Arterial Stiffness as a New Predictor of Clinical Outcome in Patients with Polycythemia Vera
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
- Confirmed diagnosis of PV according to the 4th edition of the World Health Organization classification [26];
- Treatment with either phlebotomy or cytoreductive therapy with hydroxycarbamide.
- The exclusion criteria were as follows:
- Prior or current treatment with JAK2 inhibitors.
2.2. Clinical Assessment and Measured Parameters
2.3. Assessment of Pulse Wave Velocity (PWV)
2.4. Statistical Analysis
3. Results
3.1. Patients
3.2. Arterial Stiffness and Blood Composition
3.3. Arterial Stiffness as a Predictor of Worsening of Disease Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barbui, T.; Thiele, J.; Gisslinger, H.; Kvasnicka, H.M.; Vannucchi, A.M.; Guglielmelli, P.; Orazi, A.; Tefferi, A. The 2016 WHO classification and diagnostic criteria for myeloproliferative neoplasms: Document summary and in-depth discussion. Blood Cancer J. 2018, 8, 15. [Google Scholar] [CrossRef] [PubMed]
- Tefferi, A.; Guglielmelli, P.; Larson, D.R.; Finke, C.; Wassie, E.A.; Pieri, L.; Gangat, N.; Fjerza, R.; Belachew, A.A.; Lasho, T.L.; et al. Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood 2014, 124, 2507–2513, quiz 2615. [Google Scholar] [CrossRef] [PubMed]
- Baxter, E.J.; Scott, L.M.; Campbell, P.J.; East, C.; Fourouclas, N.; Swanton, S.; Vassiliou, G.S.; Bench, A.J.; Boyd, E.M.; Curtin, N.; et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005, 365, 1054–1061. [Google Scholar] [CrossRef] [PubMed]
- Pardanani, A.; Lasho, T.L.; Finke, C.; Hanson, C.A.; Tefferi, A. Prevalence and clinicopathologic correlates of JAK2 exon 12 mutations in JAK2V617F-negative polycythemia vera. Leukemia 2007, 21, 1960–1963. [Google Scholar] [CrossRef] [PubMed]
- Tefferi, A.; Vannucchi, A.M.; Barbui, T. Polycythemia vera: Historical oversights, diagnostic details, and therapeutic views. Leukemia 2021, 35, 3339–3351. [Google Scholar] [CrossRef]
- Mesa, R.A.; Verstovsek, S.; Cervantes, F.; Barosi, G.; Reilly, J.T.; Dupriez, B.; Levine, R.; Le Bousse-Kerdiles, M.C.; Wadleigh, M.; Campbell, P.J.; et al. International Working Group for Myelofibrosis Research and Treatment (IWG-MRT). Primary myelofibrosis (PMF), post polycythemia vera myelofibrosis (post-PV MF), post essential thrombocythemia myelofibrosis (post-ET MF), blast phase PMF (PMF-BP): Consensus on terminology by the international working group for myelofibrosis research and treatment (IWG-MRT). Leuk. Res. 2007, 31, 737–740. [Google Scholar] [CrossRef]
- Marchioli, R.; Finazzi, G.; Landolfi, R.; Kutti, J.; Gisslinger, H.; Patrono, C.; Marilus, R.; Villegas, A.; Tognoni, G.; Barbui, T. Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. J. Clin. Oncol. 2005, 23, 2224–2232. [Google Scholar] [CrossRef]
- Tefferi, A.; Rumi, E.; Finazzi, G.; Gisslinger, H.; Vannucchi, A.M.; Rodeghiero, F.; Randi, M.L.; Vaidya, R.; Cazzola, M.; Rambaldi, A. Survival and prognosis among 1545 patients with contemporary polycythemia vera: An international study. Leukemia 2013, 27, 1874–1881. [Google Scholar] [CrossRef]
- Cortelazzo, S.; Viero, P.; Finazzi, G.; D’Emilio, A.; Rodeghiero, F.; Barbui, T. Incidence and risk factors for thrombotic complications in a historical cohort of 100 patients with essential thrombocythemia. J. Clin. Oncol. 2016, 8, 556–562. [Google Scholar] [CrossRef]
- Cervantes, F.; Passamonti, F.; Barosi, G. Life expectancy and prognostic factors in the classic BCR/ABL-negative myeloproliferative disorders. Leukemia 2008, 22, 905–914. [Google Scholar] [CrossRef]
- Barbui, T.; Barosi, G.; Birgegard, G.; Cervantes, F.; Finazzi, G.; Griesshammer, M.; Harrison, C.; Hasselbalch, H.C.; Hehlmann, R.; Hoffman, R.; et al. Philadelphia-Negative Classical Myeloproliferative Neoplasms: Critical Concepts and Management Recommendations from European LeukemiaNet. J. Clin. Oncol. 2011, 29, 761–770. [Google Scholar] [CrossRef] [PubMed]
- Tefferi, A.; Barbui, T. Polycythemia vera: 2024 update on diagnosis, risk-stratification, and management. Am. J. Hematol. 2023, 98, 1465–1487. [Google Scholar] [CrossRef] [PubMed]
- Najjar, S.S.; Scuteri, A.; Lakatta, E.G. Arterial aging: Is it an immutable cardiovascular risk factor? Hypertension 2005, 46, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, P.M.; Laurent, S.; Cunha, P.G.; Olsen, M.H.; Rietzschel, E.; Franco, O.H.; Ryliškytė, L.; Strazhesko, I.; Vlachopoulos, C.; Chen, C.H.; et al. Characteristics of healthy vascular ageing in pooled population-based cohort studies: The global Metabolic syndrome and Artery REsearch Consortium. J. Hypertens. 2018, 36, 2340–2349. [Google Scholar] [CrossRef] [PubMed]
- Scuteri, A.; Najjar, S.S.; Orru’, M.; Usala, G.; Piras, M.G.; Ferrucci, L.; Cao, A.; Schlessinger, D.; Uda, M.; Lakatta, E.G. The central arterial burden of the metabolic syndrome is similar in men and women: The SardiNIA Study. Eur. Heart J. 2010, 31, 602–613. [Google Scholar] [CrossRef]
- Scuteri, A.; Coluccia, R.; Castello, L.; Nevola, E.; Brancati, A.M.; Volpe, M. Left ventricular mass increase is associated with cognitive decline and dementia in the elderly independently of blood pressure. Eur. Heart J. 2009, 30, 1525–1529. [Google Scholar] [CrossRef]
- Kario, K.; Chirinos, J.A.; Townsend, R.R.; Weber, M.A.; Scuteri, A.; Avolio, A.; Hoshide, S.; Kabutoya, T.; Tomiyama, H.; Node, K. Systemic hemodynamic atherothrombotic syndrome (SHATS)-Coupling vascular disease and blood pressure variability: Proposed concept from pulse of Asia. Prog. Cardiovasc. Dis. 2020, 63, 22–32. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Aznaouridis, K.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 55, 1318–1327. [Google Scholar] [CrossRef]
- Scuteri, A.; Stuehlinger, M.C.; Cooke, J.P.; Wright, J.G.; Lakatta, E.G.; Anderson, D.E.; Fleg, J.L. Nitric oxide inhibition as a mechanism for blood pressure increase during salt loading in normotensive postmenopausal women. J. Hypertens. 2003, 21, 1339–1346. [Google Scholar] [CrossRef]
- AlGhatrif, M.; Lakatta, E.G.; Morrell, C.H.; Fegatelli, D.A.; Fiorillo, E.; Marongiu, M.; Schlessinger, D.; Cucca, F.; Scuteri, A. Dilated hypertrophic phenotype of the carotid artery is associated with accelerated age-associated central arterial stiffening. Geroscience 2023, 45, 1001–1013. [Google Scholar] [CrossRef]
- Scuteri, A.; Chen, C.H.; Yin, F.C.; Chih-Tai, T.; Spurgeon, H.A.; Lakatta, E.G. Functional correlates of central arterial geometric phenotypes. Hypertension 2001, 38, 1471–1475. [Google Scholar] [CrossRef] [PubMed]
- Scuteri, A.; Nilsson, P.M.; Tzourio, C.; Redon, J.; Laurent, S. Microvascular brain damage with aging and hypertension: Pathophysiological consideration and clinical implications. J. Hypertens. 2011, 29, 1469–1477. [Google Scholar] [CrossRef]
- Yu, K.J.; Zhang, M.J.; Li, Y.; Wang, R.T. Increased whole blood viscosity associated with arterial stiffness in patients with non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 2014, 29, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Anžič Drofenik, A.; Vrtovec, M.; Božič Mijovski, M.; Sever, M.; Preložnik Zupan, I.; Kejžar, N.; Blinc, A. Progression of coronary calcium burden and carotid stiffness in patients with essential thrombocythemia associated with JAK2 V617F mutation. Atherosclerosis 2020, 296, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Anžič Drofenik, A.; Blinc, A.; Bozic Mijovski, A.; Pajič, M.; Vrtovec, T.; Sever, M. Relation of JAK2 V617F allele burden and coronary calcium score in patients with essential thrombocythemia. Radiol. Oncol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef]
- Millasseau, S.C.; Stewart, A.D.; Patel, S.J.; Redwood, S.R.; Chowieñczyk, P.J. Evaluation of carotid-femoral pulse wave velocity: Influence of timing algorithm and heart rate. Hypertension 2005, 45, 222–226. [Google Scholar] [CrossRef]
- Asefa, N.G.; Meirelles, O.; Lakatta, E.; Fiorillo, E.; Scuteri, A.; Cucca, F.; Marongiu, M.; Delitala, A.; Schlessinger, D.; Launer, L.J. Genetic and biomarker modulation of arterial stiffness change in the SardiNIA population cohort. Front. Epidemiol. 2024, 3, 1295209. [Google Scholar] [CrossRef]
- Laurent, S.; Katsahian, S.; Fassot, C.; Tropeano, A.I.; Gautier, I.; Laloux, B.; Boutouyrie, P. Aortic stiffness is an independent predictor of fatal stroke in essential hypertension. Stroke 2003, 34, 1203–1206. [Google Scholar] [CrossRef]
- Zieman, S.J.; Melenovsky, V.; Kass, D.A. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 932–943. [Google Scholar] [CrossRef]
- Passamonti, F.; Rumi, E.; Pietra, D.; Elena, C.; Boveri, E.; Arcaini, L.; Roncoroni, E.; Astori, C.; Merli, M.; Boggi, S.; et al. A prospective study of 338 patients with polycythemia vera: The impact of JAK2 (V617F) allele burden and leukocytosis on fibrotic or leukemic disease transformation and vascular complications. Leukemia 2010, 24, 1574–1579. [Google Scholar] [CrossRef] [PubMed]
- Barbui, T.; Carobbio, A.; Rumi, E.; Finazzi, G.; Gisslinger, H.; Rodeghiero, F.; Randi, M.L.; Rambaldi, A.; Gisslinger, B.; Pieri, L.; et al. In contemporary patients with polycythemia vera, rates of thrombosis and risk factors delineate a new clinical epidemiology. Blood 2014, 124, 3021–3023. [Google Scholar] [CrossRef] [PubMed]
- Dregan, A. Arterial stiffness association with chronic inflammatory disorders in the UK Biobank study. Heart 2018, 104, 1257–1262. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lai, X.; Guo, W.; Ma, L.; Li, W.; Fang, Q.; Yang, H.; Cai, Y.; Liu, M.; Zhang, X.; et al. Total White Blood Cell Count Mediated the Association Between Increased Arterial Stiffness and Risk of Type 2 Diabetes Mellitus in Chinese Adults. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Kunnas, T.; Solakivi, T.; Huuskonen, K.; Kalela, A.; Renko, J.; Nikkari, S.T. Hematocrit and the risk of coronary heart disease mortality in the TAMRISK study, a 28-year follow-up. Prev. Med. 2009, 49, 45–47. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Liu, X.; Qiu, Q.; Liang, J.; Geng, H.; Qi, L. Hematocrit levels and arterial stiffness: The Cardiometabolic Risk in Chinese (CRC) Study. Int. J. Diabetes Dev. Ctries. 2020, 40, 235–241. [Google Scholar] [CrossRef]
- Arnold, N.; Gori, T.; Schnabel, R.B.; Schulz, A.; Prochaska, J.H.; Zeller, T.; Binder, H.; Pfeiffer, N.; Beutel, M.; Espinola-Klein, C.; et al. Relation between Arterial Stiffness and Markers of Inflammation and Hemostasis–Data from the Population-based Gutenberg Health Study. Sci. Rep. 2017, 7, 6346. [Google Scholar] [CrossRef]
- Marchetti, M.; Vannucchi, A.M.; Griesshammer, M.; Harrison, C.; Koschmieder, S.; Gisslinger, H.; Álvarez-Larrán, A.; De Stefano, V.; Guglielmelli, P.; Palandri, F.; et al. Appropriate management of polycythaemia vera with cytoreductive drug therapy: European LeukemiaNet 2021 recommendations. Lancet Haematol. 2022, 9, e301–e311. [Google Scholar] [CrossRef]
- Cokic, V.P.; Beleslin-Cokic, B.B.; Tomic, M.; Stojilkovic, S.S.; Noguchi, C.T.; Schechter, A.N. Hydroxyurea induces the eNOS-cGMP pathway in endothelial cells. Blood 2006, 108, 184–191. [Google Scholar] [CrossRef]
- Cokic, V.P.; Beleslin-Cokic, B.B.; Noguchi, C.T.; Schechter, A.N. Hydroxyurea increases eNOS protein levels through inhibition of proteasome activity. Nitric Oxide. 2007, 16, 371–378. [Google Scholar] [CrossRef]
- Almeida, C.B.; Scheiermann, C.; Jang, J.E.; Prophete, C.; Costa, F.F.; Conran, N.; Frenette, P.S. Hydroxyurea and a cGMP-amplifying agent have immediate benefits on acute vaso-occlusive events in sickle cell disease mice. Blood 2012, 120, 2879–2888. [Google Scholar] [CrossRef] [PubMed]
- Vainchenker, W.; Kralovics, R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood 2017, 129, 667–679. [Google Scholar] [CrossRef] [PubMed]
- Koschmieder, S.; Chatain, N. Role of inflammation in the biology of myeloproliferative neoplasms. Blood Rev. 2020, 42, 100711. [Google Scholar] [CrossRef]
- Szuber, N.; Mudireddy, M.; Nicolosi, M.; Penna, D.; Vallapureddy, R.R.; Lasho, T.L.; Finke, C.; Begna, K.H.; Elliott, M.A.; Hook, C.C.; et al. 3023 Mayo Clinic Patients with Myeloproliferative Neoplasms: Risk-Stratified Comparison of Survival and Outcomes Data Among Disease Subgroups. Mayo Clin. Proc. 2019, 94, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Cerquozzi, S.; Tefferi, A. Blast transformation and fibrotic progression in polycythemia vera and essential thrombocythemia: A literature review of incidence and risk factors. Blood Cancer J. 2015, 5, e366. [Google Scholar] [CrossRef]
- Barbui, T.; Carobbio, A.; Thiele, J.; Gangat, N.; Rumi, E.; Rambaldi, A.; Vannucchi, A.M.; Tefferi, A.; IWG-MRT group. The impact of thrombosis on probabilities of death and disease progression in polycythemia vera: A multistate transition analysis of 1545 patients. Blood Cancer J. 2023, 13, 187. [Google Scholar] [CrossRef]
- Grunwald, M.R.; Zwicker, I.J.; Gerds, A.T.; Burke, J.M.; Xue Crowgey, E.L.; Carl, J.; Feldman, P.; Braunstein, E.M.; Stephen, O.h. A Real-World Evaluation of Risk Factors for Disease Progression in Patients with Polycythemia Vera (PV) Enrolled in REVEAL. Blood. 2023, 142 (Suppl. S1), 385. [Google Scholar] [CrossRef]
- Park, S.; Lakatta, E.G. Role of inflammation in the pathogenesis of arterial stiffness. Yonsei Med. J. 2012, 53, 258–261. [Google Scholar] [CrossRef]
- Sprague, A.H.; Khalil, R.A. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem. Pharmacol. 2009, 78, 539–552. [Google Scholar] [CrossRef]
- Podzolkov, V.I.; Nebieridze, N.N.; Safronova, T.A. Transforming Growth Factor-β1, Arterial Stiffness and Vascular Age in Patients with Uncontrolled Arterial Hypertension. Heart Lung Circ. 2021, 30, 1769–1777. [Google Scholar] [CrossRef]
- Yao, J.C.; Oetjen, K.A.; Wang, T.; Xu, H.; Abou-Ezzi, G.; Krambs, J.R.; Uttarwar, S.; Duncavage, E.J.; Link, D.C. TGF-β signaling in myeloproliferative neoplasms contributes to myelofibrosis without disrupting the hematopoietic niche. J. Clin. Investig. 2022, 132, e154092. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, J.; Jiang, L.Q.; Spinetti, G.; Pintus, G.; Monticone, R.; Kolodgie, F.D.; Virmani, R.; Lakatta, E.G. Proinflammatory profile within the grossly normal aged human aortic wall. Hypertension 2007, 50, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Gallo, G.; Volpe, M.; Savoia, C. Endothelial Dysfunction in Hypertension: Current Concepts and Clinical Implications. Front. Med. 2022, 8, 798958. [Google Scholar] [CrossRef] [PubMed]
- Guzik, T.J.; Nosalski, R.; Maffia, P.; Drummond, G.R. Immune and inflammatory mechanisms in hypertension. Nat. Rev. Cardiol. 2024, 21, 396–416. [Google Scholar] [CrossRef]
- Portes ESilva, K.R.; Nogueira, E.M.; Jesus Mendes, A.L.; Pena, A.L.B.; Simões ESilva, A.C. The potential role of renin angiotensin system in acute leukemia: A narrative review. Mol. Biol. Rep. 2024, 51, 775. [Google Scholar] [CrossRef]
- Vrsalovic, M.M.; Pejsa, V.; Veic, T.S.; Kolonic, S.O.; Ajdukovic, R.; Haris, V.; Jaksic, O.; Kusec, R. Bone marrow renin-angiotensin system expression in polycythemia vera and essential thrombocythemia depends on JAK2 mutational status. Cancer Biol. Ther. 2007, 6, 1434–1436. [Google Scholar] [CrossRef]
- Mulas, O.; Mola, B.; Costa, A.; Pittau, F.; Mantovani, D.; Dessì, S.; Fronteddu, A.; La Nasa, G.; Caocci, G. Renin-angiotensin inhibitors reduce thrombotic complications in Essential Thrombocythemia and Polycythemia Vera patients with arterial hypertension. Ann. Hematol. 2023, 102, 2717–2723. [Google Scholar] [CrossRef]
- Munakata, M.; Nagasaki, A.; Nunokawa, T.; Sakuma, T.; Kato, H.; Yoshinaga, K.; Toyota, T. Effects of valsartan and nifedipine coat-core on systemic arterial stiffness in hypertensive patients. Am. J. Hypertens. 2004, 17 Pt 1, 1050–1055. [Google Scholar] [CrossRef]
- Laurent, S.; Boutouyrie, P. Arterial Stiffness and Hypertension in the Elderly. Front. Cardiovasc. Med. 2020, 7, 544302. [Google Scholar] [CrossRef]
- Barbui, T.; Thiele, J.; Passamonti, F.; Rumi, E.; Boveri, E.; Ruggeri, M.; Rodeghiero, F.; d’Amore, E.S.; Randi, M.L.; Bertozzi, I.; et al. Survival and disease progression in essential thrombocythemia are significantly influenced by accurate morphologic diagnosis: An international study. J. Clin. Oncol. 2011, 29, 3179–3184. [Google Scholar] [CrossRef]
Characteristics | Phlebotomy (n = 12) | Cytoreductive Therapy (n = 16) | p |
---|---|---|---|
Sex male, n (%) | 8 (66.6) | 8 (50.0) | 0.07 * |
Time from diagnosis (mean, years) | 4.6 ± 2.3 | 8.9 ± 3 | |
Age at study entry, mean years ± SE | 52.2 ± 11.2 | 66.6 ± 9.4 | 0.001 * |
Exon 14 JAK2 V617F mutation, n (%) | 11 (39.2) | 16 (57.2) | |
Exon 12 JAK2 mutation, n (%) | 1(3.6) | 0 (0) | |
Thrombotic risk score low, n (%) | 7 (25) | 5 (17.8) | |
Thrombotic risk score high, n (%) | 2 (7.1) | 12 (42.8) | |
CV-AEs before PV diagnosis, n (%) | 2 (7.1) | 3 (10.7) | 0.32 |
Diabetes mellitus, n (%) | 1 (3.5) | 1 (3.5) | 0.96 |
Dyslipidemia, n (%) | 0 (0) | 4 (14.2) | 0.64 |
Hypertension, n (%) | 2 (7.1) | 8 (28.5) | 0.08 |
WBCs × 103/μL, mean ± SE | 9.7 ± 1.3 | 7.8 ± 1.2 | 0.36 |
Hemoglobin g/dL, mean ± SE | 14.3 ± 0.5 | 13.6 ± 0.5 | 0.37 |
Hematocrit, mean value ± SE | 45.0 ± 1.5 | 43.5 ± 1.3 | 0.52 |
Platelets × 103/μL, mean ± SE | 408.9 ± 65.7 | 418.4 ± 60.1 | 0.92 |
BMI (Kg/m2), mean ± SE | 24.8 ± 1.2 | 24.4 ± 1.1 | 0.93 |
Waist circumference, mean ± SE | 92.8 ± 4.0 | 93.6 ± 3.7 | 0.90 |
SBP (mmHg), mean ± SE | 129.8 ± 5.0 | 140.5 ± 5.4 | 0.20 |
DBP (mmHg), mean ± SE | 82.3 ± 2.3 | 83.4 ± 2.5 | 0.76 |
HR (bpm), mean ± SE | 78.8 ± 3.4 | 72.6 ± 3.1 | 0.29 |
eGFR (mL/min), mean ± SE | 83.0 ± 4.4 | 88.6 ± 4.5 | 0.43 |
PWV (m/s), mean ± SE | 10.0 ± 0.8 | 10.2 ± 0.7 | 0.93 |
No Progression (n = 15) | Progression (n = 13) | p | |
---|---|---|---|
Age at study entry, mean years ± SE | 59.5 ± 11.4 | 60.2 ± 13.2 | 0.88 |
Sex male (%) | 46.7 | 38.5 | 0.68 |
Phlebotomy (%) | 46.2 | 46.7 | 0.97 |
Hypertension (%) | 66.7 | 38.5 | 0.15 |
Diabetes mellitus (%) | 6.7 | 7.7 | 0.92 |
Hemoglobin g/dL, mean ± SE | 14.4 ± 1.8 | 13.4 ± 1.4 | 0.11 |
Hematocrit, mean value ± SE | 45.1 ± 5.0 | 43.2 ± 3.7 | 0.28 |
WBCs × 103/μL, mean ± SE | 7.0 ± 2.7 | 10.6 ± 4.7 | 0.016 * |
SBP (mmHg), mean ± SE | 136.9 ± 21.6 | 132.3 ± 15.4 | 0.53 |
DBP (mmHg), mean ± SE | 82.9 ± 10.0 | 82.7 ± 5.6 | 0.94 |
HR (bpm), mean ± SE | 74.0 ± 9.3 | 77.7 ± 10.4 | 0.43 |
BMI (Kg/m2), mean ± SE | 25.3 ± 3.6 | 23.8 ± 3.7 | 0.29 |
Waist circumference, mean ± SE | 96.3 ± 11.7 | 89.8 ± 15.0 | 0.21 |
PWV (m/s), mean ± SE | 10.0 ± 2.8 | 10.2 ± 2.8 | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mulas, O.; Sestu, A.; Costa, A.; Chessa, S.; Vargiu, C.; Corda, L.; Pittau, F.; La Nasa, G.; Caocci, G.; Scuteri, A. Arterial Stiffness as a New Predictor of Clinical Outcome in Patients with Polycythemia Vera. J. Clin. Med. 2024, 13, 6811. https://doi.org/10.3390/jcm13226811
Mulas O, Sestu A, Costa A, Chessa S, Vargiu C, Corda L, Pittau F, La Nasa G, Caocci G, Scuteri A. Arterial Stiffness as a New Predictor of Clinical Outcome in Patients with Polycythemia Vera. Journal of Clinical Medicine. 2024; 13(22):6811. https://doi.org/10.3390/jcm13226811
Chicago/Turabian StyleMulas, Olga, Alessandro Sestu, Alessandro Costa, Salvatore Chessa, Carla Vargiu, Ludovica Corda, Francesca Pittau, Giorgio La Nasa, Giovanni Caocci, and Angelo Scuteri. 2024. "Arterial Stiffness as a New Predictor of Clinical Outcome in Patients with Polycythemia Vera" Journal of Clinical Medicine 13, no. 22: 6811. https://doi.org/10.3390/jcm13226811
APA StyleMulas, O., Sestu, A., Costa, A., Chessa, S., Vargiu, C., Corda, L., Pittau, F., La Nasa, G., Caocci, G., & Scuteri, A. (2024). Arterial Stiffness as a New Predictor of Clinical Outcome in Patients with Polycythemia Vera. Journal of Clinical Medicine, 13(22), 6811. https://doi.org/10.3390/jcm13226811