Individualised Positive End-Expiratory Pressure Settings Reduce the Incidence of Postoperative Pulmonary Complications: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Primary and Secondary Outcomes
2.3. Search Method for Identification of Studies
2.4. Selection of Included Studies
2.5. Data Extraction
2.6. Assessment of Methodologic Quality and Risk of Bias
2.7. Measurement of Outcome Data
2.8. Data Synthesis and Analysis
2.9. Assessment of Heterogeneity
2.10. Protocol Deviation
3. Results
3.1. Characteristics of the Included Studies
3.1.1. PEEP Settings
3.1.2. Types of Surgery
3.2. Primary Outcome
Postoperative Pulmonary Complications (PPCs)
3.3. Secondary Outcomes
3.3.1. PaO2/FiO2 at the End of Surgery
3.3.2. Titrated PEEP Values in the SGs
3.3.3. Vasopressor Requirement
3.3.4. Respiratory Mechanics
3.3.5. Duration of Anaesthesia and Surgery
3.3.6. Length of Hospital Stay, Length of ICU Stay, and Mortality
3.3.7. Outcomes with Insufficient Reporting
3.3.8. Risk of Bias and Quality Assessment
4. Discussion
4.1. Positive End-Expiratory Pressure Setting
4.2. Lung-Function-Related Outcomes
4.3. Respiratory Mechanics
4.4. Other Outcomes
4.5. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hedenstierna, G.E. Lennart Mechanisms of Atelectasis in the Perioperative Period. Best Pract. Res. Clin. Anaesthesiol. 2010, 24, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Neto, A.S.; Hemmes, S.N.; Barbas, C.S.; Beiderlinden, M.; Fernandez-Bustamante, A.; Futier, E.; Gajic, O.; El-Tahan, M.R.; Al Ghamdi, A.A.; Günay, E.; et al. Association between Driving Pressure and Development of Postoperative Pulmonary Complications in Patients Undergoing Mechanical Ventilation for General Anaesthesia: A Meta-Analysis of Individual Patient Data. Lancet Respir. Med. 2016, 4, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Lagier, D.; Lee, J.W.; Vidal Melo, M.F. Perioperative Pulmonary Atelectasis: Part I. Biology and Mechanisms. Anesthesiology 2021, 136, 181–205. [Google Scholar] [CrossRef]
- Pereira, S.M.; Tucci, M.R.; Morais, C.C.; Simões, C.M.; Tonelotto, B.F.; Pompeo, M.S.; Kay, F.U.; Pelosi, P.; Vieira, J.E.; Amato, M.B. Individual Positive End-Expiratory Pressure Settings Optimize Intraoperative Mechanical Ventilation and Reduce Postoperative Atelectasis. Anesthesiology 2018, 129, 1070–1081. [Google Scholar] [CrossRef]
- Hedenstierna, G. Optimum PEEP During Anesthesia and in Intensive Care Is a Compromise but Is Better than Nothing. Turk. J. Anaesthesiol. Reanim. 2016, 44, 161–162. [Google Scholar] [CrossRef]
- Liu, J.; Meng, Z.; Zhang, Y.; Wang, G.; Xie, J. Effect of Intraoperative Lung-Protective Mechanical Ventilation on Pulmonary Oxygenation Function and Postoperative Pulmonary Complications after Laparoscopic Radical Gastrectomy. Braz. J. Med. Biol. Res. Rev. Bras. Pesqui. Medicas Biol. 2019, 52, e8523. [Google Scholar] [CrossRef]
- Gattinoni, L.; Pelosi, P.; Crotti, S.; Valenza, F. Effects of Positive End-Expiratory Pressure on Regional Distribution of Tidal Volume and Recruitment in Adult Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 1995, 151, 1807–1814. [Google Scholar] [CrossRef]
- Maisch, S.; Reissmann, H.; Fuellekrug, B.; Weismann, D.; Rutkowski, T.; Tusman, G.; Bohm, S.H. Compliance and Dead Space Fraction Indicate an Optimal Level of Positive End-Expiratory Pressure after Recruitment in Anesthetized Patients. Anesth. Analg. 2008, 106, 175–181. [Google Scholar] [CrossRef]
- Ruszkai, Z.; Kiss, E.; László, I.; Bokrétás, G.P.; Vizserálek, D.; Vámossy, I.; Surány, E.; Buzogány, I.; Bajory, Z.; Molnár, Z. Effects of Intraoperative Positive End-Expiratory Pressure Optimization on Respiratory Mechanics and the Inflammatory Response: A Randomized Controlled Trial. J. Clin. Monit. Comput. 2020, 35, 469–482. [Google Scholar] [CrossRef]
- Nguyen, T.K.; Nguyen, V.L.; Nguyen, T.G.; Mai, D.H.; Nguyen, N.Q.; Vu, T.A.; Le, A.N.; Nguyen, Q.H.; Nguyen, C.T.; Nguyen, D.T. Lung-Protective Mechanical Ventilation for Patients Undergoing Abdominal Laparoscopic Surgeries: A Randomized Controlled Trial. BMC Anesthesiol. 2021, 21, 95. [Google Scholar] [CrossRef]
- Xu, Q.; Guo, X.; Liu, J.; Li, S.X.; Ma, H.R.; Wang, F.X.; Lin, J.Y. Effects of Dynamic Individualized PEEP Guided by Driving Pressure in Laparoscopic Surgery on Postoperative Atelectasis in Elderly Patients: A Prospective Randomized Controlled Trial. BMC Anesthesiol. 2022, 22, 72. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, A.B.; Suzumura, É.A.; Laranjeira, L.N.; de Moraes Paisani, D.; Damiani, L.P.; Guimarães, H.P.; Romano, E.R.; de Moraes Regenga, M.; Taniguchi, L.N.T.; Teixeira, C.; et al. Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients with Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA 2017, 318, 1335. [Google Scholar] [CrossRef] [PubMed]
- Ferrando, C.; Soro, M.; Unzueta, C.; Suarez-Sipmann, F.; Canet, J.; Librero, J.; Pozo, N.; Peiró, S.; Llombart, A.; León, I.; et al. Individualised Perioperative Open-Lung Approach versus Standard Protective Ventilation in Abdominal Surgery (iPROVE): A Randomised Controlled Trial. Lancet Respir. Med. 2018, 6, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Nestler, C.; Simon, P.; Petroff, D.; Hammermüller, S.; Kamrath, D.; Wolf, S.; Dietrich, A.; Camilo, L.M.; Beda, A.; Carvalho, A.R.; et al. Individualized Positive End-Expiratory Pressure in Obese Patients during General Anaesthesia: A Randomized Controlled Clinical Trial Using Electrical Impedance Tomography. Br. J. Anaesth. 2017, 119, 1194–1205. [Google Scholar] [CrossRef]
- Fernandez-Bustamante, A.; Sprung, J.; Parker, R.A.; Bartels, K.; Weingarten, T.N.; Kosour, C.; Thompson, B.T.; Melo, M.F.V. Individualized PEEP to Optimise Respiratory Mechanics during Abdominal Surgery: A Pilot Randomised Controlled Trial. Br. J. Anaesth. 2020, 125, 383–392. [Google Scholar] [CrossRef]
- Yoon, H.K.; Kim, B.R.; Yoon, S.; Jeong, Y.H.; Ku, J.H.; Kim, W.H. The Effect of Ventilation with Individualized Positive End-Expiratory Pressure on Postoperative Atelectasis in Patients Undergoing Robot-Assisted Radical Prostatectomy: A Randomized Controlled Trial. J. Clin. Med. 2021, 10, 850. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A.; Cochrane Collaboration. Cochrane Handbook for Systematic Reviews of Interventions; Wiley-Blackwell: Hoboken, NJ, USA, 2020; ISBN 978-1-119-53660-4. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Sterne, J.A.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A Revised Tool for Assessing Risk of Bias in Randomised Trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Abbott, T.E.; Fowler, A.J.; Pelosi, P.; De Abreu, M.G.; Møller, A.M.; Canet, J.; Creagh-Brown, B.; Mythen, M.; Gin, T.; Lalu, M.M.; et al. A Systematic Review and Consensus Definitions for Standardised End-Points in Perioperative Medicine: Pulmonary Complications. Br. J. Anaesth. 2018, 120, 1066–1079. [Google Scholar] [CrossRef]
- Luo, D.; Wan, X.; Liu, J.; Tong, T. Optimally Estimating the Sample Mean from the Sample Size, Median, Mid-Range, and/or Mid-Quartile Range. Stat. Methods Med. Res. 2016, 27, 1785–1805. [Google Scholar] [CrossRef]
- Shi, J.; Luo, D.; Weng, H.; Zeng, X.T.; Lin, L.; Chu, H.; Tong, T. Optimally Estimating the Sample Standard Deviation from the Five-Number Summary. Res. Synth. Methods 2020, 11, 641–654. [Google Scholar] [CrossRef]
- Cooper, H.M.; Hedges, L.V.; Valentine, J.C. (Eds.) The Handbook of Research Synthesis and Meta-Analysis, 2nd ed.; Russell Sage Foundation: New York, NY, USA, 2009; ISBN 978-0-87154-163-5. [Google Scholar]
- Sweeting, M.J.; Sutton, A.C.; Lambert, P. What to Add to Nothing? Use and Avoidance of Continuity Corrections in Meta-Analysis of Sparse Data. Stat. Med. 2004, 23, 1351–1375. [Google Scholar] [CrossRef] [PubMed]
- IntHout, J.; Ioannidis, J.P.; Borm, G.F. The Hartung-Knapp-Sidik-Jonkman Method for Random Effects Meta-Analysis Is Straightforward and Considerably Outperforms the Standard DerSimonian-Laird Method. BMC Med. Res. Methodol. 2014, 14, 25. [Google Scholar] [CrossRef] [PubMed]
- Knapp, G.H. Joachim Improved Tests for a Random Effects Meta-Regression with a Single Covariate. Stat. Med. 2003, 22, 2693–2710. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Balduzzi, S.; Rücker, G.; Schwarzer, G. How to Perform a Meta-Analysis with R: A Practical Tutorial. Evid.-Based Ment. Health 2019, 22, 153–160. [Google Scholar] [CrossRef]
- Harrer, M.; Cuijpers, P.; Furukawa, T.; Ebert, D.; Dmetar. Companion R Package for the Guide “Doing Meta-Analysis in R”; R Package Version 0.0.9000; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Zha, J.; Yu, Y.; Li, G.; Wang, S.; Qiao, S.; Wang, C.; Bo, H. Lung Protection Effect of EIT-Based Individualized Protective Ventilation Strategy in Patients with Partial Pulmonary Resection. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 5459–5467. [Google Scholar] [CrossRef]
- Deeparaj, L.; Kumar, R.; Patel, N.; Ayub, A.; Rewari, V.; Subramaniam, R.; Roy, K.K. Effect of Lung Compliance-Based Optimum Pressure Versus Fixed Positive End-Expiratory Pressure on Lung Atelectasis Assessed by Modified Lung Ultrasound Score in Laparoscopic Gynecological Surgery: A Prospective Randomized Controlled Trial. Cureus 2023, 15, e40278. [Google Scholar] [CrossRef]
- Eichler, L.; Truskowska, K.; Dupree, A.; Busch, P.; Goetz, A.E.; Zöllner, C. Intraoperative Ventilation of Morbidly Obese Patients Guided by Transpulmonary Pressure. Obes. Surg. 2017, 28, 122–129. [Google Scholar] [CrossRef]
- Elshazly, M.; Khair, T.; Bassem, M.; Mansour, M. The Use of Intraoperative Bedside Lung Ultrasound in Optimizing Positive End Expiratory Pressure in Obese Patients Undergoing Laparoscopic Bariatric Surgeries. Surg. Obes. Relat. Dis. Off. J. Am. Soc. Bariatr. Surg. 2020, 17, 372–378. [Google Scholar] [CrossRef]
- Ferrando, C.; Suarez-Sipmann, F.; Tusman, G.; León, I.; Romero, E.; Gracia, E.; Mugarra, A.; Arocas, B.; Pozo, N.; Soro, M.; et al. Open Lung Approach versus Standard Protective Strategies: Effects on Driving Pressure and Ventilatory Efficiency during Anesthesia—A Pilot, Randomized Controlled Trial. PLoS ONE 2017, 12, e0177399. [Google Scholar] [CrossRef]
- Gao, L.; Yang, L.; Pan, L.; Cui, Y.; Zhang, J. Optimal Positive End-Expiratory Pressure Obtained with Titration of a Fraction of Inspiratory Oxygen: A Randomized Controlled Clinical Trial. Ann. Transl. Med. 2023, 11, 203. [Google Scholar] [CrossRef] [PubMed]
- Girrbach, F.; Petroff, D.; Schulz, S.; Hempel, G.; Lange, M.; Klotz, C.; Scherz, S.; Giannella-Neto, A.; Beda, A.; Jardim-Neto, A.; et al. Individualised Positive End-Expiratory Pressure Guided by Electrical Impedance Tomography for Robot-Assisted Laparoscopic Radical Prostatectomy: A Prospective, Randomised Controlled Clinical Trial. Br. J. Anaesth. 2020, 125, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Kim, B.R.; Kim, H.W.; Jung, J.-Y.; Cho, H.-Y.; Seo, J.-H.; Kim, W.H.; Kim, H.-S.; Hwangbo, S.; Yoon, H.-K. Effect of Driving Pressure-Guided Positive End-Expiratory Pressure on Postoperative Pulmonary Complications in Patients Undergoing Laparoscopic or Robotic Surgery: A Randomised Controlled Trial. Br. J. Anaesth. 2023, 131, 955–965. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ma, S.; Chang, X.; Ju, S.; Zhang, M.; Yu, D.; Rong, J. Effect of Pressure-Controlled Ventilation-Volume Guaranteed Mode Combined with Individualized Positive End-Expiratory Pressure on Respiratory Mechanics, Oxygenation and Lung Injury in Patients Undergoing Laparoscopic Surgery in Trendelenburg Position. J. Clin. Monit. Comput. 2022, 36, 1155–1164. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, H.; Wang, J.; Ni, Z.; Liu, Z.; Jiao, J.; Han, Y.; Cao, J. Individualized Positive End-Expiratory Pressure on Postoperative Atelectasis in Patients with Obesity: A Randomized Controlled Clinical Trial. Anesthesiology 2023, 139, 262–273. [Google Scholar] [CrossRef]
- Liu, J.; Huang, X.; Hu, S.; Meng, Z.; He, H. Individualized Lung Protective Ventilation vs. Conventional Ventilation during General Anesthesia in Laparoscopic Total Hysterectomy. Exp. Ther. Med. 2020, 19, 3051–3059. [Google Scholar] [CrossRef]
- Luo, L.; Lin, Y.; Liu, Y.; Gao, X.; Li, C.; Zhang, X.; Wu, J.; Chen, Z. Effect of Individualized PEEP Titration by Ultrasonography on Perioperative Pulmonary Protection and Postoperative Cognitive Function in Patients with Chronic Obstructive Pulmonary Disease. BMC Pulm. Med. 2023, 23, 232. [Google Scholar] [CrossRef]
- Mini, G.; Ray, B.R.; Anand, R.K.; Muthiah, T.; Baidya, D.K.; Rewari, V.; Sahni, P.; Maitra, S. Effect of Driving Pressure-Guided Positive End-Expiratory Pressure (PEEP) Titration on Postoperative Lung Atelectasis in Adult Patients Undergoing Elective Major Abdominal Surgery: A Randomized Controlled Trial. Surgery 2021, 170, 277–283. [Google Scholar] [CrossRef]
- Pan, L.; Gao, L.; Yang, L.; Pan, C.; Yin, Y.; Zhu, Y.; Zhang, J. Effect of EIT-Guided Individualized PEEP Setting on the Incidence of Hypoxemia in Elderly Patients Undergoing Robot-Assisted Radical Prostatectomy. Zhonghua Yi Xue Za Zhi 2022, 102, 3727–3733. [Google Scholar] [CrossRef]
- Piriyapatsom, A.; Phetkampang, S. Effects of Intra-Operative Positive End-Expiratory Pressure Setting Guided by Oesophageal Pressure Measurement on Oxygenation and Respiratory Mechanics during Laparoscopic Gynaecological Surgery: A Randomised Controlled Trial. Eur. J. Anaesthesiol. 2020, 37, 1032–1039. [Google Scholar] [CrossRef]
- Mohammad Salama, M.E.; El-Taher, E.M.; Abdel-Rahman Al-Touny, A.H.; Ismail, R.A.; Abdel-Ghaffar, M.E.E. Effect of Individualized Intraoperative Lung Recruitment Maneuver on Postoperative Pulmonary Complications in Patients Undergoing Upper Abdominal Surgeries under General Anesthesia. Egypt. J. Anaesth. 2023, 39, 496–501. [Google Scholar] [CrossRef]
- Van Hecke, D.; Bidgoli, J.S.; Van der Linden, P. Does Lung Compliance Optimization Through PEEP Manipulations Reduce the Incidence of Postoperative Hypoxemia in Laparoscopic Bariatric Surgery? A Randomized Trial. Obes. Surg. 2019, 29, 1268–1275. [Google Scholar] [CrossRef] [PubMed]
- Xavier, T.B.; Coelho, L.V.; Ferreira, D.A.L.; Cota y Raposeiras, J.M.; Duran, M.S.; Silva, L.A.; Motta-Ribeiro, G.C.D.; Camilo, L.M.; Carvalho, A.R.S.; Silva, P.L. Individualized Positive End-Expiratory Pressure Reduces Driving Pressure in Obese Patients during Laparoscopic Surgery under Pneumoperitoneum: A Randomized Clinical Trial. Front. Physiol. 2024, 15, 1383167. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zhang, P.; Li, L.; Wang, J.; Jiao, P.; Wang, J.; Chu, Q. Driving Pressure-Guided Ventilation in Obese Patients Undergoing Laparoscopic Sleeve Gastrectomy: A Randomized Controlled Trial. Diabetes Metab. Syndr. Obes. 2023, 16, 1515–1523. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, F.; Li, W.; Tong, X.; Xia, R.; Wang, W.; Du, J.; Shi, X. Driving Pressure-Guided Individualized Positive End-Expiratory Pressure in Abdominal Surgery: A Randomized Controlled Trial. Anesth. Analg. 2021, 133, 1197–1205. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, F.; Zhao, Z.; Shao, C.; Xu, X.; Ma, J.; Han, R. Driving Pressure-Guided Ventilation Improves Homogeneity in Lung Gas Distribution for Gynecological Laparoscopy: A Randomized Controlled Trial. Sci. Rep. 2022, 12, 21687. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, C.; Lv, R.; Liu, N.; Huang, Y.; Wang, W.; Yu, L.; Xie, J. Protective Mechanical Ventilation with Optimal PEEP during RARP Improves Oxygenation and Pulmonary Indexes. Trials 2021, 22, 351. [Google Scholar] [CrossRef]
- Xiao, L.; Yu, K.; Yang, J.-J.; Liu, W.-T.; Liu, L.; Miao, H.-H.; Li, T.-Z. Effect of Individualized Positive End-Expiratory Pressure Based on Electrical Impedance Tomography Guidance on Pulmonary Ventilation Distribution in Patients Who Receive Abdominal Thermal Perfusion Chemotherapy. Front. Med. 2023, 10, 1198720. [Google Scholar] [CrossRef]
- Li, P.; Kang, X.; Miao, M.; Zhang, J. Individualized Positive End-Expiratory Pressure (PEEP) during One-Lung Ventilation for Prevention of Postoperative Pulmonary Complications in Patients Undergoing Thoracic Surgery: A Meta-Analysis. Medicine 2021, 100, e26638. [Google Scholar] [CrossRef]
- Zorrilla-Vaca, A.; Grant, M.C.; Urman, R.D.; Frendl, G. Individualised Positive End-Expiratory Pressure in Abdominal Surgery: A Systematic Review and Meta-Analysis. Br. J. Anaesth. 2022, 129, 815–825. [Google Scholar] [CrossRef]
- Writing Committee for the PROBESE Collaborative Group of the PROtective VEntilation Network (PROVEnet) for the Clinical Trial Network of the European Society of Anaesthesiology; Bluth, T.; Serpa Neto, A.; Schultz, M.J.; Pelosi, P.; Gama De Abreu, M. Effect of Intraoperative High Positive End-Expiratory Pressure (PEEP) With Recruitment Maneuvers vs Low PEEP on Postoperative Pulmonary Complications in Obese Patients: A Randomized Clinical Trial. JAMA 2019, 321, 2292. [Google Scholar] [CrossRef] [PubMed]
- Boesing, C.; Schaefer, L.; Schoettler, J.; Quentin, A.; Beck, G.; Thiel, M.; Honeck, P.; Kowalewski, K.; Pelosi, P.; Rocco, P.; et al. Effects of Individualised Positive End-Expiratory Pressure Titration on Respiratory and Haemodynamic Parameters during the Trendelenburg Position with Pneumoperitoneum: A Randomised Crossover Physiologic Trial. Eur. J. Anaesthesiol. 2023, 40, 817–825. [Google Scholar] [CrossRef] [PubMed]
- PROVE Network Investigators for the Clinical Trial Network of the European Society of Anaesthesiology; Hemmes, S.N.; Gama de Abreu, M.; Pelosi, P.; Schultz, M.J. High versus Low Positive End-Expiratory Pressure during General Anaesthesia for Open Abdominal Surgery (PROVHILO Trial): A Multicentre Randomised Controlled Trial. Lancet 2014, 384, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, V.A.; Hilsenbeck, S.G.; Mulrow, C.D.; Dhanda, R.; Sapp, J.; Page, C.P. Incidence and Hospital Stay for Cardiac and Pulmonary Complications after Abdominal Surgery. J. Gen. Intern. Med. 1995, 10, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.K.; Teng, A.; Lee, D.Y.; Rose, K. Pulmonary Complications after Major Abdominal Surgery: National Surgical Quality Improvement Program Analysis. J. Surg. Res. 2015, 198, 441–449. [Google Scholar] [CrossRef]
- Patel, K.; Hadian, F.; Ali, A.; Broadley, G.; Evans, K.; Horder, C.; Johnstone, M.; Langlands, F.; Matthews, J.; Narayan, P.; et al. Postoperative Pulmonary Complications Following Major Elective Abdominal Surgery: A Cohort Study. Perioper. Med. 2016, 5, 10. [Google Scholar] [CrossRef]
- Shander, A.; Fleisher, L.A.; Barie, P.S.; Bigatello, L.M.; Sladen, R.N.; Watson, C.B. Clinical and Economic Burden of Postoperative Pulmonary Complications: Patient Safety Summit on Definition, Risk-Reducing Interventions, and Preventive Strategies. Crit. Care Med. 2011, 39, 2163–2172. [Google Scholar] [CrossRef]
- Ruszkai, Z.; Kiss, E.; Molnár, Z. Perioperative Lung Protective Ventilatory Management During Major Abdominal Surgery: A Hungarian Nationwide Survey. J. Crit. Care Med. 2019, 5, 19–27. [Google Scholar] [CrossRef]
- Futier, E.; Constantin, J.M.; Paugam-Burtz, C.; Pascal, J.; Eurin, M.; Neuschwander, A.; Marret, E.; Beaussier, M.; Gutton, C.; Lefrant, J.Y.; et al. A Trial of Intraoperative Low-Tidal-Volume Ventilation in Abdominal Surgery. N. Engl. J. Med. 2013, 369, 428–437. [Google Scholar] [CrossRef]
- Jiang, L.; Deng, Y.; Xu, F.; Qiao, S.; Wang, C. Individualized PEEP Guided by EIT in Patients Undergoing General Anesthesia: A Systematic Review and Meta-Analysis. J. Clin. Anesth. 2024, 94, 111397. [Google Scholar] [CrossRef]
- Monnet, X.; Shi, R.; Teboul, J.-L. Prediction of Fluid Responsiveness. What’s New? Ann. Intensive Care 2022, 12, 46. [Google Scholar] [CrossRef] [PubMed]
- La Via, L.; Vasile, F.; Perna, F.; Zawadka, M. Prediction of Fluid Responsiveness in Critical Care: Current Evidence and Future Perspective. Trends Anaesth. Crit. Care 2024, 54, 101316. [Google Scholar] [CrossRef]
- Simon, P.; Girrbach, F.; Petroff, D.; Schliewe, N.; Hempel, G.; Lange, M.; Bluth, T.; Gama de Abreu, M.; Beda, A.; Schultz, M.J.; et al. Individualized versus Fixed Positive End-Expiratory Pressure for Intraoperative Mechanical Ventilation in Obese Patients: A Secondary Analysis. Anesthesiology 2021, 134, 887–900. [Google Scholar] [CrossRef] [PubMed]
- Cammarota, G.; Lauro, G.; Sguazzotti, I.; Mariano, I.; Perucca, R.; Messina, A.; Zanoni, M.; Garofalo, E.; Bruni, A.; Della Corte, F.; et al. Esophageal Pressure Versus Gas Exchange to Set PEEP During Intraoperative Ventilation. Respir. Care 2020, 65, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.B.; Barbas, C.S.; Medeiros, D.M.; Magaldi, R.B.; Schettino, G.P.; Lorenzi-Filho, G.; Kairalla, R.A.; Deheinzelin, D.; Munoz, C.; Oliveira, R.; et al. Effect of a Protective-Ventilation Strategy on Mortality in the Acute Respiratory Distress Syndrome. N. Engl. J. Med. 1998, 338, 347–354. [Google Scholar] [CrossRef]
- Whalen, F.X.; Gajic, O.; Thompson, G.B.; Kendrick, M.L.; Que, F.L.; Williams, B.A.; Joyner, M.J.; Hubmayr, R.D.; Warner, D.O.; Sprung, J. The Effects of the Alveolar Recruitment Maneuver and Positive End-Expiratory Pressure on Arterial Oxygenation during Laparoscopic Bariatric Surgery. Anesth. Analg. 2006, 102, 298–305. [Google Scholar] [CrossRef]
- Talley, H.C. Anesthesia Providers’ Knowledge and Use of Alveolar Recruitment Maneuvers. J. Anesth. Clinic. Res. 2012, 3, 2. [Google Scholar] [CrossRef]
- Hess, D.R. Recruitment Maneuvers and PEEP Titration. Respir. Care 2015, 60, 1688–1704. [Google Scholar] [CrossRef]
- Robertson, A.G.; Wiggins, T.; Robertson, F.P.; Huppler, L.; Doleman, B.; Harrison, E.M.; Hollyman, M.; Welbourn, R. Perioperative Mortality in Bariatric Surgery: Metanalysis. Br. J. Surg. 2021, 108, 892–897. [Google Scholar] [CrossRef]
- Pereira, J.F.; Golijanin, D.; Pareek, G.; Guo, R.; Zhang, Z.; Renzulli, J., II; Gershman, B. The Association of Age with Perioperative Morbidity and Mortality among Men Undergoing Radical Prostatectomy. Urol. Oncol. 2017, 36, 157.e7–157.e13. [Google Scholar] [CrossRef]
Study | Patients–Intervention/Control (n) | Type of Surgery | Study Group Titration Method | Control Group PEEP Used (cm H2O) |
---|---|---|---|---|
Deeparaj et al., 2023 [31] | 41/41 | laparoscopic gynaecological surgery | Cstat 1-guided | 5 |
Eichler et al., 2018 [32] | 20/17 | laparoscopic bariatric surgery | Ptp 2-guided | 10 |
Elshazly et al., 2021 [33] | 20/20 | laparoscopic bariatric surgery | US 3-guided | 4 |
Fernandez-Bustamante et al., 2020 [15] | 24/13 | laparoscopic and open abdominal surgeries | Cstat- or Ptp-guided | ≤2 |
Ferrado et al., 2017 [34] | 18/18 | open abdominal surgery | Cdyn 4-guided | 5 |
Ferrado et al., 2018 [13] | 241/244 | laparoscopic and open abdominal surgeries | Cdyn-guided | 5 |
Gao et al., 2023 [35] | 23/23 | robotic-assisted laparoscopic prostatectomy | FiO2-guided 5 | 5 |
Girrbach et al., 2020 [36] | 20/20 | robot-assisted laparoscopic radical prostatectomy | EIT 6-guided | 5 |
Kim et al., 2023 [37] | 178/185 | laparoscopic/robotic abdominal surgery | dP 7-guided | 5 |
Li et al., 2021 [38] | 60/60 | laparoscopic surgery | Cdyn-guided | 5 |
Li et al., 2023 [39] | 20/20 | laparoscopic bariatric surgery | Cdyn-guided | 8 |
Liu et al., 2019 [6] | 58/57 | laparoscopic radical gastrectomy | US-guided | ZEEP |
Liu et al., 2020 [40] | 44/43 | laparoscopic total hysterectomy | US-guided | ZEEP |
Luo et al., 2023 [41] | 36/36 | laparoscopic gastrointestinal surgery | US-guided | 5 |
Mini et al., 2021 [42] | 41/41 | open abdominal surgery | dP-guided | 5 |
Nestler et al., 2017 [14] | 25/25 | laparoscopic bariatric surgery | EIT-guided | 5 |
Pan et al., 2023 [43] | 26/26 | robot-assisted prostate surgery | EIT-guided | 5 |
Pereira et al., 2018 [4] | 20/20 | laparoscopic and open abdominal surgeries | EIT-guided | 4 |
Piriyapatsom et al., 2020 [44] | 22/22 | laparoscopic gynaecological surgery | Ptp-guided | 5 |
Ruszkai et al., 2021 [9] | 15/15 | open radical cystectomy | Cstat-guided | 6 |
Salama et al., 2023 [45] | 33/33 | open abdominal surgery | Cstat-guided | 5 |
Van Hecke et al., 2019 [46] | 50/50 | laparoscopic bariatric surgery | Cdyn-guided | 10 |
Xavier et al., 2024 [47] | 10/10 | laparoscopic bariatric surgery | Cstat-guided | 5 |
Xiao et al., 2023 [52] | 24/24 | CRS + HIPEC | EIT-guided | 5 |
Xu et al., 2022 [11] | 17/16 | laparoscopic surgery | dP-guided | 6 |
Yang et al., 2023 [48] | 23/22 | laparoscopic sleeve gastrectomy | dP-guided | 5 |
Yoon et al., 2021 [16] | 30/30 | robot-assisted radical prostatectomy | Cdyn-guided | 7 |
Zhang et al., 2021 [49] | 67/67 | open upper abdominal surgery | dP-guided | 6 |
Zhang et al., 2022 [50] | 67/67 | laparoscopic gynaecological surgery | dP-guided | 5 |
Zhou et al., 2021 [51] | 32/32 | laparoscopic robot-assisted prostatectomy | Cdyn-guided | ZEEP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szigetváry, C.; Szabó, G.V.; Dembrovszky, F.; Ocskay, K.; Engh, M.A.; Turan, C.; Szabó, L.; Walter, A.; Kobeissi, F.; Terebessy, T.; et al. Individualised Positive End-Expiratory Pressure Settings Reduce the Incidence of Postoperative Pulmonary Complications: A Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 13, 6776. https://doi.org/10.3390/jcm13226776
Szigetváry C, Szabó GV, Dembrovszky F, Ocskay K, Engh MA, Turan C, Szabó L, Walter A, Kobeissi F, Terebessy T, et al. Individualised Positive End-Expiratory Pressure Settings Reduce the Incidence of Postoperative Pulmonary Complications: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2024; 13(22):6776. https://doi.org/10.3390/jcm13226776
Chicago/Turabian StyleSzigetváry, Csenge, Gergő V. Szabó, Fanni Dembrovszky, Klementina Ocskay, Marie A. Engh, Caner Turan, László Szabó, Anna Walter, Fadl Kobeissi, Tamás Terebessy, and et al. 2024. "Individualised Positive End-Expiratory Pressure Settings Reduce the Incidence of Postoperative Pulmonary Complications: A Systematic Review and Meta-Analysis" Journal of Clinical Medicine 13, no. 22: 6776. https://doi.org/10.3390/jcm13226776
APA StyleSzigetváry, C., Szabó, G. V., Dembrovszky, F., Ocskay, K., Engh, M. A., Turan, C., Szabó, L., Walter, A., Kobeissi, F., Terebessy, T., Hegyi, P., Ruszkai, Z., & Molnár, Z. (2024). Individualised Positive End-Expiratory Pressure Settings Reduce the Incidence of Postoperative Pulmonary Complications: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 13(22), 6776. https://doi.org/10.3390/jcm13226776