Comprehensive Pain Management in Total Joint Arthroplasty: A Review of Contemporary Approaches
Abstract
:1. Introduction
2. Postoperative Pain: Surgical Causes and Mechanisms of Perception
2.1. Inflammatory Pain Response and Signaling Pathway
2.2. Hypersensitization and Neural Plasticity
2.3. Neuropathic Pain
3. Systemic Pharmaceutical Options for Pain Control and Recovery
3.1. Opioids
3.2. NSAIDs, Selective Cyclooxygenase Inhibitors, and Acetaminophen
3.3. NMDA Receptor Antagonists
3.4. Intraarticular and Systemic Corticosteroids
3.5. Gabapentin and Pregabalin
4. Anesthetic Techniques and Postoperative Pain
4.1. Neuraxial Anesthesia: Epidural and Spinal
4.2. Peripheral Nerve Blockade
4.3. Local Infiltration Periarticular Injection
5. Non-Pharmacologic and Novel Strategies for Surgical Pain Management
5.1. Perioperative Physical Therapy and Exercise
5.2. Cryotherapy
5.3. Percutaneous Peripheral Nerve Stimulation
6. Evidence-Based Opioid Sparing Protocol Example
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Etkin, C.D.; Springer, B.D. The American Joint Replacement Registry-the first 5 years. Arthroplast. Today 2017, 3, 67–69. [Google Scholar] [CrossRef] [PubMed]
- Sloan, M.; Premkumar, A.; Sheth, N.P. Projected Volume of Primary Total Joint Arthroplasty in the U.S., 2014 to 2030. J. Bone Jt. Surg. Am. 2018, 100, 1455–1460. [Google Scholar] [CrossRef]
- Knight, S.R.; Aujla, R.; Biswas, S.P. Total Hip Arthroplasty—Over 100 years of operative history. Orthop. Rev. 2011, 3, e16. [Google Scholar] [CrossRef]
- American Joint Replacement Registry (AJRR). 2022 Annual Report; American Academy of Orthopaedic Surgeons (AAOS): Rosemont, IL, USA, 2022. [Google Scholar]
- Burn, E.; Edwards, C.J.; Murray, D.W.; Silman, A.; Cooper, C.; Arden, N.K.; Pinedo-Villanueva, R.; Prieto-Alhambra, D. Trends and determinants of length of stay and hospital reimbursement following knee and hip replacement: Evidence from linked primary care and NHS hospital records from 1997 to 2014. BMJ Open 2018, 8, e019146. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.C.; Neoh, E.C.; Wong, L.P.; Tan, K.G. Shorter length of stay and significant cost savings with ambulatory surgery primary unilateral total knee arthroplasty in Asians using enhanced recovery protocols. J. Clin. Orthop. Trauma. 2024, 50, 102379. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.J.; Clarke, H.D.; Sassoon, A.; Neville, M.R.; Etzioni, D.A. The Clinical and Financial Consequences of the Centers for Medicare and Medicaid Services’ Two-Midnight Rule in Total Joint Arthroplasty. J. Arthroplast. 2020, 35, 1–6.e1. [Google Scholar] [CrossRef]
- Klemt, C.; Tirumala, V.; Barghi, A.; Cohen-Levy, W.B.; Robinson, M.G.; Kwon, Y.M. Artificial intelligence algorithms accurately predict prolonged length of stay following revision total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 2556–2564. [Google Scholar] [CrossRef]
- Gaffney, C.J.; Pelt, C.E.; Gililland, J.M.; Peters, C.L. Perioperative Pain Management in Hip and Knee Arthroplasty. Orthop. Clin. North Am. 2017, 48, 407–419. [Google Scholar] [CrossRef]
- Pua, Y.H.; Poon, C.L.; Seah, F.J.; Thumboo, J.; Clark, R.A.; Tan, M.H.; Chong, H.C.; Tan, J.W.; Chew, E.S.; Yeo, S.J. Predicting individual knee range of motion, knee pain, and walking limitation outcomes following total knee arthroplasty. Acta Orthop. 2019, 90, 179–186. [Google Scholar] [CrossRef]
- Mercurio, M.; Gasparini, G.; Carbone, E.A.; Galasso, O.; Segura-Garcia, C. Personality traits predict residual pain after total hip and knee arthroplasty. Int. Orthop. 2020, 44, 1263–1270. [Google Scholar] [CrossRef]
- Lindner, M.; Nosseir, O.; Keller-Pliessnig, A.; Teigelack, P.; Teufel, M.; Tagay, S. Psychosocial predictors for outcome after total joint arthroplasty: A prospective comparison of hip and knee arthroplasty. BMC Musculoskelet. Disord. 2018, 19, 159. [Google Scholar] [CrossRef] [PubMed]
- Tilbury, C.; Haanstra, T.M.; Verdegaal, S.H.M.; Nelissen, R.; de Vet, H.C.W.; Vliet Vlieland, T.P.M.; Ostelo, R.W. Patients’ pre-operative general and specific outcome expectations predict postoperative pain and function after total knee and total hip arthroplasties. Scand. J. Pain 2018, 18, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Li, J.W.; Ma, Y.S.; Xiao, L.K. Postoperative Pain Management in Total Knee Arthroplasty. Orthop. Surg. 2019, 11, 755–761. [Google Scholar] [CrossRef]
- Lamplot, J.D.; Wagner, E.R.; Manning, D.W. Multimodal pain management in total knee arthroplasty: A prospective randomized controlled trial. J. Arthroplast. 2014, 29, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Pepper, A.M.; Mercuri, J.J.; Behery, O.A.; Vigdorchik, J.M. Total Hip and Knee Arthroplasty Perioperative Pain Management: What Should Be in the Cocktail. JBJS Rev. 2018, 6, e5. [Google Scholar] [CrossRef] [PubMed]
- Parvizi, J.; Miller, A.G.; Gandhi, K. Multimodal pain management after total joint arthroplasty. J. Bone Jt. Surg. Am. 2011, 93, 1075–1084. [Google Scholar] [CrossRef]
- Harding, E.K.; Fung, S.W.; Bonin, R.P. Insights Into Spinal Dorsal Horn Circuit Function and Dysfunction Using Optical Approaches. Front. Neural Circuits 2020, 14, 31. [Google Scholar] [CrossRef]
- Reddi, D.; Curran, N. Chronic pain after surgery: Pathophysiology, risk factors and prevention. Postgrad. Med. J. 2014, 90, 222–227, quiz 226. [Google Scholar] [CrossRef]
- Woolf, C.J.; Ma, Q. Nociceptors—Noxious stimulus detectors. Neuron 2007, 55, 353–364. [Google Scholar] [CrossRef]
- D’Mello, R.; Dickenson, A.H. Spinal cord mechanisms of pain. Br. J. Anaesth. 2008, 101, 8–16. [Google Scholar] [CrossRef]
- Borsook, D.; Kussman, B.D.; George, E.; Becerra, L.R.; Burke, D.W. Surgically induced neuropathic pain: Understanding the perioperative process. Ann. Surg. 2013, 257, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.N.; Boorman, J.P.; Okuse, K.; Baker, M.D. Voltage-gated sodium channels and pain pathways. J. Neurobiol. 2004, 61, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.; Hunter, J.C.; Porreca, F. The role of voltage-gated sodium channels in neuropathic pain. Curr. Opin. Neurobiol. 2003, 13, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Bennett, D.L.; Clark, A.J.; Huang, J.; Waxman, S.G.; Dib-Hajj, S.D. The Role of Voltage-Gated Sodium Channels in Pain Signaling. Physiol. Rev. 2019, 99, 1079–1151. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xie, M.X.; Hu, L.; Wang, X.F.; Mai, J.Z.; Li, Y.Y.; Wu, N.; Zhang, C.; Li, J.; Pang, R.P.; et al. Upregulation of N-type calcium channels in the soma of uninjured dorsal root ganglion neurons contributes to neuropathic pain by increasing neuronal excitability following peripheral nerve injury. Brain Behav. Immun. 2018, 71, 52–65. [Google Scholar] [CrossRef]
- Perret, D.; Luo, Z.D. Targeting voltage-gated calcium channels for neuropathic pain management. Neurotherapeutics 2009, 6, 679–692. [Google Scholar] [CrossRef]
- Abdel Shaheed, C.; Awal, W.; Zhang, G.; Gilbert, S.E.; Gallacher, D.; McLachlan, A.; Day, R.O.; Ferreira, G.E.; Jones, C.M.; Ahedi, H.; et al. Efficacy, safety, and dose-dependence of the analgesic effects of opioid therapy for people with osteoarthritis: Systematic review and meta-analysis. Med. J. Aust. 2022, 216, 305–311. [Google Scholar] [CrossRef]
- Huizinga, J.L.; Stanley, E.E.; Sullivan, J.K.; Song, S.; Hunter, D.J.; Paltiel, A.D.; Neogi, T.; Edwards, R.R.; Katz, J.N.; Losina, E. Societal Cost of Opioid Use in Symptomatic Knee Osteoarthritis Patients in the United States. Arthritis Care Res. 2022, 74, 1349–1358. [Google Scholar] [CrossRef]
- Kaidi, A.C.; Lakra, A.; Jennings, E.L.; Neuwirth, A.L.; Geller, J.A.; Shah, R.P.; Cooper, H.J.; Hickernell, T.R. Opioid Prescription Consumption Patterns After Total Joint Arthroplasty in Chronic Opioid Users Versus Opioid Naive Patients. J. Am. Acad. Orthop. Surg. Glob. Res. Rev. 2020, 4, e20. [Google Scholar] [CrossRef]
- Colvin, L.A.; Bull, F.; Hales, T.G. Perioperative opioid analgesia—When is enough too much? A review of opioid-induced tolerance and hyperalgesia. Lancet 2019, 393, 1558–1568. [Google Scholar] [CrossRef]
- Volkow, N.D.; Blanco, C. The changing opioid crisis: Development, challenges and opportunities. Mol. Psychiatry 2021, 26, 218–233. [Google Scholar] [CrossRef] [PubMed]
- Baessler, A.; Smith, P.J.; Brolin, T.J.; Neel, R.T.; Sen, S.; Zhu, R.; Bernholt, D.; Azar, F.M.; Throckmorton, T.W. Preoperative opioid usage predicts markedly inferior outcomes 2 years after reverse total shoulder arthroplasty. J. Shoulder Elb. Surg. 2022, 31, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Zusmanovich, M.; Thompson, K.; Campbell, A.; Youm, T. Outcomes of Preoperative Opioid Usage in Hip Arthroscopy: A Comparison With Opioid-Naïve Patients. Arthroscopy 2020, 36, 2832–2839.e2831. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, H.M.; Mansour, T.R.; Telemi, E.; Asmaro, K.; Bazydlo, M.; Schultz, L.; Nerenz, D.R.; Abdulhak, M.; Khalil, J.G.; Easton, R.; et al. The Association of Preoperative Opioid Usage With Patient-Reported Outcomes, Adverse Events, and Return to Work After Lumbar Fusion: Analysis From the Michigan Spine Surgery Improvement Collaborative (MSSIC). Neurosurgery 2020, 87, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Bell, K.L.; Detweiler, M.; Yayac, M.; Penna, S.; Chen, A.F. Preoperative Opioid Use Increases the Cost of Care in Total Joint Arthroplasty. J. Am. Acad. Orthop. Surg. 2021, 29, 310–316. [Google Scholar] [CrossRef]
- CDC, U.S. Centers for Disease Control and Prevention. Factsheet CDC Guideline for Prescribing Opioids for Chronic Pain. Available online: https://www.cdc.gov/drugoverdose/pdf/Guidelines_At-A-Glance-508.pdf (accessed on 1 September 2024).
- Fitzpatrick, F.A. Cyclooxygenase enzymes: Regulation and function. Curr. Pharm. Des. 2004, 10, 577–588. [Google Scholar] [CrossRef]
- Buttar, N.S.; Wang, K.K. The “aspirin” of the new millennium: Cyclooxygenase-2 inhibitors. Mayo Clin. Proc. 2000, 75, 1027–1038. [Google Scholar] [CrossRef]
- Karam, J.A.; Schwenk, E.S.; Parvizi, J. An Update on Multimodal Pain Management After Total Joint Arthroplasty. J. Bone Jt. Surg. Am. 2021, 103, 1652–1662. [Google Scholar] [CrossRef]
- Alexander, R.; El-Moalem, H.E.; Gan, T.J. Comparison of the morphine-sparing effects of diclofenac sodium and ketorolac tromethamine after major orthopedic surgery. J. Clin. Anesth. 2002, 14, 187–192. [Google Scholar] [CrossRef]
- Gelman, D.; Gelmanas, A.; Urbanaitė, D.; Tamošiūnas, R.; Sadauskas, S.; Bilskienė, D.; Naudžiūnas, A.; Širvinskas, E.; Benetis, R.; Macas, A. Role of Multimodal Analgesia in the Evolving Enhanced Recovery after Surgery Pathways. Medicina 2018, 54, 20. [Google Scholar] [CrossRef]
- Liu, J.; Wang, F. Preoperative celecoxib analgesia is more efficient and equally tolerated compared to postoperative celecoxib analgesia in knee osteoarthritis patients undergoing total knee arthroplasty: A randomized, controlled study. Medicine 2018, 97, e13663. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Zhang, L.; Yang, H. Perioperative administration of selective cyclooxygenase-2 inhibitors for postoperative pain management in patients after total knee arthroplasty. J. Arthroplast. 2013, 28, 207–213.e202. [Google Scholar] [CrossRef]
- Zhu, Y.; Yao, R.; Li, Y.; Wu, C.; Heng, L.; Zhou, M.; Yan, L.; Deng, Y.; Zhang, Z.; Ping, L.; et al. Protective Effect of Celecoxib on Early Postoperative Cognitive Dysfunction in Geriatric Patients. Front. Neurol. 2018, 9, 633. [Google Scholar] [CrossRef] [PubMed]
- Nair, B.; Taylor-Gjevre, R. A Review of Topical Diclofenac Use in Musculoskeletal Disease. Pharmaceuticals 2010, 3, 1892–1908. [Google Scholar] [CrossRef]
- Zeng, C.; Doherty, M.; Persson, M.S.M.; Yang, Z.; Sarmanova, A.; Zhang, Y.; Wei, J.; Kaur, J.; Li, X.; Lei, G.; et al. Comparative efficacy and safety of acetaminophen, topical and oral non-steroidal anti-inflammatory drugs for knee osteoarthritis: Evidence from a network meta-analysis of randomized controlled trials and real-world data. Osteoarthr. Cartil. 2021, 29, 1242–1251. [Google Scholar] [CrossRef] [PubMed]
- Hickman, S.R.; Mathieson, K.M.; Bradford, L.M.; Garman, C.D.; Gregg, R.W.; Lukens, D.W. Randomized trial of oral versus intravenous acetaminophen for postoperative pain control. Am. J. Health Syst. Pharm. 2018, 75, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Westrich, G.H.; Birch, G.A.; Muskat, A.R.; Padgett, D.E.; Goytizolo, E.A.; Bostrom, M.P.; Mayman, D.J.; Lin, Y.; YaDeau, J.T. Intravenous vs Oral Acetaminophen as a Component of Multimodal Analgesia After Total Hip Arthroplasty: A Randomized, Blinded Trial. J. Arthroplast. 2019, 34, S215–S220. [Google Scholar] [CrossRef]
- Shi, S.B.; Wang, X.B.; Song, J.M.; Guo, S.F.; Chen, Z.X.; Wang, Y. Efficacy of intravenous acetaminophen in multimodal management for pain relief following total knee arthroplasty: A meta-analysis. J. Orthop. Surg. Res. 2018, 13, 250. [Google Scholar] [CrossRef]
- Murata-Ooiwa, M.; Tsukada, S.; Wakui, M. Intravenous Acetaminophen in Multimodal Pain Management for Patients Undergoing Total Knee Arthroplasty: A Randomized, Double-Blind, Placebo-Controlled Trial. J. Arthroplast. 2017, 32, 3024–3028. [Google Scholar] [CrossRef]
- Yu, S.; Eftekhary, N.; Wiznia, D.; Schwarzkopf, R.; Long, W.J.; Bosco, J.A.; Iorio, R. Evolution of an Opioid Sparse Pain Management Program for Total Knee Arthroplasty With the Addition of Intravenous Acetaminophen. J. Arthroplast. 2020, 35, 89–94. [Google Scholar] [CrossRef]
- Hewitt, D.J. The use of NMDA-receptor antagonists in the treatment of chronic pain. Clin. J. Pain 2000, 16, S73–S79. [Google Scholar] [CrossRef]
- Yang, Y.; Maher, D.P.; Cohen, S.P. Emerging concepts on the use of ketamine for chronic pain. Expert. Rev. Clin. Pharmacol. 2020, 13, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Moon, T.S.; Smith, K.M. Ketamine Use in the Surgical Patient: A Literature Review. Curr. Pain Headache Rep. 2021, 25, 17. [Google Scholar] [CrossRef]
- Schwenk, E.S.; Viscusi, E.R.; Buvanendran, A.; Hurley, R.W.; Wasan, A.D.; Narouze, S.; Bhatia, A.; Davis, F.N.; Hooten, W.M.; Cohen, S.P. Consensus Guidelines on the Use of Intravenous Ketamine Infusions for Acute Pain Management From the American Society of Regional Anesthesia and Pain Medicine, the American Academy of Pain Medicine, and the American Society of Anesthesiologists. Reg. Anesth. Pain Med. 2018, 43, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Loftus, R.W.; Yeager, M.P.; Clark, J.A.; Brown, J.R.; Abdu, W.A.; Sengupta, D.K.; Beach, M.L. Intraoperative ketamine reduces perioperative opiate consumption in opiate-dependent patients with chronic back pain undergoing back surgery. Anesthesiology 2010, 113, 639–646. [Google Scholar] [CrossRef]
- Riddell, J.M.; Trummel, J.M.; Onakpoya, I.J. Low-dose ketamine in painful orthopaedic surgery: A systematic review and meta-analysis. Br. J. Anaesth. 2019, 123, 325–334. [Google Scholar] [CrossRef] [PubMed]
- King, M.R.; Ladha, K.S.; Gelineau, A.M.; Anderson, T.A. Perioperative Dextromethorphan as an Adjunct for Postoperative Pain: A Meta-analysis of Randomized Controlled Trials. Anesthesiology 2016, 124, 696–705. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.L.; Longenecker, A.S.; Rhee, J.H.; Good, R.P.; Emper, W.D.; Freedman, K.B.; Shaner, J.L.; McComb, J.J.; Levicoff, E.A. Intraoperative Ketamine in Total Knee Arthroplasty Does Not Decrease Pain and Narcotic Consumption: A Prospective Randomized Controlled Trial. J. Arthroplast. 2019, 34, 1640–1645. [Google Scholar] [CrossRef]
- Jüni, P.; Hari, R.; Rutjes, A.W.S.; Fischer, R.; Silletta, M.G.; Reichenbach, S.; da Costa, B.R. Intra-Articular Corticosteroid for Knee Osteoarthritis. In Cochrane Database of Systematic Reviews; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015. [Google Scholar] [CrossRef]
- McEwen, B.S.; Kalia, M. The role of corticosteroids and stress in chronic pain conditions. Metabolism 2010, 59 (Suppl. 1), S9–S15. [Google Scholar] [CrossRef] [PubMed]
- Salerno, A.; Hermann, R. Efficacy and Safety of Steroid Use for Postoperative Pain Relief: Update and Review of the Medical Literature. J. Bone Jt. Surg. Am. 2006, 88, 1361–1372. [Google Scholar] [CrossRef]
- Li, D.; Wang, C.; Yang, Z.; Kang, P. Effect of Intravenous Corticosteroids on Pain Management and Early Rehabilitation in Patients Undergoing Total Knee or Hip Arthroplasty: A Meta-Analysis of Randomized Controlled Trials. Pain Pr. 2018, 18, 487–499. [Google Scholar] [CrossRef]
- Li, Q.; Mu, G.; Liu, X.; Chen, M. Efficacy of additional corticosteroids to multimodal cocktail periarticular injection in total knee arthroplasty: A meta-analysis of randomized controlled trials. J. Orthop. Surg. Res. 2021, 16, 77. [Google Scholar] [CrossRef]
- Arraut, J.; Thomas, J.; Oakley, C.T.; Barzideh, O.S.; Rozell, J.C.; Schwarzkopf, R. The AAHKS Best Podium Presentation Research Award: A Second Dose of Dexamethasone Reduces Postoperative Opioid Consumption and Pain in Total Joint Arthroplasty. J. Arthroplast. 2023, 38 (Suppl. 2), S21–S28. [Google Scholar] [CrossRef]
- Polderman, J.A.; Farhang-Razi, V.; Van Dieren, S.; Kranke, P.; DeVries, J.H.; Hollmann, M.W.; Preckel, B.; Hermanides, J. Adverse side effects of dexamethasone in surgical patients. Cochrane Database Syst. Rev. 2018, 8, Cd011940. [Google Scholar] [CrossRef]
- Fu, J.L.; Perloff, M.D. Pharmacotherapy for Spine-Related Pain in Older Adults. Drugs Aging 2022, 39, 523–550. [Google Scholar] [CrossRef]
- Gilron, I. Gabapentin and pregabalin for chronic neuropathic and early postsurgical pain: Current evidence and future directions. Curr. Opin. Anaesthesiol. 2007, 20, 456–472. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Li, X.D.; Jiang, H.Q.; Ma, J.X.; Ma, X.L. The use of gabapentin in the management of postoperative pain after total knee arthroplasty: A PRISMA-compliant meta-analysis of randomized controlled trials. Medicine 2016, 95, e3883. [Google Scholar] [CrossRef] [PubMed]
- Zhai, L.; Song, Z.; Liu, K. The Effect of Gabapentin on Acute Postoperative Pain in Patients Undergoing Total Knee Arthroplasty: A Meta-Analysis. Medicine 2016, 95, e3673. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.Y.; Gan, T.J.; Habib, A.S. Gabapentin and postoperative pain--a systematic review of randomized controlled trials. Pain 2006, 126, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Seib, R.K.; Paul, J.E. Preoperative gabapentin for postoperative analgesia: A meta-analysis. Can. J. Anaesth. 2006, 53, 461–469. [Google Scholar] [CrossRef]
- Hannon, C.P.; Fillingham, Y.A.; Browne, J.A.; Schemitsch, E.H.; Mullen, K.; Casambre, F.; Visvabharathy, V.; Hamilton, W.G.; Della Valle, C.J. The Efficacy and Safety of Gabapentinoids in Total Joint Arthroplasty: Systematic Review and Direct Meta-Analysis. J. Arthroplast. 2020, 35, 2730–2738.e2736. [Google Scholar] [CrossRef] [PubMed]
- Patzkowski, J.C.; Patzkowski, M.S. AAOS/METRC Clinical Practice Guideline Summary: Pharmacologic, Physical, and Cognitive Pain Alleviation for Musculoskeletal Extremity/Pelvis Surgery. J. Am. Acad. Orthop. Surg. 2022, 30, e1152–e1160. [Google Scholar] [CrossRef] [PubMed]
- Paul, J.E.; Nantha-Aree, M.; Buckley, N.; Shahzad, U.; Cheng, J.; Thabane, L.; Tidy, A.; DeBeer, J.; Winemaker, M.; Wismer, D.; et al. Randomized controlled trial of gabapentin as an adjunct to perioperative analgesia in total hip arthroplasty patients. Can. J. Anaesth. 2015, 62, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Lunn, T.H.; Husted, H.; Laursen, M.B.; Hansen, L.T.; Kehlet, H. Analgesic and sedative effects of perioperative gabapentin in total knee arthroplasty: A randomized, double-blind, placebo-controlled dose-finding study. Pain 2015, 156, 2438–2448. [Google Scholar] [CrossRef]
- Gomes, T.; Juurlink, D.N.; Antoniou, T.; Mamdani, M.M.; Paterson, J.M.; van den Brink, W. Gabapentin, opioids, and the risk of opioid-related death: A population-based nested case-control study. PLoS Med. 2017, 14, e1002396. [Google Scholar] [CrossRef]
- Mathiesen, O.; Jacobsen, L.S.; Holm, H.E.; Randall, S.; Adamiec-Malmstroem, L.; Graungaard, B.K.; Holst, P.E.; Hilsted, K.L.; Dahl, J.B. Pregabalin and dexamethasone for postoperative pain control: A randomized controlled study in hip arthroplasty. BJA Br. J. Anaesth. 2008, 101, 535–541. [Google Scholar] [CrossRef]
- Bockbrader, H.N.; Wesche, D.; Miller, R.; Chapel, S.; Janiczek, N.; Burger, P. A comparison of the pharmacokinetics and pharmacodynamics of pregabalin and gabapentin. Clin. Pharmacokinet. 2010, 49, 661–669. [Google Scholar] [CrossRef]
- Patzkowski, J.C.; Patzkowski, M.S. A Case Illustrating the Practical Application of the AAOS Clinical Practice Guideline: Pharmacologic, Physical, and Cognitive Pain Alleviation for Musculoskeletal Extremity/Pelvis Surgery. JAAOS—J. Am. Acad. Orthop. Surg. 2022, 30, e1161–e1164. [Google Scholar] [CrossRef]
- Indelli, P.F.; Grant, S.A.; Nielsen, K.; Vail, T.P. Regional anesthesia in hip surgery. Clin. Orthop. Relat. Res. 2005, 441, 250–255. [Google Scholar] [CrossRef]
- Meng, T.; Zhong, Z.; Meng, L. Impact of spinal anaesthesia vs. general anaesthesia on peri-operative outcome in lumbar spine surgery: A systematic review and meta-analysis of randomised, controlled trials. Anaesthesia 2017, 72, 391–401. [Google Scholar] [CrossRef]
- Pope, D.; El-Othmani, M.M.; Manning, B.T.; Sepula, M.; Markwell, S.J.; Saleh, K.J. Impact of Age, Gender and Anesthesia Modality on Post-Operative Pain in Total Knee Arthroplasty Patients. Iowa Orthop. J. 2015, 35, 92–98. [Google Scholar]
- Macfarlane, A.J.; Prasad, G.A.; Chan, V.W.; Brull, R. Does regional anesthesia improve outcome after total knee arthroplasty? Clin. Orthop. Relat. Res. 2009, 467, 2379–2402. [Google Scholar] [CrossRef]
- Farag, E.; Dilger, J.; Brooks, P.; Tetzlaff, J.E. Epidural analgesia improves early rehabilitation after total knee replacement. J. Clin. Anesth. 2005, 17, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Nishimori, M.; Low, J.H.; Zheng, H.; Ballantyne, J.C. Epidural pain relief versus systemic opioid-based pain relief for abdominal aortic surgery. Cochrane Database Syst. Rev. 2012, 7, Cd005059. [Google Scholar] [CrossRef]
- Owen, A.R.; Amundson, A.W.; Larson, D.R.; Duncan, C.M.; Smith, H.M.; Johnson, R.L.; Taunton, M.J.; Pagnano, M.W.; Berry, D.J.; Abdel, M.P. Spinal versus general anaesthesia in contemporary primary total knee arthroplasties. Bone Jt. J. 2022, 104, 1209–1214. [Google Scholar] [CrossRef] [PubMed]
- Yap, E.; Wei, J.; Webb, C.; Ng, K.; Behrends, M. Neuraxial and general anesthesia for outpatient total joint arthroplasty result in similarly low rates of major perioperative complications: A multicentered cohort study. Reg. Anesth. Pain Med. 2022, 47, 294–300. [Google Scholar] [CrossRef]
- Schwenk, E.S.; Gupta, R.K.; Yap, E. Complications after outpatient total joint arthroplasty with neuraxial versus general anesthesia: An infographic. Reg. Anesth. Pain Med. 2022, 47, 293. [Google Scholar] [CrossRef]
- Memtsoudis, S.G.; Cozowicz, C.; Bekeris, J.; Bekere, D.; Liu, J.; Soffin, E.M.; Mariano, E.R.; Johnson, R.L.; Hargett, M.J.; Lee, B.H.; et al. Anaesthetic care of patients undergoing primary hip and knee arthroplasty: Consensus recommendations from the International Consensus on Anaesthesia-Related Outcomes after Surgery group (ICAROS) based on a systematic review and meta-analysis. Br. J. Anaesth. 2019, 123, 269–287. [Google Scholar] [CrossRef] [PubMed]
- Büttner, B.; Mansur, A.; Hinz, J.; Erlenwein, J.; Bauer, M.; Bergmann, I. Combination of general anesthesia and peripheral nerve block with low-dose ropivacaine reduces postoperative pain for several days after outpatient arthroscopy: A randomized controlled clinical trial. Medicine 2017, 96, e6046. [Google Scholar] [CrossRef]
- Jeng, C.L.; Rosenblatt, M.A. Overview of Peripheral Nerve Blocks. Available online: https://www.uptodate.com/contents/overview-of-peripheral-nerve-blocks#H184102483 (accessed on 1 September 2024).
- Tyagi, A.; Salhotra, R. Total hip arthroplasty and peripheral nerve blocks: Limited but salient role? J. Anaesthesiol. Clin. Pharmacol. 2018, 34, 379–380. [Google Scholar] [CrossRef]
- Hasegawa, M.; Singh, D.; Urits, I.; Pi, M.; Nakasone, C.; Viswanath, O.; Kaye, A.D. Review on Nerve Blocks Utilized for Perioperative Total Knee Arthroplasty Analgesia. Orthop. Rev. 2022, 14, 37405. [Google Scholar] [CrossRef]
- Akkaya, A.; Tekelioglu, U.Y.; Demirhan, A.; Ozturan, K.E.; Bayir, H.; Kocoglu, H.; Bilgi, M. Ultrasound-guided femoral and sciatic nerve blocks combined with sedoanalgesia versus spinal anesthesia in total knee arthroplasty. Korean J. Anesthesiol. 2014, 67, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Pascarella, G.; Costa, F.; Del Buono, R.; Pulitanò, R.; Strumia, A.; Piliego, C.; De Quattro, E.; Cataldo, R.; Agrò, F.E.; Carassiti, M. Impact of the pericapsular nerve group (PENG) block on postoperative analgesia and functional recovery following total hip arthroplasty: A randomised, observer-masked, controlled trial. Anaesthesia 2021, 76, 1492–1498. [Google Scholar] [CrossRef] [PubMed]
- Memtsoudis, S.G.; Cozowicz, C.; Bekeris, J.; Bekere, D.; Liu, J.; Soffin, E.M.; Mariano, E.R.; Johnson, R.L.; Go, G.; Hargett, M.J.; et al. Peripheral nerve block anesthesia/analgesia for patients undergoing primary hip and knee arthroplasty: Recommendations from the International Consensus on Anesthesia-Related Outcomes after Surgery (ICAROS) group based on a systematic review and meta-analysis of current literature. Reg. Anesth. Pain Med. 2021, 46, 971–985. [Google Scholar] [CrossRef] [PubMed]
- Memtsoudis, S.G.; Poeran, J.; Cozowicz, C.; Zubizarreta, N.; Ozbek, U.; Mazumdar, M. The impact of peripheral nerve blocks on perioperative outcome in hip and knee arthroplasty-a population-based study. Pain 2016, 157, 2341–2349. [Google Scholar] [CrossRef]
- Marques, E.M.; Jones, H.E.; Elvers, K.T.; Pyke, M.; Blom, A.W.; Beswick, A.D. Local anaesthetic infiltration for peri-operative pain control in total hip and knee replacement: Systematic review and meta-analyses of short- and long-term effectiveness. BMC Musculoskelet. Disord. 2014, 15, 220. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Qu, J.; Pan, S.; Qu, Y. Local infiltration anesthesia versus epidural analgesia for postoperative pain control in total knee arthroplasty: A systematic review and meta-analysis. J. Orthop. Surg. Res. 2018, 13, 112. [Google Scholar] [CrossRef] [PubMed]
- Tran, J.; Schwarzkopf, R. Local infiltration anesthesia with steroids in total knee arthroplasty: A systematic review of randomized control trials. J. Orthop. 2015, 12 (Suppl. 1), S44–S50. [Google Scholar] [CrossRef]
- Matassi, F.; Duerinckx, J.; Vandenneucker, H.; Bellemans, J. Range of motion after total knee arthroplasty: The effect of a preoperative home exercise program. Knee Surg. Sports Traumatol. Arthrosc. 2014, 22, 703–709. [Google Scholar] [CrossRef]
- McKay, C.; Prapavessis, H.; Doherty, T. The effect of a prehabilitation exercise program on quadriceps strength for patients undergoing total knee arthroplasty: A randomized controlled pilot study. PMR 2012, 4, 647–656. [Google Scholar] [CrossRef]
- Myers, J.N.; Fonda, H. The Impact of Fitness on Surgical Outcomes: The Case for Prehabilitation. Curr. Sports Med. Rep. 2016, 15, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Calatayud, J.; Casaña, J.; Ezzatvar, Y.; Jakobsen, M.D.; Sundstrup, E.; Andersen, L.L. High-intensity preoperative training improves physical and functional recovery in the early post-operative periods after total knee arthroplasty: A randomized controlled trial. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 2864–2872. [Google Scholar] [CrossRef] [PubMed]
- Bodrogi, A.; Dervin, G.F.; Beaulé, P.E. Management of patients undergoing same-day discharge primary total hip and knee arthroplasty. Cmaj 2020, 192, E34–E39. [Google Scholar] [CrossRef] [PubMed]
- Tayrose, G.; Newman, D.; Slover, J.; Jaffe, F.; Hunter, T.; Bosco, J., 3rd. Rapid mobilization decreases length-of-stay in joint replacement patients. Bull. Hosp. Jt. Dis. 2013, 71, 222–226. [Google Scholar]
- Frenkel Rutenberg, T.; Izchak, H.; Rosenthal, Y.; Barak, U.; Shemesh, S.; Heller, S. Earlier Initiation of Postoperative Physical Therapy Decreases Opioid Use after Total Knee Arthroplasty. J. Knee Surg. 2022, 35, 933–939. [Google Scholar] [CrossRef]
- Spalevic, M.; Dimitrijevic, L.; Kocic, M.; Stankovic, I.; Zivkovic, V. AB1124 The Importance of the Early Rehabilitation after Total Knee Replacement in Osteoarthritis and Rheumatoid Arthritis Patients. Ann. Rheum. Dis. 2014, 73, 1173–1174. [Google Scholar] [CrossRef]
- Labraca, N.S.; Castro-Sánchez, A.M.; Matarán-Peñarrocha, G.A.; Arroyo-Morales, M.; Sánchez-Joya Mdel, M.; Moreno-Lorenzo, C. Benefits of starting rehabilitation within 24 hours of primary total knee arthroplasty: Randomized clinical trial. Clin. Rehabil. 2011, 25, 557–566. [Google Scholar] [CrossRef]
- Warwick, H.; George, A.; Howell, C.; Green, C.; Seyler, T.M.; Jiranek, W.A. Immediate Physical Therapy following Total Joint Arthroplasty: Barriers and Impact on Short-Term Outcomes. Adv. Orthop. 2019, 2019, 6051476. [Google Scholar] [CrossRef]
- Thacoor, A.; Sandiford, N.A. Cryotherapy following total knee arthroplasty: What is the evidence? J. Orthop. Surg. 2019, 27, 2309499019832752. [Google Scholar] [CrossRef]
- Krampe, P.T.; Bendo, A.J.P.; Barros, M.I.G.; Bertolini, G.R.F.; Buzanello Azevedo, M.R. Cryotherapy in Knee Arthroplasty: Systematic Review and Meta-Analysis. Ther. Hypothermia Temp. Manag. 2022, 13, 45–54. [Google Scholar] [CrossRef]
- Adie, S.; Kwan, A.; Naylor, J.M.; Harris, I.A.; Mittal, R. Cryotherapy following total knee replacement. Cochrane Database Syst. Rev. 2012, 9, CD007911. [Google Scholar] [CrossRef] [PubMed]
- Ilfeld, B.M.; Gilmore, C.A.; Grant, S.A.; Bolognesi, M.P.; Del Gaizo, D.J.; Wongsarnpigoon, A.; Boggs, J.W. Ultrasound-guided percutaneous peripheral nerve stimulation for analgesia following total knee arthroplasty: A prospective feasibility study. J. Orthop. Surg. Res. 2017, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Deer, T.R.; Mekhail, N.; Provenzano, D.; Pope, J.; Krames, E.; Leong, M.; Levy, R.M.; Abejon, D.; Buchser, E.; Burton, A.; et al. The appropriate use of neurostimulation of the spinal cord and peripheral nervous system for the treatment of chronic pain and ischemic diseases: The Neuromodulation Appropriateness Consensus Committee. Neuromodulation 2014, 17, 515–550, discussion 550. [Google Scholar] [CrossRef] [PubMed]
- Ilfeld, B.M.; Said, E.T.; Finneran, J.J.t.; Sztain, J.F.; Abramson, W.B.; Gabriel, R.A.; Khatibi, B.; Swisher, M.W.; Jaeger, P.; Covey, D.C.; et al. Ultrasound-Guided Percutaneous Peripheral Nerve Stimulation: Neuromodulation of the Femoral Nerve for Postoperative Analgesia Following Ambulatory Anterior Cruciate Ligament Reconstruction: A Proof of Concept Study. Neuromodulation 2019, 22, 621–629. [Google Scholar] [CrossRef]
- García-Collado, A.; Valera-Calero, J.A.; Fernández-de-Las-Peñas, C.; Arias-Buría, J.L. Effects of Ultrasound-Guided Nerve Stimulation Targeting Peripheral Nerve Tissue on Pain and Function: A Scoping Review. J. Clin. Med. 2022, 11, 3753. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Souza, D.N.; Lorentz, N.A.; Charalambous, L.; Galetta, M.; Petrilli, C.; Rozell, J.C. Comprehensive Pain Management in Total Joint Arthroplasty: A Review of Contemporary Approaches. J. Clin. Med. 2024, 13, 6819. https://doi.org/10.3390/jcm13226819
de Souza DN, Lorentz NA, Charalambous L, Galetta M, Petrilli C, Rozell JC. Comprehensive Pain Management in Total Joint Arthroplasty: A Review of Contemporary Approaches. Journal of Clinical Medicine. 2024; 13(22):6819. https://doi.org/10.3390/jcm13226819
Chicago/Turabian Stylede Souza, Daniel N., Nathan A. Lorentz, Lefko Charalambous, Matthew Galetta, Christopher Petrilli, and Joshua C. Rozell. 2024. "Comprehensive Pain Management in Total Joint Arthroplasty: A Review of Contemporary Approaches" Journal of Clinical Medicine 13, no. 22: 6819. https://doi.org/10.3390/jcm13226819
APA Stylede Souza, D. N., Lorentz, N. A., Charalambous, L., Galetta, M., Petrilli, C., & Rozell, J. C. (2024). Comprehensive Pain Management in Total Joint Arthroplasty: A Review of Contemporary Approaches. Journal of Clinical Medicine, 13(22), 6819. https://doi.org/10.3390/jcm13226819