Identification of Predictors of Sarcopenia in Older Adults Using Machine Learning: English Longitudinal Study of Ageing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sarcopenia (Dependent Variable)
2.3. Other Factors
2.4. Methods and Tools Used for Selecting Features and Obtaining a Prediction Model
2.4.1. Selection of Relevant Features
2.4.2. Prediction Model
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Name | Description | Type |
---|---|---|
r2agey | Age of patient | Numerical |
gender | Gender | Categorical |
bmi | Body Mass Index (BMI) | Numerical |
raedyrs_e | Years of education | Numerical |
r2mstat | Marital status | Numerical |
r2smokev | Smoke ever | Categorical |
r2smoken | Smokes now | Categorical |
r2adla | Some Diff-ADLs/0–5 | Numerical |
r2cesd | CESD score | Numerical |
hedimbp | Ever reported high blood pressure (HBP) (diagnosed) | Categorical |
hediman | Ever reported angina (diagnosed) | Categorical |
hedimmi | Ever reported myocardial infarction (diagnosed) | Categorical |
hedimhf | Ever reported congestive heart failure (diagnosed) | Categorical |
hedimhm | Ever reported heart murmur (diagnosed) | Categorical |
hedimar | Ever reported arrhythmia (diagnosed) | Categorical |
hedimdi | Ever reported diabetes or high blood sugar (HBS) (diagnosed) | Categorical |
hedbts | Ever reported diabetes (diagnosed) | Categorical |
hedimst | Ever reported stroke (diagnosed) | Categorical |
cvd7dihb | Ever reported any of 7 cvd-related diseases (excluding HBP) | Categorical |
cvd7dbts | Ever reported any of 7 cvd-related diseases (excluding HBS and HBP) | Categorical |
hediblu | Ever reported hedibonic lung disease (diagnosed) | Categorical |
hedibas | Ever reported asthma (diagnosed) | Categorical |
hedibar | Ever reported arthritis (diagnosed) | Categorical |
hedibos | Ever reported osteoporosis (diagnosed) | Categorical |
hedibca | Ever reported cancer (diagnosed) | Categorical |
hedibpd | Ever reported Parkinson’s Disease (diagnosed) | Categorical |
hedibps | Ever reported psychiatric disorder (diagnosed) | Categorical |
hedibad | Ever reported Alzheimer’s Disease (diagnosed) | Categorical |
hedibde | Ever reported dementia or memory impairment (diagnosed) | Categorical |
heoptgl | Ever reported glaucoma (diagnosed) | Categorical |
heoptdi | Ever reported diabetic eye disease (diagnosed) | Categorical |
heoptmd | Ever reported macular degeneration (diagnosed) | Categorical |
heoptca | Ever reported cataract (diagnosed) | Categorical |
palevel | Physical activity summary | Categorical |
raracem | Race—masked | Categorical |
rarelig_e | Religion | Categorical |
r2iadlza | r2iadlza:w2 R Some Diff-IADLs:/0–5 | Categorical |
r2drinkd_e | Days/week drinks | Numerical |
s2readrc | Word recall list read by | Numerical |
s2imrc | Immediate word recall | Numerical |
s2dlrc | Delayed word recall | Numerical |
s2orient | Cognition orient (summary date naming) | Numerical |
s2verbf | Verbal fluency score | Numerical |
s2tr20 | Recall summary score | Numerical |
s2prmt1 | Prospective memory task 1 | Numerical |
r2retage | Retirement age | Numerical |
CASP2 | CASP-19 quality of life scale | Numerical |
References
- Woo, J. Sarcopenia. Clin. Geriatr. Med. 2017, 33, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Ben Kirk, B.; Cawthon, P.M.; Arai, H.; A Ávila-Funes, J.; Barazzoni, R.; Bhasin, S.; Binder, E.F.; Bruyere, O.; Cederholm, T.; Chen, L.-K.; et al. The Conceptual Definition of Sarcopenia: Delphi Consensus from the Global Leadership Initiative in Sarcopenia (GLIS). Age Ageing 2024, 53, afae052. [Google Scholar] [CrossRef] [PubMed]
- Falcon, L.J.; Harris-Love, M.O. Sarcopenia and the new ICD-10-CM code: Screening, staging, and diagnosis considerations. Fed. Pract. 2017, 34, 24. [Google Scholar] [PubMed]
- Evans, W.J.; Guralnik, J.; Cawthon, P.; Appleby, J.; Landi, F.; Clarke, L.; Vellas, B.; Roubenoff, L.F.R. Sarcopenia: No consensus, no diagnostic criteria, and no approved indication-How did we get here? Geroscience 2024, 46, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Mayhew, A.J.; Amog, K.; Phillips, S.; Parise, G.; McNicholas, P.D.; de Souza, R.J.; Thabane, L.; Raina, P. The prevalence of sarcopenia in community-dwelling older adults, an exploration of differences between studies and within definitions: A systematic review and meta-analyses. Age Ageing 2019, 48, 48–56. [Google Scholar] [CrossRef]
- Veronese, N.; Demurtas, J.; Soysal, P.; Smith, L.; Torbahn, G.; Schoene, D.; Schwingshackl, L.; Sieber, C.; Bauer, J.; Cesari, M.; et al. Sarcopenia and health-related outcomes: An umbrella review of observational studies. Eur. Geriatr. Med. 2019, 10, 853–862. [Google Scholar] [CrossRef]
- Amisha, P.M.; Pathania, M.; Rathaur, V.K. Overview of artificial intelligence in medicine. J. Fam. Med. Prim. Care 2019, 8, 2328. [Google Scholar] [CrossRef]
- Rozynek, M.; Kucybała, I.; Urbanik, A.; Wojciechowski, W. The use of artificial intelligence in the imaging of sarcopenia: A narrative review of current status and perspectives. Nutrition 2021, 89, 111227. [Google Scholar] [CrossRef]
- Kang, Y.-J.; Yoo, J.-I.; Ha, Y.-C. Sarcopenia feature selection and risk prediction using machine learning: A cross-sectional study. Medicine 2019, 98, e17699. [Google Scholar] [CrossRef]
- Steptoe, A.; Breeze, E.; Banks, J.; Nazroo, J. Cohort profile: The English longitudinal study of ageing. Int. J. Epidemiol. 2013, 42, 1640–1648. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Smith, L.; Cereda, E.; Maggi, S.; Barbagallo, M.; Dominguez, L.J.; Koyanagi, A. Multimorbidity increases the risk for sarcopenia onset: Longitudinal analyses from the English Longitudinal Study of Ageing. Exp. Gerontol. 2021, 156, 111624. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.C.; Wang, Z.; Heo, M.; Ross, R.; Janssen, I.; Heymsfield, S.B. Total-body skeletal muscle mass: Development and cross-validation of anthropometric prediction models. Am. J. Clin. Nutr. 2000, 72, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Studenski, S.A.; Peters, K.W.; Alley, D.E.; Cawthon, P.M.; McLean, R.R.; Harris, T.B.; Ferrucci, L.; Guralnik, J.M.; Fragala, M.S.; Kenny, A.M.; et al. The FNIH sarcopenia project: Rationale, study description, conference recommendations, and final estimates. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 547–558. [Google Scholar] [CrossRef]
- Tyrovolas, S.; Koyanagi, A.; Olaya, B.; Ayuso-Mateos, J.L.; Miret, M.; Chatterji, S.; Tobiasz-Adamczyk, B.; Koskinen, S.; Leonardi, M.; Haro, J.M. Factors associated with skeletal muscle mass, sarcopenia, and sarcopenic obesity in older adults: A multi-continent study. J. Cachexia Sarcopenia Muscle 2016, 7, 312–321. [Google Scholar] [CrossRef]
- Hyde, M.; Wiggins, R.D.; Higgs, P.; Blane, D.B. A measure of quality of life in early old age: The theory, development and properties of a needs satisfaction model (CASP-19). Aging Ment. Health 2003, 7, 186–194. [Google Scholar] [CrossRef]
- Cosco, T.D.; Lachance, C.C.; Blodgett, J.M.; Stubbs, B.; Co, M.; Veronese, N.; Wu, Y.-T.; Prina, A.M. Latent structure of the Centre for Epidemiologic Studies Depression Scale (CES-D) in older adult populations: A systematic review. Aging Ment. Health 2020, 24, 700–704. [Google Scholar] [CrossRef]
- Ding, C.; Peng, H. Minimum redundancy feature selection from microarray gene expression data. J. Bioinform. Comput. Biol. 2005, 3, 185–205. [Google Scholar] [CrossRef]
- Darbellay, G.A.; Vajda, I. Estimation of the information by an adaptive partitioning of the observation space. IEEE Trans. Inf. Theory 1999, 45, 1315–1321. [Google Scholar] [CrossRef]
- Shafiee, G.; Keshtkar, A.; Soltani, A.; Ahadi, Z.; Larijani, B.; Heshmat, R. Prevalence of sarcopenia in the world: A systematic review and meta-analysis of general population studies. J. Diabetes Metab. Disord. 2017, 16, 21. [Google Scholar] [CrossRef]
- Waite, S.J.; Maitland, S.; Thomas, A.; Yarnall, A.J. Sarcopenia and frailty in individuals with dementia: A systematic review. Arch. Gerontol. Geriatr. 2021, 92, 104268. [Google Scholar] [CrossRef] [PubMed]
- Hartman, Y.A.; Karssemeijer, E.G.; van Diepen, L.A.; Rikkert, M.G.O.; Thijssen, D.H. Dementia patients are more sedentary and less physically active than age-and sex-matched cognitively healthy older adults. Dement. Geriatr. Cogn. Disord. 2018, 46, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.M.; Johnson, D.K.; Watts, A.; Swerdlow, R.H.; Brooks, W.M. Reduced lean mass in early Alzheimer disease and its association with brain atrophy. Arch. Neurol. 2010, 67, 428–433. [Google Scholar] [CrossRef] [PubMed]
- Reginster, J.-Y.; Beaudart, C.; Buckinx, F.; Bruyère, O. Osteoporosis and sarcopenia: Two diseases or one? Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 31. [Google Scholar] [CrossRef]
- Pickering, M.-E.; Chapurlat, R. Where two common conditions of aging meet: Osteoarthritis and sarcopenia. Calcif. Tissue Int. 2020, 107, 203–211. [Google Scholar] [CrossRef]
- Springer, J.; Springer, J.I.; Anker, S.D. Muscle wasting and sarcopenia in heart failure and beyond: Update 2017. ESC Heart Fail. 2017, 4, 492–498. [Google Scholar] [CrossRef]
- Veronese, N.; Koyanagi, A.; Cereda, E.; Maggi, S.; Barbagallo, M.; Dominguez, L.J.; Smith, L. Sarcopenia reduces quality of life in the long-term: Longitudinal analyses from the English longitudinal study of ageing. Eur. Geriatr. Med. 2022, 13, 633–639. [Google Scholar] [CrossRef]
- Sieber, C.C. Malnutrition and sarcopenia. Aging Clin. Exp. Res. 2019, 31, 793–798. [Google Scholar] [CrossRef]
Name | Description | Type |
---|---|---|
Age (r2agey) | Age of patient | Numerical |
Alzheimer’s disease (hedibad) | Ever reported Alzheimer’s Disease (diagnosed) | Categorical |
Parkinson disease (hedibpd) | Ever reported Parkinson’s Disease (diagnosed) | Categorical |
Congestive heart failure (hedimhf) | Ever reported congestive heart failure (diagnosed) | Categorical |
Dementia (hedibde) | Ever reported dementia or memory impairment (diagnosed) | Categorical |
Diabetes (heoptdi) | Ever reported diabetic eye disease (diagnosed) | Categorical |
Osteoporosis (hedibos) | Ever reported osteoporosis (diagnosed) | Categorical |
Diff-IADL (r2iadlza) | r2iadlza:w2 R Some Diff-IADLs:/0–5 | Categorical |
Arthritis (hedibar) | Ever reported arthritis (diagnosed) | Categorical |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavón-Pulido, N.; Dominguez, L.; Blasco-García, J.D.; Veronese, N.; Lucas-Ochoa, A.-M.; Fernández-Villalba, E.; González-Cuello, A.-M.; Barbagallo, M.; Herrero, M.-T., on behalf of GOING FWD Investigators. Identification of Predictors of Sarcopenia in Older Adults Using Machine Learning: English Longitudinal Study of Ageing. J. Clin. Med. 2024, 13, 6794. https://doi.org/10.3390/jcm13226794
Pavón-Pulido N, Dominguez L, Blasco-García JD, Veronese N, Lucas-Ochoa A-M, Fernández-Villalba E, González-Cuello A-M, Barbagallo M, Herrero M-T on behalf of GOING FWD Investigators. Identification of Predictors of Sarcopenia in Older Adults Using Machine Learning: English Longitudinal Study of Ageing. Journal of Clinical Medicine. 2024; 13(22):6794. https://doi.org/10.3390/jcm13226794
Chicago/Turabian StylePavón-Pulido, Nieves, Ligia Dominguez, Jesús Damián Blasco-García, Nicola Veronese, Ana-María Lucas-Ochoa, Emiliano Fernández-Villalba, Ana-María González-Cuello, Mario Barbagallo, and Maria-Trinidad Herrero on behalf of GOING FWD Investigators. 2024. "Identification of Predictors of Sarcopenia in Older Adults Using Machine Learning: English Longitudinal Study of Ageing" Journal of Clinical Medicine 13, no. 22: 6794. https://doi.org/10.3390/jcm13226794
APA StylePavón-Pulido, N., Dominguez, L., Blasco-García, J. D., Veronese, N., Lucas-Ochoa, A. -M., Fernández-Villalba, E., González-Cuello, A. -M., Barbagallo, M., & Herrero, M. -T., on behalf of GOING FWD Investigators. (2024). Identification of Predictors of Sarcopenia in Older Adults Using Machine Learning: English Longitudinal Study of Ageing. Journal of Clinical Medicine, 13(22), 6794. https://doi.org/10.3390/jcm13226794