Imaging Techniques for Meniscal Vasculature: A Systematic Review of Clinical and Translational Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
- P: Human patients with meniscal injuries or conditions requiring evaluation of meniscal vasculature. This population may include individuals who have experienced knee trauma, are recovering from meniscal surgery, or have conditions that affect meniscal perfusion. In addition, cadaveric studies and animal models are included specifically for the translational research component, providing insights into the meniscal vasculature and its role in injury and healing that can be applied to human patients.
- I: Imaging techniques used to visualize and evaluate the meniscal vasculature.
- C: Alternative or traditional imaging modalities that do not specifically focus on the meniscal vasculature. These may include standard meniscal imaging without vascular assessment, surgical or arthroscopic procedures without advanced vascular imaging, and lack of specific vascular imaging.
- O: Outcomes of interest include the following
- Diagnostic accuracy: The effectiveness of imaging techniques to accurately identify the meniscal vasculature and associated pathologies.
- Clinical applications: The role of these imaging modalities in guiding clinical decisions, such as surgical intervention or postoperative healing monitoring.
- Translational Applications: How these imaging modalities contribute to the research and development of new therapies or the understanding of meniscal physiology and pathology.
2.2. Search Strategy
2.3. Extracted Data and Key Findings
3. Results
3.1. Clinical Analysis
3.2. Ex Vivo Human Analysis
3.3. Animal Models Analysis
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
2D | Two-dimensional |
3D | Three-dimensional |
ACL | Anterior Cruciate Ligament |
C | Comparison |
CECT | Contrast-Enhanced Computed Tomography |
CTA | Computed Tomography Angiography |
I | Intervention |
ICG | Indocyanine Green |
Micro-CT | Micro-Computed Tomography |
MRI | Magnetic Resonance Imaging |
NIR | Near-Infrared |
O | Outcome |
OA | Osteoarthritis |
P | Population |
PCP | Perimeniscal Capillary Plexus |
PGs | Proteoglycans |
PM | Perimeniscal |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
RR | Red-Red |
RW | Red-White |
WW | White-White |
References
- Fox, A.J.; Wanivenhaus, F.; Burge, A.J.; Warren, R.F.; Rodeo, S.A. The human meniscus: A review of anatomy, function, injury, and advances in treatment. Clin. Anat. 2015, 28, 269–287. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.P.; Daniels, A.; Burks, R.T. Principles and decision making in meniscal surgery. Arthrosc. J. Arthrosc. Relat. Surg. 1993, 9, 33–51. [Google Scholar] [CrossRef] [PubMed]
- Fairbank, T. Knee joint changes after meniscectomy. J. Bone Jt. Surg. Br. 1948, 308, 664–670. [Google Scholar] [CrossRef]
- Arnoczky, S.; Warren, R. Microvasculature of the human meniscus. Am. J. Sports Med. 1982, 10, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.; Arnoczky, S.; Warren, R. Meniscal repair. Clin. Sports Med. 1991, 10, 529–548. [Google Scholar] [CrossRef]
- Rao, A.; Erickson, B.; Cvetanovich, G.; Yanke, A.; Bach, B.; Cole, B. The Meniscus-Deficient Knee: Biomechanics, Evaluation, and Treatment Options. Orthop. J. Sports Med. 2015, 3, 2325967115611386. [Google Scholar] [CrossRef]
- Aggad, W.; El-Aziz, G.A.; Hindi, M.H.E.; AlShali, R.; Hamdy, R.; Saleh, H. Dimorphic comparative histological and histometric study of the lateral and medial knee menisci in male and female human cadavers. Eur. J. Anat. 2024, 28, 5. [Google Scholar] [CrossRef]
- Andrews, S.H.J.; Rattner, J.B.; Jamniczky, H.A.; Shrive, N.G.; Adesida, A.B. The structural and compositional transition of the meniscal roots into the fibrocartilage of the menisci. J. Anat. 2015, 226, 169–174. [Google Scholar] [CrossRef]
- Bisicchia, S.; Botti, F.; Tudisco, C. Discoid lateral meniscus in children and adolescents: A histological study. J. Exp. Orthop. 2018, 5, 39. [Google Scholar] [CrossRef]
- Chahla, J.; Papalamprou, A.; Chan, V.; Arabi, Y.; Salehi, K.; Nelson, T.J.; Limpisvasti, O.; Mandelbaum, B.R.; Tawackoli, W.; Metzger, M.F.; et al. Assessing the Resident Progenitor Cell Population and the Vascularity of the Adult Human Meniscus. Arthrosc. J. Arthrosc. Relat. Surg. 2021, 37, 252–265. [Google Scholar] [CrossRef]
- Kremer, A.; Ribitsch, I.; Reboredo, J.; Dürr, J.; Egerbacher, M.; Jenner, F.; Walles, H. Three-Dimensional Coculture of Meniscal Cells and Mesenchymal Stem Cells in Collagen Type I Hydrogel on a Small Intestinal Matrix—A Pilot Study Toward Equine Meniscus Tissue Engineering. Tissue Eng. Part A 2017, 23, 390–402. [Google Scholar] [CrossRef] [PubMed]
- Michel, P.A.; Domnick, C.J.; Raschke, M.J.; Hoffmann, A.; Kittl, C.; Herbst, E.; Glasbrenner, J.; Hardes, J.; Streitbürger, A.; Gosheger, G.; et al. Age-Related Changes in the Microvascular Density of the Human Meniscus. Am. J. Sports Med. 2021, 49, 3544–3550. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Roberts, S.; Kuiper, J.H.; Zhang, W.; Garcia, J.; Cui, Z.; Wright, K. Characterization of regional meniscal cell and chondrocyte phenotypes and chondrogenic differentiation with histological analysis in osteoarthritic donor-matched tissues. Sci. Rep. 2020, 10, 21658. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S.H.J.; Rattner, J.B.; Abusara, Z.; Adesida, A.; Shrive, N.G.; Ronsky, J.L. Tie-fibre structure and organization in the knee menisci. J. Anat. 2014, 224, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Karjalainen, V.P.; Herrera Millar, V.R.; Modina, S.; Peretti, G.M.; Pallaoro, M.; Elkhouly, K.; Saarakkala, S.; Mobasheri, A.; Di Giancamillo, A.; Finnilä, M.A.J. Age and anatomical region-related differences in vascularization of the porcine meniscus using microcomputed tomography imaging. J. Orthop. Res. 2024, 42, 2095–2105. [Google Scholar] [CrossRef] [PubMed]
- Orellana, F.; Grassi, A.; Hlushchuk, R.; Wahl, P.; Nuss, K.; Neels, A.; Zaffagnini, S.; Parrilli, A. Revealing the complexity of meniscus microvasculature through 3D visualization and analysis. Sci. Rep. 2024, 14, 10875. [Google Scholar] [CrossRef]
- Biolatto, P.; Kothari, A.; Masquijo, J. Risk of Neurovascular Injury during Screw Fixation of Tibial Tubercle Fractures in Pediatric and Adolescent Patients; [Risco de lesão neurovascular durante a fixação com parafuso de fraturas da tuberosidade da tíbia em pacientes pediátricos e adolescentes]. Rev. Bras. Ortop. 2022, 58, E939–E943. [Google Scholar] [CrossRef]
- Choi, J.W.; Ro, D.H.; Chae, H.D.; Kim, D.H.; Lee, M.; Hur, S.; Kim, H.C.; Jae, H.J.; Chung, J.W. The Value of Preprocedural MR Imaging in Genicular Artery Embolization for Patients with Osteoarthritic Knee Pain. J. Vasc. Interv. Radiol. 2020, 31, 2043–2050. [Google Scholar] [CrossRef]
- Guo, T.; Chen, J.; Wu, B.; Zheng, D.; Jiao, S.; Song, Y.; Chen, M. Use of intravoxel incoherent motion diffusion-weighted imaging in identifying the vascular and avascular zones of human meniscus. J. Magn. Reson. Imaging 2017, 45, 1090–1096. [Google Scholar] [CrossRef]
- Keyurapan, E.; Phoemphunkunarak, W.; Lektrakool, N. Location of the Neurovascular Bundle of the Knee during Flexed and Extended Position: An MRI Study. J. Med. Assoc. Thail. 2016, 99, 1102–1109. [Google Scholar]
- Park, J.; Lee, S.S.; Kim, T.W. Quantitative analysis of the perimeniscal position of the inferior lateral genicular artery (ILGA): Magnetic resonance imaging study. Surg. Radiol. Anat. 2018, 40, 823–828. [Google Scholar] [CrossRef] [PubMed]
- Schachne, J.M.; Heath, M.R.; Yen, Y.M.; Shea, K.G.; Green, D.W.; Fabricant, P.D. The Safe Distance to the Popliteal Neurovascular Bundle in Pediatric Knee Arthroscopic Surgery: An Age-Based Magnetic Resonance Imaging Anatomic Study. Orthop. J. Sports Med. 2019, 7, 2325967119855027. [Google Scholar] [CrossRef] [PubMed]
- Bagla, S.; Piechowiak, R.; Hartman, T.; Orlando, J.; Del Gaizo, D.; Isaacson, A. Genicular Artery Embolization for the Treatment of Knee Pain Secondary to Osteoarthritis. J. Vasc. Interv. Radiol. 2020, 31, 1096–1102. [Google Scholar] [CrossRef] [PubMed]
- Ezamin, A.R.; Hasyma, A.H.; Suppiah, S.; Suraini, M.S.; Arifaizad, A.; Paisal, H.; Nasir, M.N.; Sidique, S.F.; Hariati, J. Popliteal artery to tibial plateau distance at the knee level: A radiological study to assess injury risks in osteoarthritic knees using dual source dual energy CT scan. Pertanika J. Sci. Technol. 2017, 25, 371–378. [Google Scholar]
- Kamimura, T. Indocyanine Green Fluorescence-Guided Knee Arthroscopy: A Technical Note for Investigating the Microvasculature Around the Meniscus. Arthrosc. Tech. 2024, 13, 102878. [Google Scholar] [CrossRef]
- Nishimura, A.; Fukuda, A.; Kato, K.; Fujisawa, K.; Uchida, A.; Sudo, A. Vascular safety during arthroscopic all-inside meniscus suture. Knee Surg. Sports Traumatol. Arthrosc. 2015, 23, 975–980. [Google Scholar] [CrossRef]
- Poboży, T.; Konarski, W.; Poboży, K.; Domańska, J.; Konarska, K. Evaluation of Remodeling and Extrusion of Polyurethane Meniscal Implants after Meniscus Reconstruction using Ultrasonography. Curr. Med. Imaging 2024, 20, 1–8. [Google Scholar] [CrossRef]
- Srampickal, G.M.; Jacob, K.M.; Mahata, K.M. Recurrent intraarticular knee hemangiomas: A case report. J. Arthrosc. Jt. Surg. 2017, 4, 41–44. [Google Scholar] [CrossRef]
- van Schie, P.; van der Lelij, T.J.N.; Gerritsen, M.; Meijer, R.P.J.; van Arkel, E.R.A.; Fiocco, M.; Swen, J.W.A.; Vahrmeijer, A.L.; Hazelbag, H.M.; Keereweer, S.; et al. Intra-operative assessment of the vascularisation of a cross section of the meniscus using near-infrared fluorescence imaging. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 1629–1638. [Google Scholar] [CrossRef]
- Wang, Y.; Dawson, C.; Hanna, F.; Fairley, J.; Cicuttini, F.M. Association between popliteal artery wall thickness and knee cartilage volume loss in community-based middle-aged women without clinical knee disease. Maturitas 2015, 82, 222–227. [Google Scholar] [CrossRef]
- Wang, Y.; Pontoh, E.W.; Hussain, S.M.; Lim, Y.Z.; Jones, G.; Hill, C.L.; Wluka, A.E.; Tonkin, A.; Ding, C.; Cicuttini, F.M. Association between popliteal artery wall thickness and structural progression in patients with symptomatic knee osteoarthritis. Rheumatology 2022, 62, 1645–1651. [Google Scholar] [CrossRef] [PubMed]
- Bisicchia, S.; Rosso, F.; Pizzimenti, M.A.; Rungprai, C.; Goetz, J.E.; Amendola, A. Injury Risk to Extraosseous Knee Vasculature During Osteotomies: A Cadaveric Study With CT and Dissection Analysis. Clin. Orthop. Relat. Res. 2015, 473, 1030–1039. [Google Scholar] [CrossRef] [PubMed]
- Chuaychoosakoon, C.; Wuttimanop, W.; Tangjatsakow, P.; Charoenrattanawat, S.; Parinyakhup, W.; Boonriong, T.; Chernchujit, B. The Danger Zone for Iatrogenic Neurovascular Injury in All-Inside Lateral Meniscal Repair in Relation to the Popliteal Tendon: An MRI Study. Orthop. J. Sports Med. 2021, 9, 23259671211038397. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Chen, S.; Yang, R.; Li, C.; Gao, H.; Li, J.; Zhang, X. Cellular features of localized microenvironments in human meniscal degeneration: A single-cell transcriptomic study. eLife 2022, 11, e79585. [Google Scholar] [CrossRef] [PubMed]
- Fuhrmann, I.K.; Steinhagen, J.; Rüther, W.; Schumacher, U. Comparative immunohistochemical evaluation of the zonal distribution of extracellular matrix and inflammation markers in human meniscus in osteoarthritis and rheumatoid arthritis. Acta Histochem. 2015, 117, 243–254. [Google Scholar] [CrossRef]
- Lin, K.M.; Gadinsky, N.E.; Klinger, C.E.; Dyke, J.P.; Rodeo, S.A.; Green, D.W.; Fabricant, P.D.; Helfet, D.L.; Shea, K.G.; Lazaro, L.E. Increased Vascularity in the Neonatal versus Adult Meniscus: Evaluation with Magnetic Resonance Imaging. Cartilage 2020, 13, 1562S–1569S. [Google Scholar] [CrossRef]
- Sora, M.C.; Dresenkamp, J.; Gabriel, A.; Matusz, P.; Wengert, G.J.; Bartl, R. The relationship of neurovascular structures to the posterior medial aspect of the knee: An anatomic study using plastinated cross-sections. Rom. J. Morphol. Embryol. 2015, 56, 1035–1041. [Google Scholar]
- Kamimura, T. Blood Flow in the Meniscus Can Be Visualized Arthroscopically Using an Intravenous Indocyanine Green Solution Diluted 10× in a Pig Model. Arthrosc. Sports Med. Rehabil. 2024, 6, 100932. [Google Scholar] [CrossRef]
- Ngo, L.; Knothe, L.E.; Knothe Tate, M.L. Knee Joint Tissues Effectively Separate Mixed Sized Molecules Delivered in a Single Bolus to the Heart. Sci. Rep. 2018, 8, 10254. [Google Scholar] [CrossRef]
- Sheng, H.; Huang, M.; Li, H.; Sun, L.; Feng, S.; Du, X.; Wang, Y.; Tong, X.; Feng, Y.; Chen, J.; et al. Three-Dimensional Imaging and Quantitative Analysis of Blood Vessel Distribution in The Meniscus of Transgenic Mouse after Tissue Clearing. Cell J. 2023, 25, 570–578. [Google Scholar] [CrossRef]
Clinical/Animal Model/Human Ex Vivo | Imaging Modality | 2D or 3D Visualization | Imaging Resolution | Range of Vessel Size Detection | Evaluations | Main Results | Imaging Impact | Ref. |
---|---|---|---|---|---|---|---|---|
Clinical (n = 20 patients, range 49–84 y, mean 59.4 y) | Radiographic angiography | 2D | Not reported | Arteries |
|
|
| Bagla et al., 2020 [23] |
Clinical (n = 45 patients, mean 14.1 ± 2.2 y) | MRI | 2D | 3 mm slice thickness | Arteries |
|
|
| Biolatto et al., 2023 [17] |
Clinical (n = 18 patients, range 56–87, mean 68.6 ± 8.9 y) | MRI | 2D | 2–3 mm slice thickness | Arteries |
|
|
| Choi et al., 2020 [18] |
Clinical (n = 126 patients, range 16–92 y, mean 58 y) | CT angiography | 2D | 5 × 5 mm slice thickness | Arteries |
|
|
| Ezamin et al., 2017 [24] |
Clinical (n = 50 patients, range 23–67 y, mean 41.2 ± 11.5 y) | Diffusion-weighted MRI | 2D | 0.20 × 0.59 × 4 mm and 1 × 1 × 4 mm | Arteries |
|
|
| Guo et al., 2016 [19] |
Clinical (information on patients not reported) | Arthroscopy (cyanine dye ICG fluorescence) | 3D | Not reported | Arteries |
|
|
| Kamimura, 2024 [25] |
Clinical (n = 25 patients, range 16–56 y, mean 31.80 ± 11.55 y) | MRI | 2D | Not reported | Arteries |
|
|
| Keyurapan et al., 2016 [20] |
Clinical (n = 97 patients, mean 25.3 ± 12.2 y) | MRI and arthroscopy | 2D | 4 mm intervals with 1.0 mm interception gap, 160 × 160 cm field of view, scan matrix 256 × 320 | Arteries |
|
|
| Nishimura et al., 2015 [26] |
Clinical (n = 100 patients, range 20–48 y, mean 36.3 y) | MRI | 2D | 3 mm slice thickness | Arteries |
|
|
| Park et al., 2018 [21] |
Clinical (n = 35 patients, range 18–66 y, mean age 41.6 y) | US | 2D | Not reported | Arteries |
|
|
| Poboży et al., 2023 [27] |
Clinical (n = 144 patients, range 10–18 y, mean 14.5 ± 2.6 y) | MRI | 2D | 3 mm slice thickness | Arteries |
|
|
| Schachne et al., 2019 [22] |
Clinical (n = 1 patient, 18 y) | MRI and Focused US-Doppler | 2D | Not reported | Arteries |
|
|
| Srampickal et al., 2017 [28] |
Clinical (n = 8 patients, mean 64 ± 8 y) | NIRF imaging and Optical microscopy (IHC, anti-CD31 antibody) | 3D and 2D | Not reported | Arteries and arteriole |
|
|
| van Schie et al., 2022 [29] |
Clinical (n = 170 patients, range 40–67 y, mean 52.2 ± 6.7) | MRI | 2D | Partition thickness of 1.5 mm and an in-plane resolution of 0.31 × 0.31 mm. | Arteries |
|
|
| Wang et al., 2015 [30] |
Clinical (n = 176 patients, range 40–70 y, mean 56.5 y) | MRI | 2D | 0.16 × 0.16 × 2.5 mm | Arteries |
|
|
| Wang et al., 2022 [31] |
Human ex vivo (n = 24 knee joints, 50–70 y) | Light microscopy (histology) | 2D | Olympus BX41 photomicroscope | Arteries, arteriole, and capillaries |
|
|
| Aggad et al., 2024 [7] |
Human ex vivo (n = 12 knee joints, range 65–84 y, mean 71.4 y) | Clinical CT | 3D | Reconstruction thickness 0.6 mm, reconstruction spacing 0.4 mm, and display field of view 170 mm | Arteries and arteriole |
|
|
| Bisicchia et al., 2015 [32] |
Human ex vivo (n = 6 menisci, range 9–18 y, mean 13.6 y) | Light microscopy (histology) | 2D | 10× Magnification Axioskop microscope, pixel size 1.02 m | Capillaries |
|
|
| Bisicchia et al., 2018 [9] |
Human ex vivo (n = 34 menisci, mean 21 ± 6.1 y) | 3D light sheet microscopy (tissue clearing, anti-CD31 antibody) and Light microscopy (histology) | 3D and 2D | Leica DMi8 fluorescence microscope, 40× of selected areas were taken with a Nikon Eclipse Ti-2 fluorescence microscope | Arteries, arteriole, and capillaries |
|
|
| Chahla et al., 2021 [10] |
Human ex vivo (n = 240 knee joints, range 18–60 y, mean 37.3 ± 13.2 y) | MRI | 2D | Not reported | Arteries |
|
|
| Chuaychoosakoon et al., 2021 [33] |
Human ex vivo (n = 12 menisci, age not reported) | Immunofluorescence imaging (anti-CD31 antibody) | 2D | Not reported | Capillaries |
|
|
| Fu et al., 2022 [34] |
Human ex vivo (menisci from n = 15 patients, range 52–80 y, mean 66.9 y) | Optical microscopy and Immunofluorescence imaging (anti-EDG-1) | 2D | 200 nm | Arteries, arteriole, and capillaries |
|
|
| Fuhrmann et al., 2015 [35] |
Human ex vivo Neonatal (n = 5 knee joints, 0–6 m) and adult (n = 5 knee joints, range 34-60 y, mean 50.2 y) | CE MRI | 2D | 0.4 × 0.4 × 1.0 mm | Arteries and arterioles |
|
|
| Lin et al., 2020 [36] |
Human ex vivo (n = 51 menisci, range 3–79 y, mean 25.6 ± 20.4 y) | Optical microscopy (histology) | 2D | 200 nm | Arteries, arteriole, and capillaries |
|
|
| Michel et al., 2021 [12] |
Human ex vivo (n = 6 menisci, range 62–86 y, mean 75 y) | CE CT | 2D and 3D | range: 15–60 m voxel size | Arteries and arteriole |
|
|
| Orellana et al., 2024 [16] |
Human ex vivo (n = 12 knee joints, range 68–81 y, mean 74.2 y) | Image Scanner on plastinated samples | 2D | 300 dpi | Arteries |
|
|
| Sora et al., 2015 [37] |
Human ex vivo (n = 10 knee joints, range 46–87 y, mean 66.4 ± 11.1) | Optical microscopy (histology) | 2D | 200 nm | Arteries, arterioles, and capillaries |
|
|
| Wang et al., 2020 [13] |
Animal model Bovine stifle joints (n = 6 stifle joints, 1.5–2.5 y) | Second harmonic generation microscopy | 2D and 3D | Zeiss LSM 510 NLO laser-scanning multi-photon microscope with a 40× objective | Arteries, arteriole, and capillaries |
|
|
| Andrews et al., 2014 [14] |
Animal model Bovine menisci (n = 2 menisci, age not reported), Rabbit menisci (n = 2 menisci, age not reported) | Optical microscopy and OPT | 2D | Optical: 200 nm and OPT: 5–10 m | Arteries, arteriole, blood vessels in the order of 10–100 m |
|
|
| Andrews et al., 2015 [8] |
Animal model Pig (n = 1 stifle joint, 3 m) | Arthroscopy (ICG fluorescence) | 3D | Not reported | Arteries |
|
|
| Kamimura, 2024 [38] |
Animal model Neonatal (n = 10 menisci) and adult (n = 10 menisci, 3–4 y) porcine menisci | Micro-CT (Critical point drying) and Optical microscopy (immunohistochemistry, anti-CD31 antibody) | 2D and 3D | 3.3 m voxel size | Arteries, arteriole, and capillaries |
|
|
| Karjalainen et al., 2024 [15] |
Animal model Horses (n = 15 stifle joints, 0–30 y) | Optical microscopy | 2D | 200 nm | Arteries, arteriole, and capillaries |
|
|
| Kremer et al., 2017 [11] |
Animal model Guinea pigs (n = 6 pigs, 8–10 and 17–19 m) | 3D microscopy of fluorophores | 3D | Not reported | Arteries |
|
|
| Ngo et al., 2018 [39] |
Animal model Transgenic mice (n = 6 menisci, 6 m, endothelial cells were induced to emit red fluorescence) | 3D light sheet microscopy (tissue clearing) | 3D | 4× magnification, detector pixel size 6.5 m | Arteries, arteriole, and capillaries |
|
|
| Sheng et al., 2023 [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orellana, F.; Barna, R.-A.-M.; Calastra, C.G.; Parrilli, A. Imaging Techniques for Meniscal Vasculature: A Systematic Review of Clinical and Translational Applications. J. Clin. Med. 2024, 13, 6787. https://doi.org/10.3390/jcm13226787
Orellana F, Barna R-A-M, Calastra CG, Parrilli A. Imaging Techniques for Meniscal Vasculature: A Systematic Review of Clinical and Translational Applications. Journal of Clinical Medicine. 2024; 13(22):6787. https://doi.org/10.3390/jcm13226787
Chicago/Turabian StyleOrellana, Federica, Raluca-Ana-Maria Barna, Camilla Giulia Calastra, and Annapaola Parrilli. 2024. "Imaging Techniques for Meniscal Vasculature: A Systematic Review of Clinical and Translational Applications" Journal of Clinical Medicine 13, no. 22: 6787. https://doi.org/10.3390/jcm13226787
APA StyleOrellana, F., Barna, R. -A. -M., Calastra, C. G., & Parrilli, A. (2024). Imaging Techniques for Meniscal Vasculature: A Systematic Review of Clinical and Translational Applications. Journal of Clinical Medicine, 13(22), 6787. https://doi.org/10.3390/jcm13226787