Could Hepcidin Be a New Biomarker in Patients with Idiopathic Pulmonary Fibrosis (IPF)?
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Subjects
2.2. Laboratory Assessments
2.3. Serum Hepcidin Analysis
2.4. Statistical Method
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barratt, S.L.; Creamer, A.; Hayton, C.; Chaudhuri, N. Idiopathic Pulmonary Fibrosis (IPF): An Overview. J. Clin. Med. 2018, 7, 201. [Google Scholar] [CrossRef] [PubMed]
- Demedts, M.; Wells, A.U.; Antó, J.M.; Costabel, U.; Hubbard, R.; Cullinan, P.; Slabbynck, H.; Rizzato, G.; Poletti, V.; Verbeken, E.K.; et al. Interstitial Lung Diseases: An Epidemiological Overview. Eur. Respir. J. 2001, 18 (Suppl. S32), 2S–16S. [Google Scholar] [CrossRef]
- Raghu, G.; Collard, H.R.; Egan, J.J.; Martinez, F.J.; Behr, J.; Brown, K.K.; Colby, T.V.; Cordier, J.F.; Flaherty, K.R.; Lasky, J.A.; et al. An Official ATS/ERS/JRS/ALAT Statement: Idiopathic Pulmonary Fibrosis: Evidence-based Guidelines for Diagnosis and Management. Am. J. Respir. Crit. Care Med. 2011, 183, 788–824. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.; He, B.; Xiao, J. Smoking and Idiopathic Pulmonary Fibrosis: A Meta-analysis. Nicotine Tob. Res. 2024, ntae100. [Google Scholar] [CrossRef]
- Blackwell, T.S.; Tager, A.M.; Borok, Z.; Moore, B.B.; Schwartz, D.A.; Anstrom, K.J.; Bar-Joseph, Z.; Bitterman, P.; Blackburn, M.R.; Bradford, W.; et al. Future Directions in Idiopathic Pulmonary Fibrosis Research. An NHLBI Workshop Report. Am. J. Respir. Crit. Care Med. 2014, 189, 214–222. [Google Scholar] [CrossRef]
- Homer, R.J.; Elias, J.A.; Lee, C.G.; Herzog, E. Modern Concepts on the Role of Inflammation in Pulmonary Fibrosis. Arch. Pathol. Lab. Med. 2011, 135, 780–788. [Google Scholar] [CrossRef]
- Habibie, H.; Adhyatmika, A.; Schaafsma, D.; Melgert, B.N. The Role of Osteoprotegerin (OPG) in Fibrosis: Its Potential as a Biomarker and/or Biological Target for the Treatment of Fibrotic Diseases. Pharmacol. Ther. 2021, 228, 107941. [Google Scholar] [CrossRef]
- Kemna, E.H.; Tjalsma, H.; Willems, H.L.; Swinkels, D.W. Hepcidin: From Discovery to Differential Diagnosis. Haematologica 2008, 93, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Wang, L.; Ma, Y.; Wu, X.; Jin, L.; Yu, F. Increased Hepcidin Expression in Non-small Cell Lung Cancer Tissue and Serum Is Associated with Clinical Stage. Thorac. Cancer 2014, 5, 14–24. [Google Scholar] [CrossRef]
- Perez, E.; Baker, J.R.; Di Giandomenico, S.; Kermani, P.; Parker, J.; Kim, K.; Yang, J.; Barnes, P.J.; Vaulont, S.; Scandura, J.M.; et al. Hepcidin Is Essential for Alveolar Macrophage Function and Is Disrupted by Smoke in a Murine Chronic Obstructive Pulmonary Disease Model. J. Immunol. 2020, 205, 2489–2498. [Google Scholar] [CrossRef]
- Huang, Y.-H.; Kuo, H.-C. Anemia in Kawasaki Disease: Hepcidin as a Potential Biomarker. Int. J. Mol. Sci. 2017, 18, 820. [Google Scholar] [CrossRef] [PubMed]
- Arabul, M.; Celik, M.; Aslan, O.; Torun, S.; Beyazit, Y.; Alper, E.; Kandemir, A.; Ünsal, B. Hepcidin as a Predictor of Disease Severity in Acute Pancreatitis: A Single Center Prospective Study. Hepatogastroenterology 2013, 60, 595–600. [Google Scholar] [PubMed]
- Wrighting, D.M.; Andrews, N.C. Interleukin-6 Induces Hepcidin Expression through STAT3. Blood 2006, 108, 3204–3209. [Google Scholar] [CrossRef] [PubMed]
- Kemna, E.; Pickkers, P.; Nemeth, E.; van der Hoeven, H.; Swinkels, D. Time-Course Analysis of Hepcidin, Serum Iron, and Plasma Cytokine Levels in Humans Injected with LPS. Blood 2005, 106, 1864–1866. [Google Scholar] [CrossRef]
- Camaschella, C.; Nai, A.; Silvestri, L. Iron Metabolism and Iron Disorders Revisited in the Hepcidin Era. Haematologica 2020, 105, 260–272. [Google Scholar] [CrossRef]
- Lesbordes-Brion, J.-C.; Viatte, L.; Bennoun, M.; Lou, D.-Q.; Ramey, G.; Houbron, C.; Hamard, G.; Kahn, A.; Vaulont, S. Targeted Disruption of the Hepcidin 1 Gene Results in Severe Hemochromatosis. Blood 2006, 108, 1402–1405. [Google Scholar] [CrossRef]
- Roy, C.N.; Mak, H.H.; Akpan, I.; Losyev, G.; Zurakowski, D.; Andrews, N.C. Hepcidin Antimicrobial Peptide Transgenic Mice Exhibit Features of the Anemia of Inflammation. Blood 2007, 109, 4038–4044. [Google Scholar] [CrossRef]
- Liu, Q.; Davidoff, O.; Niss, K.; Haase, V.H. Hypoxia-Inducible Factor Regulates Hepcidin via Erythropoietin-Induced Erythropoiesis. J. Clin. Investig. 2012, 122, 4635–4644. [Google Scholar] [CrossRef]
- Mastrogiannaki, M.; Matak, P.; Peyssonnaux, C. The Gut in Iron Homeostasis: Role of HIF-2 under Normal and Pathological Conditions. Blood 2013, 122, 885–892. [Google Scholar] [CrossRef]
- Roth, M.-P.; Meynard, D.; Coppin, H. Chapter Five—Regulators of Hepcidin Expression. In Iron Metabolism: Hepcidin; Litwack, G., Ed.; Academic Press: Cambridge, MA, USA, 2019; Volume 110, pp. 101–129. [Google Scholar] [CrossRef]
- Ishikawa, N.; Hattori, N.; Yokoyama, A.; Kohno, N. Utility of KL-6/MUC1 in the Clinical Management of Interstitial Lung Diseases. Respir. Investig. 2012, 50, 3–13. [Google Scholar] [CrossRef]
- Wang, T.; Yao, Y.; Wang, Y.; Wei, W.; Yin, B.; Huang, M.; Yuan, P.; Chen, R.; Wang, F.; Wu, S.; et al. Evaluating the Diagnostic and Therapeutic Significance of KL-6 in Patients with Interstitial Lung Diseases. Heliyon 2024, 10, e27561. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.-B.; Callaghan, K.D.; Ghio, A.J.; Haile, D.J.; Yang, F. Hepcidin Expression and Iron Transport in Alveolar Macrophages. Am. J. Physiol. Lung Cell Mol. Physiol. 2006, 291, L417–L425. [Google Scholar] [CrossRef] [PubMed]
- Zhang, V.; Nemeth, E.; Kim, A. Iron in Lung Pathology. Pharmaceuticals 2019, 12, 30. [Google Scholar] [CrossRef] [PubMed]
- Parimon, T.; Yao, C.; Stripp, B.R.; Noble, P.W.; Chen, P. Alveolar Epithelial Type II Cells as Drivers of Lung Fibrosis in Idiopathic Pulmonary Fibrosis. Int. J. Mol. Sci. 2020, 21, 2269. [Google Scholar] [CrossRef] [PubMed]
- Frazier, M.D.; Mamo, L.B.; Ghio, A.J.; Turi, J.L. Hepcidin Expression in Human Airway Epithelial Cells Is Regulated by Interferon-γ. Respir. Res. 2011, 12, 100. [Google Scholar] [CrossRef]
- Mühlfeld, C.; Neves, J.; Brandenberger, C.; Hegermann, J.; Wrede, C.; Altamura, S.; Muckenthaler, M.U. Air–Blood Barrier Thickening and Alterations of Alveolar Epithelial Type 2 Cells in Mouse Lungs with Disrupted Hepcidin/Ferroportin Regulatory System. Histochem. Cell Biol. 2019, 151, 217–228. [Google Scholar] [CrossRef]
- Nicolas, G.; Chauvet, C.; Viatte, L.; Danan, J.L.; Bigard, X.; Devaux, I.; Beaumont, C.; Kahn, A.; Vaulont, S. The Gene Encoding the Iron Regulatory Peptide Hepcidin Is Regulated by Anemia, Hypoxia, and Inflammation. J. Clin. Investig. 2002, 110, 1037–1044. [Google Scholar] [CrossRef]
- Nicolas, G.; Bennoun, M.; Devaux, I.; Beaumont, C.; Grandchamp, B.; Kahn, A.; Vaulont, S. Lack of Hepcidin Gene Expression and Severe Tissue Iron Overload in Upstream Stimulatory Factor 2 (USF2) Knockout Mice. Proc. Natl. Acad. Sci. USA 2001, 98, 8780–8785. [Google Scholar] [CrossRef]
- Lee, P.L.; Beutler, E. Regulation of Hepcidin and Iron-Overload Disease. Annu. Rev. Pathol. 2009, 4, 489–515. [Google Scholar] [CrossRef]
- Leuenberger, N.; Barras, L.; Nicoli, R.; Robinson, N.; Baume, N.; Lion, N.; Barelli, S.; Tissot, J.-D.; Saugy, M. Hepcidin as a New Biomarker for Detecting Autologous Blood Transfusion. Am. J. Hematol. 2016, 91, 467–472. [Google Scholar] [CrossRef]
- Wagner, M.; Ashby, D. Hepcidin—A Well-Known Iron Biomarker with Prognostic Implications in Chronic Kidney Disease. Nephrol. Dial. Transplant. 2013, 28, 2936–2939. [Google Scholar] [CrossRef] [PubMed]
- Roy, J.E.; Shanthi, B.; Selvi, V.S.K. Serum Hepcidin as an Inflammatory Marker in Chronic Kidney Disease. J. Pharm. Res. Int. 2020, 32, 40–45. [Google Scholar] [CrossRef]
- Kaşıkçı, E.E. The Effectiveness and Reliability of Measuring Serum Hepcidin Levels for Evaluating Disease Activity in Patients with Ulcerative Colitis; Pamukkale University School of Medicine: Denizli, Turkey, 2021; Available online: https://hdl.handle.net/11499/3547 (accessed on 1 August 2024).
- Cicek, D.; Dağlı, A.F.; Aydin, S.; Baskaya Doğan, F.; Dertlioğlu, S.B.; Uçak, H.; Demir, B. Does Hepcidin Play a Role in the Pathogenesis of Aphthae in Behçet’s Disease and Recurrent Aphthous Stomatitis? J. Eur. Acad. Dermatol. Venereol. 2014, 28, 1500–1506. [Google Scholar] [CrossRef]
- Oustamanolakis, P.; Koutroubakis, I.E.; Messaritakis, I.; Malliaraki, N.; Sfiridaki, A.; Kouroumalis, E.A. Serum Hepcidin and Prohepcidin Concentrations in Inflammatory Bowel Disease. Eur. J. Gastroenterol. Hepatol. 2011, 23, 262–268. [Google Scholar] [CrossRef]
- Duru, S.; Bilgin, E.; Ardıç, S. Hepcidin: A Useful Marker in Chronic Obstructive Pulmonary Disease. Ann. Thorac. Med. 2012, 7, 31–35. [Google Scholar] [CrossRef]
- Lakhal-Littleton, S.; Wolna, M.; Chung, Y.J.; Christian, H.C.; Heather, L.C.; Brescia, M.; Ball, V.; Diaz, R.; Santos, A.; Biggs, D.; et al. An Essential Cell-Autonomous Role for Hepcidin in Cardiac Iron Homeostasis. eLife 2016, 5, e19804. [Google Scholar] [CrossRef] [PubMed]
- Merle, U.; Fein, E.; Gehrke, S.G.; Stremmel, W.; Kulaksiz, H. The Iron Regulatory Peptide Hepcidin Is Expressed in the Heart and Regulated by Hypoxia and Inflammation. Endocrinology 2007, 148, 2663–2668. [Google Scholar] [CrossRef]
- Kulaksiz, H.; Theilig, F.; Bachmann, S.; Gehrke, S.G.; Rost, D.; Janetzko, A.; Cetin, Y.; Stremmel, W. The Iron-Regulatory Peptide Hormone Hepcidin: Expression and Cellular Localization in the Mammalian Kidney. J. Endocrinol. 2005, 184, 361–370. [Google Scholar] [CrossRef]
- Bekri, S.; Gual, P.; Anty, R.; Luciani, N.; Dahman, M.; Ramesh, B.; Iannelli, A.; Staccini-Myx, A.; Casanova, D.; Ben Amor, I.; et al. Increased Adipose Tissue Expression of Hepcidin in Severe Obesity Is Independent from Diabetes and NASH. Gastroenterology 2006, 131, 788–796. [Google Scholar] [CrossRef]
- Park, C.H.; Valore, E.V.; Waring, A.J.; Ganz, T. Hepcidin, a Urinary Antimicrobial Peptide Synthesized in the Liver. J. Biol. Chem. 2001, 276, 7806–7810. [Google Scholar] [CrossRef]
- Peyssonnaux, C.; Zinkernagel, A.S.; Datta, V.; Lauth, X.; Johnson, R.S.; Nizet, V. TLR4-Dependent Hepcidin Expression by Myeloid Cells in Response to Bacterial Pathogens. Blood 2006, 107, 3727–3732. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-B.; Nguyen, N.-B.H.; Marquess, K.D.; Yang, F.; Haile, D.J. Regulation of Hepcidin and Ferroportin Expression by Lipopolysaccharide in Splenic Macrophages. Blood Cells Mol. Dis. 2005, 35, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Theurl, I.; Theurl, M.; Seifert, M.; Mair, S.; Nairz, M.; Rumpold, H.; Zoller, H.; Bellmann-Weiler, R.; Niederegger, H.; Talasz, H.; et al. Autocrine Formation of Hepcidin Induces Iron Retention in Human Monocytes. Blood 2008, 111, 2392–2399. [Google Scholar] [CrossRef] [PubMed]
- Aşkar, T.K.; Büyükleblebici, O.; Hismioğulları, A.A.; Hünkerler, Z. Oxidative Stress, Hepcidin and Nesfatin-I Status in Childhood Iron and Vitamin B12 Deficiency Anemias. Adv. Clin. Exp. Med. 2017, 26, 621–625. [Google Scholar] [CrossRef]
- Attia, A.; Mohammed, T.; Abd Al Aziz, U. The Relationship Between Serum Hepcidin Level and Hypoxemia in COPD Patients. Egypt. J. Chest Dis. Tuberc. 2015, 64, 57–61. [Google Scholar] [CrossRef]
- Samarelli, A.V.; Tonelli, R.; Marchioni, A.; Bruzzi, G.; Gozzi, F.; Andrisani, D.; Castaniere, I.; Manicardi, L.; Moretti, A.; Tabbì, L.; et al. Fibrotic Idiopathic Interstitial Lung Disease: The Molecular and Cellular Key Players. Int. J. Mol. Sci. 2021, 22, 8952. [Google Scholar] [CrossRef]
IPF Patients | Control Group | p | |
---|---|---|---|
Age (years) mean ± SD | 70.5 ± 7.69 | 71.42 ± 7.56 | 0.230 |
Hepcidin (ng/mL) mean ± SD | 37.13 ± 14.92 | 25.77 ± 11.25 | <0.001 |
DLCO (%) * mean ± SD | 58.95 ± 31.937 | 109.83 ± 9.48 | <0.001 |
FVC% ** mean ± SD | 77.79 ± 19.0 | 90.57 ± 24.94 | 0.006 |
FEV1% *** mean ± SD | 82.87 ± 19.93 | 85.4 ± 25.76 | 0.587 |
mMRC **** | 1.63 ± 1.07 | 0.58 ± 0.92 | <0.001 |
Cigarettes (packages/year) Mean ± SD | 23.59 ± 23.27 | 14.19 ± 22.58 | 0.054 |
Serum transferrin (g/L) Mean ± SD | 2.72 ± 2.17 | 3.61 ± 4.27 | 0.192 |
Ferritin (18–250 μg/L) Median (min–max) | 39.90 (10.5–469) | 26.70 (3.70–266) | 0.030 |
Hemoglobin (12–16 gr/dL) Mean ± SD | 13.71 ± 1.97 | 13.10 ± 5.10 | 0.364 |
Iron (Fe) (50–170 μg/dL) Mean ± SD | 72.83 ± 35.98 | 60.5 ± 34.29 | 0.106 |
Vitamin B12 (ng/L) | 203 (83–1500) | 198 (77–1166) | 0.801 |
Folate Median (min–max) (μg/L) | 6.10 (3.5–21.20) | 7.15 (3.3–281) | 0.271 |
UIBC ***** (228–428 μg/dL) Median (min–max) | 258.9 ± 69.51 | 288.46 ± 99.0 | 0.841 |
Erythropoietin (4.3–29) Median (min–max) (mIU/mL) | 10.60 (1.78–57.3) | 6.74 (1.05–59) | 0.058 |
Erythrocyte Sedimentation Rate (mm/hour) | 33.85 ± 24.01 | 42.06 ± 36.96 | 0.169 |
C-reactive protein (mg/L) | 6.27 (3–66) | 4.15 (3–9.35) | 0.048 |
Six-minute walk test | 366.74 ± 102.50 | 472.8 ± 79.0 | <0.001 |
SII ****** | 903.43 ± 699.78 | 680.21 ± 516.1 | 0.109 |
CCI ******* score | 3.52 ± 1.740 | 3.58 ± 1.23 | 0.856 |
Treatment duration (months) | 16.75 ± 17.60 | - | - |
Follow-up duration (months) | 16.75 ± 17.6 | - | - |
İPF | |||
---|---|---|---|
Anemic | Non-Anemic | p | |
Age (years) Mean ± SD | 70.65 ± 7.33 | 70.30 ± 7.27 | 0.230 |
Hepcidin (ng/mL) Mean ± SD | 38.25 ± 16.2 | 36.7 ± 14.6 | 0.702 |
Ferritin (μg/L) Median (min–max) | 30.80 (3.70–469) | 40.60 (8.10–329) | 0.985 |
Hemoglobin (12–16 gr/dL) Mean ± SD | 11.07 ± 0.82 | 14.5 ± 1.38 | 0.000 |
Iron (Fe) (50–170 ug/dL) Mean ± SD | 50.05 ± 26.3 | 79.7 ± 35.8 | 0.02 |
UIBC * (228–428 μg/dL) Mean ± SD | 253.72 ± 71.2 | 260 ± 69.5 | 0.718 |
Eritropoietin median (mIU/mL) (min–max) | 13.95 (1.78–99.20) | 9.18 (1.05–76.90) | 0.181 |
Vitamin B12 (min–max) | 250 (84–1500) | 172 (83–797) | 0.213 |
Folate | 6.40 (2.40–12) | 6.5 (2.40–23.30) | 0.928 |
Hepcidin (ng/mL) | r | p |
---|---|---|
UIBC * (μg/dL) | 0.64 | 0.587 |
Vitamin B12 (ng/L) | 0.123 | 0.283 |
Iron (μg/dL) | −0.105 | 0.365 |
Ferritin (μg/L) | −0.025 | 0.823 |
Folate (μg/L) | 0.040 | 0.732 |
Hemoglobin (g/dL) | 0.052 | 0.643 |
Transferrin saturation (%) | −0.085 | 0.467 |
Serum transferrin (g/L) | 0.054 | 0.654 |
Erythropoietin (mIU/mL) | 0.197 | 0.099 |
Hepcidin | r | p |
---|---|---|
SII * | 0.16 | 0.141 |
Ferritin (μg/L) | −0.025 | 0.823 |
C-reactive protein (mg/L) | 0.38 | 0.737 |
Erythrocyte Sedimentation Rate (mm/hour) | 0.38 | 0.736 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yilmaz, G.; Çoban, H.; Sarioglu, N.; Erel, F.; Yılmaz, M.A.; Çolak, M.; Yumrukuz Şenel, M.; Hismioğulları, A.A. Could Hepcidin Be a New Biomarker in Patients with Idiopathic Pulmonary Fibrosis (IPF)? J. Clin. Med. 2024, 13, 6823. https://doi.org/10.3390/jcm13226823
Yilmaz G, Çoban H, Sarioglu N, Erel F, Yılmaz MA, Çolak M, Yumrukuz Şenel M, Hismioğulları AA. Could Hepcidin Be a New Biomarker in Patients with Idiopathic Pulmonary Fibrosis (IPF)? Journal of Clinical Medicine. 2024; 13(22):6823. https://doi.org/10.3390/jcm13226823
Chicago/Turabian StyleYilmaz, Gulcin, Hikmet Çoban, Nurhan Sarioglu, Fuat Erel, Merve Akış Yılmaz, Mustafa Çolak, Merve Yumrukuz Şenel, and Adnan Adil Hismioğulları. 2024. "Could Hepcidin Be a New Biomarker in Patients with Idiopathic Pulmonary Fibrosis (IPF)?" Journal of Clinical Medicine 13, no. 22: 6823. https://doi.org/10.3390/jcm13226823
APA StyleYilmaz, G., Çoban, H., Sarioglu, N., Erel, F., Yılmaz, M. A., Çolak, M., Yumrukuz Şenel, M., & Hismioğulları, A. A. (2024). Could Hepcidin Be a New Biomarker in Patients with Idiopathic Pulmonary Fibrosis (IPF)? Journal of Clinical Medicine, 13(22), 6823. https://doi.org/10.3390/jcm13226823