. [45] | 29.1 ± 12.9 (15–54) lbs; 37.7 ± 6.1(28–42) lbs (+8.6) | 28.3 ± 16.9 (8–54) lbs; 33.8 ± 13.1 (8–58) lbs (+5.5) | |||
Merolla et al. [46] | 26.6 ± 5.6 lbs; 47.3 ± 4.8 lbs (+20.7) | ||||
Oki et al. [24] | 66.1%; 88.7% (+22.6) | ||||
Saremi et al. [25] | NR; 38.65 ± 19.16 lbs (−) | ||||
Shim et al. [26] | NR; 4.3% ± 30.3% (−) | ||||
Torudom et al. [28] | 18.6 ± 3.1 lbs; 35.3 ± 3.8 lbs (16.7) | ||||
Verhaar et al. [30] | 18.8 ± 11.5 lbs; 35.4 ± 13.6 lbs (+16.6) | ||||
Mayo Elbow Performance Score, MEPS [Pre; Post (Difference)] | |||||
Ankem et al. [15] | 57; 89 (+32) | ||||
Arrigoni et al. [16] | NR; 82.5 (range, 60–100) (−) | ||||
Babaqi et al. [17] | 61.82; 94.10 (+32.9) | ||||
Baraza et al. [18] | 47.5; 90.2 (+42.7) | ||||
Behazin et al. [19] | 56 ± 9; 90 ± 10 (+34) | ||||
Carlier et al. [35] | 67.4; 85.9 (+18.5) | ||||
Lee et al. [44] | 55.2 ± 6.3; 95.4 ± 8.7 (+40.2) | 53.9 ± 6.7; 95.7 ± 6.8 (+41.8) | |||
Martynetz et al. [21] | NR; 90 (−) | ||||
Meknas et al. [45] | 60 (30–85); 100 (70–100) (+40) | 55 (40–80); 100 (65–100) (+45) | |||
Yigit [38] | NR; 82 (40–100) (−) | ||||
Visual Analog Pain Scale (VAS) [Pre; Post (Difference)] | |||||
Amroodi et al. [31] | 7.2; 3.5 (−3.7) | ||||
Babaqi et al. [17] | 8.64; 1.48 (−7.16) | ||||
Boden et al. [40] | 5.5 ± 0.8; 2.2 ± 0.5 (−3.3) | ||||
Carlier et al. [35] | 7.4 ± 1.14; 4 ± 2.2 (−3.4) | ||||
Kim et al. [43] | 5.8 ± 0.9; 0.8 ± 0.7 (−5) | 1.2 ± 0.9; 0.8 ± 0.7 (−0.4) | |||
Lee et al. [44] | 7.33 ± 1.05; 3.27 ± 1.07 (−4.06) | 7.27 ± 0.94; 1.75 ± 1.22 (−5.52) | |||
Meknas et al. [45] | 6.4 ± 1.5 (4–8); 1.3 ± 1.7 (0–5) (−5.1) | 7.1 ± 1.6 (5–10); 1.4 ± 2.3 (0–5) (−5.7) | |||
Merolla et al. [46] | 9 (8–10); 5 (3–6) (−4) | ||||
Othman [47] | 9.1; 2 (−7.1) | 9; 2.1 (−6.9) | |||
Saremi et al. [25] | 7.05; 3.2 (−3.85) | ||||
Torudom et al. [28] | 6.7; NR (−) | ||||
Disabilities of the Arm, Shoulder, and Hand Questionnaire (DASH) [Pre; Post (Difference)] | |||||
Arrigoni et al. [16] | NR; 20.14 (range, 5–57.5) (−) | ||||
Babaqi et al. [17] | 55.53; 10.39 (−44.94) | ||||
Behazin et al. [19] | 56 ± 15; 15 ± 16 (−41) | ||||
Boden et al. [40] | 35.9 ± 5.0; 12.5 ± 3.4 (−23.4) | ||||
Carlier et al. [35] | 56.1; 23.1 (−33) | ||||
Kim et al. [43] | 70.7 ± 15.1; 29.3 ± 18.4 (−41.4) | 69.2 ± 16.4; 40.4 ± 16.2 (−28.8) | |||
Martynetz et al. [21] | NR; 57 (−) | ||||
Oki et al. [24] | 32; 15 (−17) | ||||
Othman [47] | 72; 48 (−24) | 70; 50 (20) | |||
Saremi et al. [25] | 63.18; 25.68 (−37.5) | ||||
Shim et al. [26] | NR; 15.9 ± 19.1 (−) | ||||
Soeur et al. [27] | NR; 17.1 ± 24.2 (−) | ||||
Solheim et al. 2011 [33] | 61 ± 16; 17 ± 20 (−44) | ||||
Solheim et al. 2013 [49] | 60.5 ± 16.5; 11.6 ± 15.6 (−48.9) | 60.2 ± 15.4; 17.8 ± 19.4 (−42.4) | |||
Vander Voort et al. [29] | 54.0; 26.9 (−27.1) |
Patient Satisfaction | Open | Arthroscopic | Percutaneous | Tenex |
---|---|---|---|---|
Very Pleased | ||||
Amroodi et al. [31] | O1 | 24 | 38.5, 25–64 | NA |
Kim et al. [43] | ||||
Oki et al. [24] | ||||
Othman et al. [47] | ||||
Solheim et al. [33] | O1 | 80 | 46, 34–64 | 23 |
Solheim et al. [49] | A, O1 | 225, 80 | 46 | Patients with TE refractory to conservative care for at least 6 months |
Satisfied | ||||
Babaqi et al. [17] | 93.5% | |||
Boden et al. [40] | 80% | |||
Carlier et al. [35] | 78.3% ± 19.4 | |||
Das et al. [20] | 73% | |||
Martynetz et al. [21] | 85% | |||
Miyazaki et al. [23] | 65% | |||
Othman [47] | 42.85% | 52.63% | ||
Vander Voort et al. [29] | 92.3% | |||
Dissatisfied | ||||
Othman [47] | 7.14% | 10.52% |
Open (Range) | Arthroscopic (Range) | Percutaneous | |
---|---|---|---|
Amroodi et al. [31] | 4.8 weeks (2–9 weeks) | ||
Babaqi et al. [17] | 8 days (3–21 days) | ||
Choudhury et al. [41] | 4.64 mo | ||
Dabkara et al. [42] | 6.13 mo | ||
Kim et al. [43] | 5 weeks (3–7 weeks) | 3 weeks (1–6 weeks) | |
Oki et al. [24] | 8.6 weeks | ||
Othman [47] | 3 weeks | 3 weeks | |
Saremi et al. [25] | 18 days |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ansari, A.; Shoaib, D.; Tanbour, Y.; Marchese, C.R.; Pautler, B.J.; Baghdadi, A.; Sloan, S.; Dennis, J.F. The Efficacy of Different Tenotomies in the Treatment of Lateral Epicondylitis: A Systematic Review. J. Clin. Med. 2024, 13, 6764. https://doi.org/10.3390/jcm13226764
Ansari A, Shoaib D, Tanbour Y, Marchese CR, Pautler BJ, Baghdadi A, Sloan S, Dennis JF. The Efficacy of Different Tenotomies in the Treatment of Lateral Epicondylitis: A Systematic Review. Journal of Clinical Medicine. 2024; 13(22):6764. https://doi.org/10.3390/jcm13226764
Chicago/Turabian StyleAnsari, Ayub, Dania Shoaib, Yazan Tanbour, Charles R. Marchese, Benjamin J. Pautler, Abdullah Baghdadi, Sara Sloan, and Jennifer F. Dennis. 2024. "The Efficacy of Different Tenotomies in the Treatment of Lateral Epicondylitis: A Systematic Review" Journal of Clinical Medicine 13, no. 22: 6764. https://doi.org/10.3390/jcm13226764
APA StyleAnsari, A., Shoaib, D., Tanbour, Y., Marchese, C. R., Pautler, B. J., Baghdadi, A., Sloan, S., & Dennis, J. F. (2024). The Efficacy of Different Tenotomies in the Treatment of Lateral Epicondylitis: A Systematic Review. Journal of Clinical Medicine, 13(22), 6764. https://doi.org/10.3390/jcm13226764