PREVALENCE, Characteristics, and Awareness of Chronic Kidney Disease in Croatia: The EH-UH 2 Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Recruitment
2.2. Questionnaire
2.3. Anthropometry (Physical Measurements)
2.4. Laboratory Analysis
2.5. Statistical Analysis
3. Results
3.1. Overall Prevalence of CKD
3.2. Prevalence of Albuminuria
3.3. Estimated CKD Population in Croatia
3.4. Demographic, Social, Behavioral, and Clinical Characteristics
3.5. Cardiovascular and Biochemical Associations with CKD
3.6. Factors Associated with CKD
3.7. CKD Awareness
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [PubMed]
- Mills, K.T.; Xu, Y.; Zhang, W.; Bundy, J.D.; Chen, C.-S.; Kelly, T.N.; Chen, J.; He, J. A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int. 2015, 88, 950–957. [Google Scholar] [CrossRef] [PubMed]
- GBD Mortality Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 385, 117–171. [Google Scholar] [CrossRef] [PubMed]
- GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef]
- Xie, Y.; Bowe, B.; Mokdad, A.H.; Xian, H.; Yan, Y.; Li, T.; Maddukuri, G.; Tsai, C.Y.; Floyd, T.; Al-Aly, Z. Analysis of the Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016. Kidney Int. 2018, 94, 567–581. [Google Scholar] [CrossRef]
- Couser, W.G.; Remuzzi, G.; Mendis, S.; Tonelli, M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 2011, 80, 1258–1270. [Google Scholar] [CrossRef]
- Sarnak, M.J.; Levey, A.S.; Schoolwerth, A.C. Kidney disease as a risk factor for development of cardiovascular disease: A statement from the American Heart Association councils on kidney in cardiovascular disease, high blood pressure research, clinical cardiology, and epidemiology and prevention. Circulation 2003, 108, 2154–2169. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, K.; Coresh, J.; Sang, Y. Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: A collaborative meta-analysis of individual participant data. Lancet Diabetes Endocrinol. 2015, 3, 514–525. [Google Scholar] [CrossRef]
- Chronic Kidney Disease Prognosis Consortium; Matsushita, K.; van der Velde, M.; Astor, B.C.; Woodward, M.; Levey, A.S.; de Jong, P.E.; Coresh, J.; Gansevoort, R.T. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: A collaborative meta-analysis. Lancet 2010, 375, 2073–2081. [Google Scholar]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Matsushita, K.; Jassal, S.K.; Sang, Y.; Ballew, S.H.; Grams, M.E.; Surapaneni, A.; Arnlov, J.; Bansal, N.; Bozic, M.; Brenner, H.; et al. Incorporating kidney disease measures into cardiovascular risk prediction: Development and validation in 9 million adults from 72 datasets. EClinicalMedicine 2020, 27, 100552. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, e1082–e1143. [Google Scholar] [CrossRef] [PubMed]
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.T.; Corrà, U.; Cosyns, B.; Deaton, C.; et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar] [CrossRef]
- Ndumele, C.E.; Rangaswami, J.; Chow, S.L.; Neeland, I.J.; Tuttle, K.R.; Khan, S.S.; Coresh, J.; Mathew, R.O.; Baker-Smith, C.M.; Carnethon, M.R.; et al. Cardiovascular-Kidney-Metabolic Health:A Presidential Advisory from the American Heart Association. Circulation 2023, 148, 1606–1635. [Google Scholar] [CrossRef] [PubMed]
- GBD. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1459–1544. [Google Scholar] [CrossRef] [PubMed]
- Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.; Smith, A.E.; Tang, K.; Yuan, C.W.; et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: Reference and alternative scenarios for 2016–40 for 195 countries and territories. Lancet 2018, 392, 2052–2090. [Google Scholar] [CrossRef]
- Radhakrishnan, J.; Remuzzi, G.; Saran, R.; Williams, D.E.; Rios-Burrows, N.; Powe, N.; for the CDC-CKD Surveillance Team; Brück, K.; Wanner, C.; Stel, V.S.; et al. Taming the chronic kidney disease epidemic: A global view of surveillance efforts. Kidney Int. 2014, 86, 246–250. [Google Scholar] [CrossRef]
- Carrero, J.J.; Hecking, M.; Chesnaye, N.C.; Jager, K.J. Sex and gender disparities in the epidemiology and outcomes of chronic kidney disease. Nat. Rev. Nephrol. 2018, 14, 151–164. [Google Scholar] [CrossRef]
- Bikbov, B.; Perico, N.; Remuzzi, G.; on behalf of the GBD Genitourinary Diseases Expert Group. Disparities in Chronic Kidney Disease Prevalence among Males and Females in 195 Countries: Analysis of the Global Burden of Disease 2016 Study. Nephron 2018, 139, 313–318. [Google Scholar] [CrossRef]
- Bairey Merz, C.N.; Dember, L.M.; Ingelfinger, J.R.; Vinson, A.; Neugarten, J.; Sandberg, K.L.; Sullivan, J.C.; Maric-Bilkan, C.; Rankin, T.L.; Kimmel, P.L.; et al. Sex and the kidneys: Current understanding and research opportunities. Nat. Rev. Nephrol. 2019, 15, 776–783. [Google Scholar] [CrossRef]
- Silbiger, S.R.; Neugarten, J. The impact of gender on the progression of chronic renal disease. Am. J. Kidney Dis. 1995, 25, 515–533. [Google Scholar] [CrossRef] [PubMed]
- Noborisaka, Y. Smoking and chronic kidney disease in healthy populations. Nephro-Urol. Mon. 2013, 5, 655–667. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Chronic Kidney Disease in the United States, 2021; US Department of Health and Human Services: Washington, DC, USA, 2021.
- Tuot, D.S.; Zhu, Y.; Velasquez, A.; Espinoza, J.; Mendez, C.D.; Banerjee, T.; Hsu, C.-Y.; Powe, N.R. Variation in Patients’ Awareness of CKD according to How They Are Asked. Clin. J. Am. Soc. Nephrol. 2016, 11, 1566–1573. [Google Scholar] [CrossRef] [PubMed]
- Ene-Iordache, B.; Perico, N.; Bikbov, B.; Carminati, S.; Remuzzi, A.; Perna, A.; Islam, N.; Bravo, R.F.; Aleckovic-Halilovic, M.; Zou, H.; et al. Chronic kidney disease and cardiovascular risk in six regions of the world (ISN-KDDC): A cross-sectional study. Lancet Glob. Health 2016, 4, e307–e319. [Google Scholar] [CrossRef]
- Florea, A.; Jacobs, E.T.; Harris, R.B.; Klimentidis, Y.C.; Thajudeen, B.; Kohler, L.N. Chronic kidney disease unawareness and determinants using 1999–2014 National Health and Nutrition Examination Survey Data. J. Public Health 2022, 44, 532–540. [Google Scholar] [CrossRef]
- Glassock, R.J.; Delanaye, P.; Rule, A.D. Should the definition of CKD be changed to include age adapted GFR criteria? YES. Kidney Int. 2020, 97, 34–41. [Google Scholar] [CrossRef]
- Delanaye, P.; Jager, K.J.; Bökenkamp, A.; Christensson, A.; Dubourg, L.; Eriksen, B.O.; Gaillard, F.; Gambaro, G.; van der Giet, M.; Glassock, R.J.; et al. CKD: A call for an age-adapted definition. J. Am. Soc. Nephrol. 2019, 30, 1785–1805. [Google Scholar] [CrossRef]
- Stevens, P.E.; Levin, A.; Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: Synopsis of the kidney disease: Improving global outcomes 2012 clinical practice guideline. Ann. Intern. Med. 2013, 158, 825–830. [Google Scholar] [CrossRef]
- Ruggenenti, P.; Cravedi, P.; Remuzzi, G. Mechanisms and treatment of CKD. J. Am. Soc. Nephrol. 2012, 23, 1917–1928. [Google Scholar] [CrossRef]
- Timmis, A.; Vardas, P.; Townsend, N.; Torbica, A.; Katus, H.; De Smedt, D.; Gale, C.P.; Maggioni, A.P.; Petersen, S.E.; Huculeci, R.; et al. European Society of Cardiology: Cardiovascular disease statistics 2021: Executive Summary. Eur. Heart J. Qual. Care Clin. Outcomes 2022, 8, 377–382. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Vrdoljak, A.; Vrkić, T.Z.; Kos, J.; Vitale, K.; Premuzić, V.; Laganović, M.; Jelaković, B. Blood pressure measurement--do not sweat the small stuff and it is all small stuff?! Position paper of the Croatian national referral center for hypertension, center of excellence of the European Society of Hypertension. Lijec. Vjesn. 2014, 136, 33–43. [Google Scholar]
- American Diabetes Association Professional Practice Committee. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47 (Suppl. S1), S20–S42. [Google Scholar] [CrossRef] [PubMed]
- Obesity: Preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ. Tech. Rep. Ser. 2000, 894, i–253. [Google Scholar]
- Greve, S.V.; Blicher, M.K.; Kruger, R.; Sehestedt, T.; Gram-Kampmann, E.; Rasmussen, S.; Vishram, J.K.; Boutouyrie, P.; Laurent, S.; Olsen, M.H. Estimated carotid-femoral pulse wave velocity has similar predictive value as measured carotid-femoral pulse wave velocity. J. Hypertens. 2016, 34, 1279–1289. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern Med. 2009, 150, 604–612, Erratum in Ann. Intern Med. 2011, 155, 408. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://dzs.gov.hr/u-fokusu/popis-2021/88 (accessed on 26 June 2024).
- WMA—The World Medical Association-WMA Declaration of Helsinki—Ethical Principles for Medical Research InvolvingHuman Subjects. Available online: https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects (accessed on 28 May 2024).
- Mazhar, F.; Sjölander, A.; Fu, E.L.; Ärnlöv, J.; Levey, A.S.; Coresh, J.; Carrero, J.J. Estimating the prevalence of chronic kidney disease while accounting for nonrandom testing with inverse probability weighting. Kidney Int. 2023, 103, 416–420. [Google Scholar] [CrossRef]
- Hill, N.R.; Fatoba, S.T.; Oke, J.L.; Hirst, J.A.; O’Callaghan, C.A.; Lasserson, D.S.; Hobbs, F.D. Global Prevalence of Chronic Kidney Disease—A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0158765. [Google Scholar] [CrossRef]
- De Nicola, L.; Donfrancesco, C.; Minutolo, R.; Lo Noce, C.; Palmieri, L.; De Curtis, A.; Iacoviello, L.; Zoccali, C.; Gesualdo, L.; Conte, G.; et al. Prevalence and cardiovascular risk profile of chronic kidney disease in Italy: Results of the 2008–12 National Health Examination Survey. Nephrol. Dial. Transplant. 2015, 30, 806–814. [Google Scholar] [CrossRef]
- Alkerwi, A.; Sauvageot, N.; El Bahi, I.; Delagardelle, C.; Beissel, J.; Noppe, S.; Roderick, P.J.; Mindell, J.S.; Stranges, S. Prevalence and related risk factors of chronic kidney disease among adults in Luxembourg: Evidence from the observation of cardiovascular risk factors (ORISCAV-LUX) study. BMC Nephrol. 2017, 18, 358. [Google Scholar] [CrossRef] [PubMed]
- Zdrojewski, Ł.; Zdrojewski, T.; Rutkowski, M.; Bandosz, P.; Król, E.; Wyrzykowski, B.; Rutkowski, B. Prevalence of chronic kidney disease in a representative sample of the Polish population: Results of the NATPOL 2011 survey. Nephrol. Dial. Transpl. 2016, 31, 433–439. [Google Scholar] [CrossRef] [PubMed]
- De Nicola, L.; Zoccali, C. Chronic kidney disease prevalence in the general population: Heterogeneity and concerns. Nephrol. Dial. Transplant. 2016, 31, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Anand, S.; Shivashankar, R.; Ali, M.K.; Kondal, D.; Binukumar, B.; Montez-Rath, M.E.; Ajay, V.S.; Pradeepa, R.; Deepa, M.; Gupta, R.; et al. Prevalence of chronic kidney disease in two major Indian cities and projections for associated cardiovascular disease. Kidney Int. 2015, 88, 178–185. [Google Scholar] [CrossRef]
- Hooi, L.S.; Ong, L.M.; Ahmad, G.; Bavanandan, S.; Ahmad, N.A.; Naidu, B.M.; Mohamud, W.N.W.; Yusoff, M.F.M. A population-based study measuring the prevalence of chronic kidney disease among adults in West Malaysia. Kidney Int. 2013, 84, 1034–1040. [Google Scholar] [CrossRef]
- Ponte, B.; Pruijm, M.; Marques-Vidal, P.; Martin, P.-Y.; Burnier, M.; Paccaud, F.; Waeber, G.; Vollenweider, P.; Bochud, M. Determinants and burden of chronic kidney disease in the population-based CoLaus study: A crosssectional analysis. Nephrol. Dial. Transpl. 2013, 28, 2329–2339. [Google Scholar] [CrossRef] [PubMed]
- White, S.L.; Polkinghorne, K.R.; Atkins, R.C.; Chadban, S.J. Comparison of the prevalence and mortality risk of CKD in Australia using the CKD Epidemiology Collaboration (CKD-EPI) and Modification of Diet in Renal Disease (MDRD) Study GFR estimating equations: The AusDiab (Australian Diabetes, Obesity and Lifestyle) Study. Am. J. Kidney Dis. 2010, 55, 660–670. [Google Scholar]
- Fraser, S.D.; Aitken, G.; Taal, M.W.; Mindell, J.S.; Moon, G.; Day, J.; O’donoghue, D.; Roderick, P.J. Exploration of chronic kidney disease prevalence estimates using new measures of kidney function in the health survey for England. PLoS ONE 2015, 10, e0118676. [Google Scholar] [CrossRef]
- Arora, P.; Vasa, P.; Brenner, D.; Iglar, K.; McFarlane, P.; Morrison, H.; Badawi, A. Prevalence estimates of chronic kidney disease in Canada: Results of a nationally representative survey. Can. Med. Assoc. J. 2013, 185, E417–E423. [Google Scholar] [CrossRef]
- Chen, F.; Yang, W.; Weng, J.; Jia, W.; Ji, L.; Xiao, J.; Shan, Z.; Liu, J.; Tian, H.; Ji, Q.; et al. Albuminuria: Prevalence, associated risk factors and relationship with cardiovascular disease. J. Diabetes Investig. 2014, 5, 464–471. [Google Scholar] [CrossRef]
- Zacharias, J.M.; Young, T.K.; Riediger, N.D.; Roulette, J.; Bruce, S.G. Prevalence, risk factors and awareness of albuminuria on a Canadian First Nation: A community-based screening study. BMC Public Health 2012, 12, 290. [Google Scholar] [CrossRef] [PubMed]
- Reed, J., III; Kopyt, N. Prevalence of Albuminuria in the U.S. Adult Population Over the age of 40: Results from the National Health and Nutrition Examination Survey (1999–2008). Internet J. Nephrol. 2009, 6, 1. [Google Scholar]
- Atkins, R.C.; Polkinghorne, K.R.; Briganti, E.M.; Shaw, J.E.; Zimmet, P.Z.; Chadban, S.J. Prevalence of albuminuria in Australia: The AusDiab kidney study. Kidney Int. 2004, 66, S22–S24. [Google Scholar] [CrossRef]
- Tanaka, S.; Takase, H.; Dohi, Y.; Kimura, G. The prevalence and characteristics of microalbuminuria in the general population: A cross-sectional study. BMC Res. Notes 2013, 6, 256. [Google Scholar] [CrossRef]
- Hounkpatin, H.O.; Harris, S.; Fraser, S.D.S.; Day, J.; Mindell, J.S.; Taal, M.W.; O’Donoghue, D.; Roderick, P.J. Prevalence of chronic kidney disease in adults in England: Comparison of nationally representative cross-sectional surveys from 2003 to 2016. BMJ Open 2020, 10, e038423. [Google Scholar] [CrossRef] [PubMed]
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef]
- Murton, M.; Goff-Leggett, D.; Bobrowska, A.; Garcia Sanchez, J.J.; James, G.; Wittbrodt, E.; Nolan, S.; Sörstadius, E.; Pecoits-Filho, R.; Tuttle, K. Burden of Chronic Kidney Disease by KDIGO Categories of Glomerular Filtration Rate and Albuminuria: A Systematic Review. Adv. Ther. 2021, 38, 180–200. [Google Scholar] [CrossRef]
- Nishikawa, K.; Takahashi, K.; Okutani, T.; Yamada, R.; Kinaga, T.; Matsumoto, M.; Yamamoto, M. Risk of chronic kidney disease in non-obese individuals with clustering of metabolic factors: A longitudinal study. Intern Med. 2015, 54, 375–382. [Google Scholar] [CrossRef]
- Rashid, I.; Katravath, P.; Tiwari, P.; D’Cruz, S.; Jaswal, S.; Sahu, G. Hyperuricemia—A serious complication among patients with chronic kidney disease: A systematic review and meta-analysis. Explor. Med. 2022, 3, 249. [Google Scholar] [CrossRef]
- Kieneker, L.; Bakker, S.; de Boer, R.; Navis, G.; Gansevoort, R.; Joosten, M. Low potassium excretion but not high sodium excretion is associated with increased risk of developing chronic kidney disease. Kidney Int. 2016, 90, 888–896. [Google Scholar] [CrossRef]
- Winitzki, D.; Zacharias, H.U.; Nadal, J.; Baid-Agrawal, S.; Schaeffner, E.; Schmid, M.; Busch, M.; Bergmann, M.M.; Schultheiss, U.; Kotsis, F.; et al. Educational Attainment Is Associated With Kidney and Cardiovascular Outcomes in the German CKD (GCKD) Cohort. Kidney Int. Rep. 2022, 7, 1004–1015. [Google Scholar] [CrossRef] [PubMed]
- Neugarten, J.; Golestaneh, L. Influence of Sex on the Progression of Chronic Kidney Disease. Mayo. Clin. Proc. 2019, 94, 1339–1356. [Google Scholar] [CrossRef] [PubMed]
- Ricardo, A.C.; Yang, W.; Sha, D.; Appel, L.J.; Chen, J.; Krousel-Wood, M.; Manoharan, A.; Steigerwalt, S.; Wright, J.; Rahman, M.; et al. Sex-Related Disparities in CKD Progression. J. Am. Soc. Nephrol. 2019, 30, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Hecking, M.; Bieber, B.A.; Ethier, J.; Kautzky-Willer, A.; Sunder-Plassmann, G.; Säemann, M.D.; Ramirez, S.P.; Gillespie, B.W.; Pisoni, R.L.; Robinson, B.M.; et al. Sex-specific differences in hemodialysis prevalence and practices and the male-to-female mortality rate: The Dialysis Outcomes and Practice Patterns Study (DOPPS). PLoS Med. 2014, 11, e1001750. [Google Scholar] [CrossRef]
- Iseki, K.; Nakai, S.; Shinzato, T.; Nagura, Y.; Akiba, T. Patient Registration Committee of the Japanese Society for Dialysis Therapy. Increasing gender difference in the incidence of chronic dialysis therapy in Japan. Ther. Apher. Dial. 2005, 9, 407–411. [Google Scholar] [CrossRef]
- van der Burgh, A.C.; Rizopoulos, D.; Ikram, M.A.; Hoorn, E.J.; Chaker, L. Determinants of the Evolution of Kidney Function With Age. Kidney Int. Rep. 2021, 6, 3054–3063. [Google Scholar] [CrossRef]
- Gorostidi, M.; Sánchez-Martínez, M.; Ruilope, L.M.; Graciani, A.; de la Cruz, J.J.; Santamaría, R.; Del Pino, M.D.; Guallar-Castillón, P.; de Álvaro, F.; Rodríguez-Artalejo, F.; et al. Chronic kidney disease in Spain: Prevalence and impact of accumulation of cardiovascular risk factors. Nefrologia 2018, 38, 606–615. (In Spanish) [Google Scholar] [CrossRef]
- Liu, Q.; Li, Z.; Wang, H.; Chen, X.; Dong, X.; Mao, H.; Tan, J.; Luo, N.; Johnson, R.J.; Chen, W.; et al. High prevalence and associated risk factors for impaired renal function and urinary abnormalities in a rural adult population from southern China. PLoS ONE 2012, 7, e47100. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.theisn.org/wp-content/uploads/media/ISN%20Atlas_2023%20Digital_REV_2023_10_03.pdf (accessed on 21 June 2024).
- Hommos, M.S.; Glassock, R.J.; Rule, A.D. Structural and Functional Changes in Human Kidneys with Healthy Aging. J. Am. Soc. Nephrol. 2017, 28, 2838–2844. [Google Scholar] [CrossRef]
- De Nicola, L.; Minutolo, R.; Chiodini, P.; Borrelli, S.; Zoccali, C.; Postorino, M.; Iodice, C.; Nappi, F.; Fuiano, G.; Gallo, C.; et al. The effect of increasing age on the prognosis of non-dialysis patients with chronic kidney disease receiving stable nephrology care. Kidney Int. 2012, 82, 482–488. [Google Scholar] [CrossRef]
- Jelaković, B.; Pećin, I.; Lang, V.B.; Braš, M.; Capak, K.; Jelaković, A.; Kralj, V.; Miličić, D.; Soldo, A.; Bubaš, M. Improving blood pressure and dyslipidemia control by increasing health literacy in Croatia-missions 70/26 & Do you know what is your number. Blood Press. 2024, 33, 2371863. [Google Scholar] [CrossRef] [PubMed]
Overall CKD (Any KDIGO Stage) | CKD ≥Stage 3GA A2 | CKD <60 mL/min/1.73 m2 | ACR >30 mg/g | |||||
---|---|---|---|---|---|---|---|---|
% | 95% CI | % | 95% CI | % | 95% CI | % | 95% CI | |
All | 17.1 | 8.0–15.0 | 9.8 | 6.6–9.5 | 7.9 | 6.5–9.5 | 15.1 | 7.0–15.2 |
Men | 19.3 | 8.3–17.3 | 11.8 | 7.6–12.8 | 10.7 | 8.0–13.3 | 17.5 | 6.9–16.0 |
Women | 14.9 | 7.1–11.5 | 7.9 | 5.2–8.4 | 6.5 | 4.8- 8.1 | 13.5 | 6.5–10.7 |
Albuminuria Categories | |||||||
---|---|---|---|---|---|---|---|
A1 | A2 | A3 | |||||
ACR < 30 mg/g | ACR 30–299 mg/g | ACR ˃300 mg/g | Total | ||||
eGFR categories (mL/min/1.73 m2) | G1 | ≥90 | crude weighted 95% CI | 55.4 45.4 43.1–47.8 | 9.8 8.1 6.7–9.6 | 0.2 0.2 0.002–0.4 | 65.4 53.7 |
G2 | 60–89 | crude weighted 95% CI | 16.9 13.3 11.6–15.0 | 4.3 3.6 2.6–4.5 | 0.5 0.4 0.1–0.8 | 21.7 17.3 | |
G3A | 45–59 | crude weighted 95% CI | 5.9 4.9 3.8–6.0 | 2.3 1.9 1.2–2.7 | 0.4 0.3 0.04–0.6 | 8.6 7.1 | |
G3B | 30–44 | crude weighted 95% CI | 3.5 2.0 0.6–5.0 | 0.2 0.2 0.02–0.4 | 0 | 3.7 2.2 | |
G4 | 15–29 | crude weighted 95% CI | 0.1 0.1 0,05–0.3 | 0.2 0.2 0.02–0.4 | 0.07 0.06 0.006–0.2 | 0.38 0.36 | |
G5 | <15 | crude weighted 95% CI | 0.07 0.06 0.002–0.02 | 0.07 0.06 0.006–0.12 | 0.08 0.07 0.006–0.2 | 0.22 0.19 | |
crude weighted | 81.87 68.37 | 16.88 14.07 | 1.25 1.04 | 100 | |||
CKD risk | % | estimated number | |||||
crude | weighted | of Croatian adult population | |||||
Low risk | 72.3 | 58.7 | 1846.099 | ||||
Moderate risk | 20.0 | 16.6 | 522.065 | ||||
High risk | 6.5 | 4.5 | 141.523 | ||||
Very high risk | 1.1 | 1.1 | 35.594 | ||||
CKD ≥ G3A A1 | 12.8 | 9.8 | 311.441 |
CKD Population (N = 117) | Non-CKD Population (N = 1076) | χ² | p | |||
---|---|---|---|---|---|---|
Mean (SD) | 95% CI | Mean (SD) | 95% CI | |||
Median (IQR) # | Median (IQR) # | |||||
Age # | 72 (65–75) | 68.3–72.3 | 58 (46–75) | 55.34–56.9 | <0.001 | |
Gender (men) % | 49.6 | 40.7–58.5 | 33.8 | 31.1–36.6 | 57.42 | <0.001 |
Hypertension duration (years) # | 10 (5–18) | 10.7–16.2 | 9.0 (4.0–14.0) | 9.9–11.5 | 0.005 | |
Systolic BP (mmHg) # | 137 (125–151) | 134.8–144.4 | 131 (120–144) | 143.0–134.1 | 0.001 | |
Diastolic BP (mmHg) % | 79.7 (11.3) | 77.3–82.1 | 82.6 (10.3) | 82.2–83.2 | 0.011 | |
Hypertension (yes) % | 72.1 | 63.5–79.6 | 61.6 | 58.6–64.2 | NS | |
Treated controlled (yes) % | 20.7 | 15.7–30.9 | 23.4 | 21.0–25.9 | ||
Untreated (yes) % | 28.9 | 21.2–37.6 | 20.9 | 18.6–23.4 | 7.57 | 0.057 |
Heart rate (bpm) # | 75.3 (16–83.6) | 74.2–80.4 | 75.0 (67–83) | 74.8–76.1 | 0.168 | |
Height (cm) # | 166 (160–175) | 169.1–173.5 | 168 (162.0–175) | 168.3–169.4 | 0.198 | |
Weight (kg) # | 82 (63–93) | 81.6–88.8 | 80 (69.0–91.4) | 80.4–82.4 | 0.191 | |
Body mass index (kg/m2) # | 29.3 (26.2–32.5) | 27.9–29.9 | 27.9 (24.7–31.3) | 28.1–28.7 | 0.008 | |
BMI category (kg/m2) % | ||||||
25–29.9 | 35.3 | 26.8–44.6 | 39.0 | 36.1–41.9 | ||
30.0–34.9 | 36.1 | 27.5–45.4 | 23.1 | 20.6–25.6 | 14.52 | 0.013 |
35.0–39.9 | 9.2 | 4.7–15.9 | 7.3 | 5.9–9.0 | ||
Waist circumference (cm) # | 103.5 (95.0–110.2) | 100.5–105.2 | 97.0(87.0–108.0) | 96.7–98.5 | <0.001 | |
WC pathologic # | 80.5 | 72.2–87.2 | 64.9 | 62.0–67.7 | 11.69 | 0.003 |
Body surface area (m2) # | 1.95 (1.180–1.95) | 1.95–2.05 | 1.93 (1.77–2.09) | 1.93–1.96 | 0.426 | |
Smokers (yes) % | 10.9 | 6.1–17.5 | 26.4 | 23.9–29.0 | 15.04 | <0.001 |
Daily salt intake (g/day) # | 7.2 (5.0–12.4) | 8.1–10.3 | 8.4 (5.6–11.4) | 8.5–9.0 | 0.234 | |
Daily salt intake > 5 g % | 24.4 | 17.1–33.0 | 19.0 | 16.8–21.4 | NS | |
ePWV (m/s) # | 12.5 (10.6–13.7) | 11.4–12.3 | 9.5 (7.9–11.2) | 9.5–9.8 | <0.001 | |
Monthly income (<300 Eu) % | 42.6 | 34.0–51.6 | 30.2 | 27.6–32.9 | 14.45 | 0.006 |
Family monthly income (<300 Eu) % | 22.5 | 15.6–30.7 | 8.4 | 6.9–10.2 | 34.8 | 0.001 |
Education (years) % | ||||||
No school | 0.8 | 1.1–6.0 | 0.8 | 0.4–1.5 | ||
<4 | 3.1 | 0.7–9.4 | 1.2 | 0.7–2.0 | ||
4–8 | 27.9 | 10.5–27.3 | 15.6 | 14.7–19.0 | 16.44 | 0.002 |
8–12 | 45.1 | 41.4–62.9 | 55.4 | 51.7–57.4 | ||
≥12 | 21.7 | 16.9–35.8 | 26.9 | 24.1–29.1 | ||
Professional qualification % | ||||||
No college | 38.0 | 19.1–39.3 | 21.1 | 20.1–24.8 | ||
College | 38.8 | 34.0–55.3 | 42.7 | 39.3–45.0 | 21.043 | <0.001 |
Bachelor’s degree | 12.4 | 7.9–23.4 | 17.1 | 14.8–18.9 | ||
Master’s degree | 9.3 | 5.5–19.5 | 17.3 | 14.9–19.2 | ||
Stroke ischemic % | 4.7 | 1.7–9.8 | 2.4 | 1.6–3.4 | 6.358 | 0.042 |
Stroke hemorrhagic % | 0.8 | 0.0–4.2 | 0.3 | 0.1–0.9 | NS | |
Myocardial infarction % | 3.1 | 1.3–7.7 | 2.5 | 1.7–3.6 | NS | |
Heart failure % | 3.9 | 1.3–8.8 | 0.8 | 0.3–1.4 | 13.06 | 0.001 |
Atrial fibrillation % | 10.1 | 5.5–16.6 | 2.8 | 1.9–3.9 | 10.25 | 0.006 |
Fasting blood glucose (mmol/L) | 5.4 (4.7–6.7) | 5.6–6.6 | 4.9 (4.4–5.2) | 5.0–5.2 | <0.001 | |
Diabetes % | 29.5 | 21.8–38.1 | 14.0 | 12.1–16.1 | 36.40 | <0.001 |
Urea (mmol/L) # | 7.5 (6.2–9.2) | 7.6–9.3 | 5.2 (4.4–6.2) | 5.3–5.5 | <0.001 | |
Serum creatinine (µmol/min) # | 110 (92.0–120.5) | 119.6–138.7 | 68.0 (61.0–79.0) | 69.5–71.0 | <0.001 | |
eGFR (mL/min/1.73 m2) # | 54.7 (44.3–58.0) | 45.8–50.6 | 92.2 (81.7–101.4) | 90.0–91.8 | <0.001 | |
Uric acid (µmol/L) # | 360 (304–422.1) | 368.2–411.7 | 280 (234–338) | 285.8–294.4 | <0.001 | |
Total cholesterol (mmol/L) # | 4.9 (4.1–5.9) | 4.7–5.2 | 5.3 (1.1) | 5.3–5.4 | 0.003 | |
Triglycerides (mmol/L) # | 1.5 (1.1–2.1) | 1.5–2.2 | 1.3 (0.9–1.9) | 1.5–1.6 | 0.009 | |
LDL cholesterol (mmol/L)# | 2.8 (2.1–3.5) | 2.6–3.0 | 3.1 (2.4–3.9) | 3.1–3.2 | <0.001 | |
HDL cholesterol (mmol/L) # | 1.3 (1.1–1.5) | 1.2–1.4 | 1.4 (1.1–1.6) | 1.4–1.5 | 0.022 | |
Serum potassium (mmol/L) # | 4.7 (4.3–5.6) | 4.6–4.9 | 4.5 (4.3–4.8) | 4.5–4.6 | 0.001 | |
NT pro BNP (mmol/L) # | 152.2 (76–358) | 324.0–781.1 | 73 (41.0–127.2) | 109.8–134.1 | <0.001 | |
Hs Troponin I (mmol/L) # | 5.0 (5.0–5.0) | 5.74–13.7 | 5.0 (5.0–5.0) | 5.7–6.5 | <0.001 | |
ACR (mg/g) # | 17.3 (5.6–44.1) | 26.7–291.19 | 9.4 (4.6–20.8) | 22.6–32.2 | <0.001 | |
ACR category (mg/g) % | ||||||
30–299 | 25.0 | 17.3–34.1 | 16.4 | 14.2–18.8 | ||
<300 | 7.1 | 3.1–13.6 | 1.0 | 0.5–1.8 | 31.37 | <0.001 |
Coef (B) | S.E. | Odds Ratio Exp (B) | 95% CI Lower Upper | p | ||
---|---|---|---|---|---|---|
Age (years) | −1.00 | 0.012 | 0.90 | 0.88 | 0.92 | <0.001 |
Gender (men) | 1.680 | 0.243 | 5.36 | 3.33 | 8.63 | <0.001 |
Family income < 300 Eu | −1.03 | 0.31 | 0.35 | 0.66 | 1.80 | 0.004 |
Systolic BP (mmHg) | 0.810 | 0.339 | 2.23 | 1.15 | 4.36 | 0.017 |
Hypertension (no) | 0.481 | 0.205 | 1.61 | 1.08 | 2.42 | 0.019 |
Hypertension duration (years) | −0.026 | 0.011 | 0.97 | 0.95 | 0.99 | 0.023 |
Stroke ischemic (yes) | 1.114 | 0.464 | 3.04 | 1.27 | 7.56 | 0.016 |
Heart failure (yes) | 1.757 | 0.603 | 5.79 | 1.77 | 18.87 | 0.004 |
Atrial fibrillation (yes) | 1.158 | 0.407 | 3.18 | 1.43 | 7.07 | 0.004 |
Body mass index (kg/m2) | −0.035 | 0.018 | 0.96 | 0.93 | 0.99 | 0.045 |
Waist circumference (cm) | −0.021 | 0.006 | 0.97 | 0.96 | 0.99 | <0.001 |
PWV (m/s) | −0.362 | 0.141 | 0.65 | 0.52 | 0.91 | 0.01 |
ePWV (m/s) | −0.431 | 0.053 | 0.65 | 0.58 | 0.72 | <0.001 |
Fasting blood glucose (mmol/L) | −0.197 | 0.044 | 0.82 | 0.75 | 0.89 | <0.001 |
Diabetes (yes) | 1.32 | 0.233 | 3.76 | 2.38 | 5.93 | <0.001 |
Uric acid umol/L) | −0.012 | 0.001 | 0.98 | 0.98 | 0.99 | <0.001 |
Serum creatinine (µmol/L) | −0.372 | 0.051 | 0.68 | 0.62 | 0.76 | <0.001 |
Urea (mmol/L) | −0.248 | 0.047 | 0.79 | 0.72 | 0.86 | <0.001 |
Total cholesterol (mmol/L) | 0.258 | 0.085 | 1.29 | 1.09 | 1.53 | 0.002 |
HDL cholesterol (mmol/L) | 0.818 | 0.312 | 2.26 | 1.22 | 4.17 | 0.009 |
LDL cholesterol (mmol/L) | 0.373 | 0.114 | 1.45 | 1.16 | 1.81 | 0.001 |
Triglycerides (mmol/L) | −0.017 | 0.059 | 0.89 | 0.79 | 0.99 | 0.046 |
Potassium (mmol/L) | −0.727 | 0.189 | 0.48 | 0.33 | 0.81 | <0.001 |
NT pro BNP (mmol/L) | −0.002 | 0.001 | 0.99 | 0.99 | 0.99 | <0.001 |
hs Troponin I (mmol/L) | −0.004 | 0.01 | 0.95 | 0.93 | 0.98 | <0.001 |
ACR | −1.0640 | 0.201 | 0.34 | 0.23 | 0.51 | <0.001 |
ACR 30–299 (mg/g) | −0.745 | 0.273 | 0.47 | 0.27 | 0.81 | 0.006 |
ACR > 300 (mg/g) | −2.742 | 0.507 | 0.06 | 0.02 | 0.17 | <0.001 |
Model | Coef | S.E. | Odds Ratio | 95% CI | p | Nagelkerke R2 | p for Change | |
---|---|---|---|---|---|---|---|---|
(B) | Exp (B) | Lower | Upper | |||||
Model 1 | 0.287 | <0.001 | ||||||
Constant | 8.554 | 0.863 | 5186.45 | <0.001 | ||||
Gender | 1.780 | 0.258 | 5.93 | 3.58 | 9.82 | <0.001 | ||
Age | −0.106 | 0.013 | 0.90 | 0.87 | 0.92 | <0.001 | ||
Model 2 | 0.304 | <0.001 | ||||||
Constant | 8.997 | 0.936 | 8075.6 | <0.001 | ||||
Gender | 1.837 | 0.262 | 6.280 | 3.760 | 10.48 | <0.001 | ||
Age | −0.174 | 0.029 | 0.841 | 0.794 | 0.89 | <0.001 | ||
ePWV | 0.359 | 0.138 | 1.432 | 1.092 | 1.878 | 0.009 | ||
Model 3 | 0.331 | 0.557 | ||||||
Constant | 8.407 | 1.108 | 4479.2 | <0.001 | ||||
Gender | 1.778 | 0.265 | 5.917 | 3.517 | 9.954 | <0.001 | ||
Age | −0.181 | 0.030 | 0.834 | 0.787 | 0.885 | <0.001 | ||
ePWV | 0.409 | 0.141 | 1.505 | 1.141 | 1.984 | 0.004 | ||
Diabetes | 0.995 | 0.324 | 2.705 | 1.144 | 5.105 | <0.001 | ||
Model 4 | 0.454 | <0.001 | ||||||
Constant | 10.198 | 1.096 | 26,860.47 | <0.001 | ||||
Gender | 1.921 | 0.299 | 6.828 | 3.8 | 12.2 | <0.001 | ||
Age | −0.158 | 0.032 | 0.854 | 0.80 | 0.91 | <0.001 | ||
Diabetes | 0.948 | 0.290 | 2.579 | 1.46 | 4.55 | 0.001 | ||
ePWV | 0.408 | 0.155 | 1.504 | 1.11 | 2.03 | 0.008 | ||
urea | −0.503 | 0.071 | 0.589 | 0.51 | 0.67 | <0.001 | ||
Model 5 | 0.496 | 0.001 | ||||||
Constant | 13.057 | 1.358 | 468,266.30 | |||||
Gender | 1.581 | 0.315 | 4.862 | 2.64 | 9.00 | <0.001 | ||
Age | −0.177 | 0.034 | 0.838 | 0.78 | 0.89 | <0.001 | ||
Diabetes | 1.009 | 0.303 | 2.743 | 1.51 | 4.96 | <0.001 | ||
ePWV | 0.501 | 0.161 | 1.650 | 1.20 | 2.26 | 0.002 | ||
urea | −0.442 | 0.075 | 0.643 | 0.55 | 0.74 | <0.001 | ||
Uric acid | −0.009 | 0.002 | 0.991 | 0.98 | 0.99 | <0.001 | ||
Model 6 | 0.518 | 0.001 | ||||||
Constant | 17.752 | 2.091 | 51,240,062.3 | <0.001 | ||||
Gender | 1.445 | 0.323 | 4.240 | 2.250 | 7.991 | <0.001 | ||
Age | −0.187 | 0.036 | 0.829 | 0.773 | 0.890 | <0.001 | ||
Diabetes | 1.005 | 0.315 | 2.731 | 1.472 | 5.065 | 0.001 | ||
ePWV | 0.552 | 0.171 | 1.73 | 1.242 | 2.431 | 0.001 | ||
urea | −0.429 | 0.80 | 0.651 | 0.557 | 0.762 | <0.001 | ||
Uric acid | −0.11 | 0.002 | 0.989 | 0.985 | 0.993 | <0.001 | ||
potassium | −0.837 | 0.270 | 0.433 | 0.255 | 0.735 | 0.002 |
CKD Aware N = 11 | CKD Unaware N = 106 | χ² | p | |||
---|---|---|---|---|---|---|
Median (IQR) | 95% CI | Median (IQR) | 95% CI | |||
Men % | 54.5 | 23.4–83.8 | 50.0 | 40.1–59.9 | 12,653 | 0.002 |
Age (years) | 71 (62–75) | 62.51–75.68 | 72 (65–79) | 69.2–72.9 | NS | |
Smokers % | 18.2 | 27.3–51.8 | 11.3 | 6.0–18.9 | 12,004 | <0.017 |
Hypertension duration (years) | 15.5 (5.5–13.2) | 54.5–56.1 | 10.0 (5.0–16.0) | 10.2–14.7 | NS | |
Systolic BP (mmHg) | 138 (126–138) | 129.3–162.6 | 137.5 (124–153) | 135.5–144.2 | NS | |
Waist circumference % | 88.9 | 51.8–99.7 | 78.4 | 68.8–86.1 | 10,222 | 0.037 |
Personal income < 300 Eu % | 44.3 | 37.4 -54.3 | 32.4 | 1.7–35.2 | 18,169 | 0.029 |
Family income < 300 Eu % | 22.6 | 15.1–31.8 | 10.1 | 8.4–12.6 | 39,534 | <0.001 |
Education < 12 years % | 50.0 | 40.1–55.9 | 54.8 | 51.8–57.7 | 20,269 | 0.009 |
No college % | 36.8 | 27.6–46.7 | 23.5 | 21.1–26.6 | 21,771 | 0.005 |
Atrial fibrillation % | 1.8 | 0.2–5.1 | 8.5 | 4.0–15.5 | 19,446 | 0.001 |
Hypertension % | 63.6 | 30.8–89.1 | 72.6 | 63.1–80.9 | 5583 | 0.061 |
Controlled hypertensive % | 23.4 | 21.0–26.9 | 21.9 | 14.4–31.0 | 12,851 | 0.045 |
Diabetes % | 27.3 | 17.6–61.0 | 29.2 | 20.8–38.9 | 18,913 | <0.001 |
ePWV (m/s) | 11.5 (10.1–13.9) | 10.4–13.4 | 12.0 (10.6–13.4) | 11.6–12.4 | NS | |
Urea (mmol/L) | 8.2 (3.6) | 5.7–10.6 | 8.0 (3.0) | 7.4–8.6 | NS | |
Serum creatinine (µmol/L) | 119 (106–132) | 101.5–157.0 | 110 (91.7–118) | 106.7–121.6 | NS | |
eGFR (mL/min/1.73 m2) | 45.2 (38.5–58.0) | 38.4–53.6 | 55.0 (44.5–58.1) | 49.5–53.3 | NS | |
Uric acid (µmol/L) | 350 (284–475) | 287.6–482.9 | 360.0 (304–417) | 350.5–386.4 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jelaković, A.; Radunović, D.; Josipović, J.; Željković Vrkić, T.; Gellineo, L.; Domislović, M.; Prelević, V.; Živko, M.; Fuček, M.; Marinović Glavić, M.; et al. PREVALENCE, Characteristics, and Awareness of Chronic Kidney Disease in Croatia: The EH-UH 2 Study. J. Clin. Med. 2024, 13, 6827. https://doi.org/10.3390/jcm13226827
Jelaković A, Radunović D, Josipović J, Željković Vrkić T, Gellineo L, Domislović M, Prelević V, Živko M, Fuček M, Marinović Glavić M, et al. PREVALENCE, Characteristics, and Awareness of Chronic Kidney Disease in Croatia: The EH-UH 2 Study. Journal of Clinical Medicine. 2024; 13(22):6827. https://doi.org/10.3390/jcm13226827
Chicago/Turabian StyleJelaković, Ana, Danilo Radunović, Josipa Josipović, Tajana Željković Vrkić, Lana Gellineo, Marija Domislović, Vladimir Prelević, Marijana Živko, Mirjana Fuček, Mihaela Marinović Glavić, and et al. 2024. "PREVALENCE, Characteristics, and Awareness of Chronic Kidney Disease in Croatia: The EH-UH 2 Study" Journal of Clinical Medicine 13, no. 22: 6827. https://doi.org/10.3390/jcm13226827
APA StyleJelaković, A., Radunović, D., Josipović, J., Željković Vrkić, T., Gellineo, L., Domislović, M., Prelević, V., Živko, M., Fuček, M., Marinović Glavić, M., Bašić-Jukić, N., Pećin, I., Bubaš, M., Capak, K., & Jelaković, B. (2024). PREVALENCE, Characteristics, and Awareness of Chronic Kidney Disease in Croatia: The EH-UH 2 Study. Journal of Clinical Medicine, 13(22), 6827. https://doi.org/10.3390/jcm13226827