Sleep Architecture Changes in Diabetes
Abstract
:1. Introduction
2. Sleep Architecture Changes in Diabetes
2.1. SWS Changes in Diabetes
2.2. REM Changes in Diabetes
2.3. Other Changes in Diabetes
3. Possible Mechanisms
4. Sleep Architecture Alteration and Diabetes
4.1. SWS Manipulation
4.2. REM Manipulation
5. Conclusions
6. Future Directions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ong, K.L.; Stafford, L.K.; McLaughlin, S.A.; Boyko, E.J.; Vollset, S.E.; Smith, A.E.; Dalton, B.E.; Duprey, J.; Cruz, J.A.; Hagins, H.; et al. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef] [PubMed]
- Antza, C.; Kostopoulos, G.; Mostafa, S.; Nirantharakumar, K.; Tahrani, A. The links between sleep duration, obesity and type 2 diabetes mellitus. J. Endocrinol. 2021, 252, 125–141. [Google Scholar] [CrossRef] [PubMed]
- Engeda, J.; Mezuk, B.; Ratliff, S.; Ning, Y. Association between duration and quality of sleep and the risk of pre-diabetes: Evidence from NHANES. Diabet. Med. 2013, 30, 676–680. [Google Scholar] [CrossRef] [PubMed]
- Reutrakul, S.; Mokhlesi, B. Obstructive Sleep Apnea and Diabetes: A State of the Art Review. Chest 2017, 152, 1070–1086. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Adderley, N.J.; Tracy, A.; Taverner, T.; Hanif, W.; Toulis, K.A.; Thomas, G.N.; Tahrani, A.A.; Nirantharakumar, K. Risk of Incident Obstructive Sleep Apnea Among Patients With Type 2 Diabetes. Diabetes Care 2019, 42, 954–963. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Meng, L.; Li, D.; Yang, M.; Zhu, Y.; Li, C.; Jiang, Z.; Yu, P.; Li, Z.; Song, H.; et al. Interaction of sleep quality and sleep duration on glycemic control in patients with type 2 diabetes mellitus. Chin. Med. J. 2014, 127, 3543–3547. [Google Scholar]
- Gangwisch, J.E.; Heymsfield, S.B.; Boden-Albala, B.; Buijs, R.M.; Kreier, F.; Pickering, T.G.; Rundle, A.G.; Zammit, G.K.; Malaspina, D. Sleep duration as a risk factor for diabetes incidence in a large U.S. sample. Sleep 2007, 30, 1667–1673. [Google Scholar] [CrossRef]
- Knutson, K.L.; Wu, D.; Patel, S.R.; Loredo, J.S.; Redline, S.; Cai, J.; Gallo, L.C.; Mossavar-Rahmani, Y.; Ramos, A.R.; Teng, Y.; et al. Association Between Sleep Timing, Obesity, Diabetes: The Hispanic Community Health Study/Study of Latinos (HCHS/SOL) Cohort Study. Sleep 2017, 40, zsx014. [Google Scholar] [CrossRef]
- Dement, W.; Kleitman, N. The relation of eye movements during sleep to dream activity: An objective method for the study of dreaming. J. Exp. Psychol. 1957, 53, 339–346. [Google Scholar] [CrossRef]
- Maquet, P.; Dive, D.; Salmon, E.; Sadzot, B.; Franco, G.; Poirrier, R.; von Frenckell, R.; Franck, G. Cerebral glucose utilization during sleep-wake cycle in man determined by positron emission tomography and [18F]2-fluoro-2-deoxy-D-glucose method. Brain Res. 1990, 513, 136–143. [Google Scholar] [CrossRef]
- Boyle, P.J.; Scott, J.C.; Krentz, A.J.; Nagy, R.J.; Comstock, E.; Hoffman, C. Diminished brain glucose metabolism is a significant determinant for falling rates of systemic glucose utilization during sleep in normal humans. J. Clin. Investig. 1994, 93, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Koren, D.; Levitt Katz, L.E.; Brar, P.C.; Gallagher, P.R.; Berkowitz, R.I.; Brooks, L.J. Sleep architecture and glucose and insulin homeostasis in obese adolescents. Diabetes Care 2011, 34, 2442–2447. [Google Scholar] [CrossRef] [PubMed]
- Tasali, E.; Leproult, R.; Ehrmann, D.A.; Van Cauter, E. Slow-wave sleep and the risk of type 2 diabetes in humans. Proc. Natl. Acad. Sci. USA 2008, 105, 1044–1049. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Forbes, E.E.; Ryan, N.D.; Rofey, D.; Hannon, T.S.; Dahl, R.E. Rapid eye movement sleep in relation to overweight in children and adolescents. Arch. Gen. Psychiatry 2008, 65, 924–932. [Google Scholar] [CrossRef] [PubMed]
- Hiscock, H.; Sciberras, E.; Mensah, F.; Gerner, B.; Efron, D.; Khano, S.; Oberklaid, F. Impact of a behavioural sleep intervention on symptoms and sleep in children with attention deficit hyperactivity disorder, and parental mental health: Randomised controlled trial. BMJ 2015, 350, h68. [Google Scholar] [CrossRef]
- Yaggi, H.K.; Araujo, A.B.; McKinlay, J.B. Sleep duration as a risk factor for the development of type 2 diabetes. Diabetes Care 2006, 29, 657–661. [Google Scholar] [CrossRef]
- Pallayova, M.; Donic, V.; Gresova, S.; Peregrim, I.; Tomori, Z. Do differences in sleep architecture exist between persons with type 2 diabetes and nondiabetic controls? J. Diabetes Sci. Technol. 2010, 4, 344–352. [Google Scholar] [CrossRef]
- Kianersi, S.; Redline, S.; Mongraw-Chaffin, M.; Huang, T. Associations of Slow-Wave Sleep With Prevalent and Incident Type 2 Diabetes in the Multi-Ethnic Study of Atherosclerosis. J. Clin. Endocrinol. Metab. 2023, 108, e1044–e1055. [Google Scholar] [CrossRef]
- Chen, D.M.; Taporoski, T.P.; Alexandria, S.J.; Aaby, D.A.; Beijamini, F.; Krieger, J.E.; von Schantz, M.; Pereira, A.C.; Knutson, K.L. Altered sleep architecture in diabetes and prediabetes: Findings from the Baependi Heart Study. Sleep 2024, 47, zsad229. [Google Scholar] [CrossRef]
- Resnick, H.E.; Redline, S.; Shahar, E.; Gilpin, A.; Newman, A.; Walter, R.; Ewy, G.A.; Howard, B.V.; Punjabi, N.M. Diabetes and sleep disturbances: Findings from the Sleep Heart Health Study. Diabetes Care 2003, 26, 702–709. [Google Scholar] [CrossRef]
- Lecube, A.; Romero, O.; Sampol, G.; Mestre, O.; Ciudin, A.; Sanchez, E.; Hernandez, C.; Caixas, A.; Vigil, L.; Simo, R. Sleep biosignature of Type 2 diabetes: A case-control study. Diabet. Med. 2017, 34, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Lontchi-Yimagou, E.; Sobngwi, E.; Matsha, T.E.; Kengne, A.P. Diabetes mellitus and inflammation. Curr. Diab Rep. 2013, 13, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Mills, P.J.; von Kanel, R.; Norman, D.; Natarajan, L.; Ziegler, M.G.; Dimsdale, J.E. Inflammation and sleep in healthy individuals. Sleep 2007, 30, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.E.; Golam Sarwar, A.H.; Alam, M.S.; Noohu, M.M.; Zannat, W.; Pandi-Perumal, S.R.; Bahammam, A.S.; Manzar, M.D. Polysomnographic correlates of inflammatory complement components in young healthy males. Sleep Sci. 2016, 9, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Abdelmaksoud, A.A.; Salah, N.Y.; Ali, Z.M.; Rashed, H.R.; Abido, A.Y. Disturbed sleep quality and architecture in adolescents with type 1 diabetes mellitus: Relation to glycemic control, vascular complications and insulin sensitivity. Diabetes Res. Clin. Pract. 2021, 174, 108774. [Google Scholar] [CrossRef]
- Zhu, B.; Quinn, L.; Fritschi, C. Relationship and variation of diabetes related symptoms, sleep disturbance and sleep-related impairment in adults with type 2 diabetes. J. Adv. Nurs. 2018, 74, 689–697. [Google Scholar] [CrossRef]
- Rasmussen, T.K.; Finnerup, N.B.; Singer, W.; Jensen, T.S.; Hansen, J.; Terkelsen, A.J. Preferential impairment of parasympathetic autonomic function in type 2 diabetes. Auton. Neurosci. 2022, 243, 103026. [Google Scholar] [CrossRef]
- Gilon, P.; Henquin, J.C. Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocr. Rev. 2001, 22, 565–604. [Google Scholar]
- Baharav, A.; Kotagal, S.; Gibbons, V.; Rubin, B.K.; Pratt, G.; Karin, J.; Akselrod, S. Fluctuations in autonomic nervous activity during sleep displayed by power spectrum analysis of heart rate variability. Neurology 1995, 45, 1183–1187. [Google Scholar] [CrossRef]
- Steiger, A. Sleep and the hypothalamo-pituitary-adrenocortical system. Sleep Med. Rev. 2002, 6, 125–138. [Google Scholar] [CrossRef]
- Besedovsky, L.; Cordi, M.; Wißlicen, L.; Martínez-Albert, E.; Born, J.; Rasch, B. Hypnotic enhancement of slow-wave sleep increases sleep-associated hormone secretion and reduces sympathetic predominance in healthy humans. Commun Biol. 2022, 5, 747. [Google Scholar] [CrossRef] [PubMed]
- Van Cauter, E.; Kerkhofs, M.; Caufriez, A.; Van Onderbergen, A.; Thorner, M.O.; Copinschi, G. A quantitative estimation of growth hormone secretion in normal man: Reproducibility and relation to sleep and time of day. J. Clin. Endocrinol. Metab. 1992, 74, 1441–1450. [Google Scholar] [PubMed]
- Krag, M.B.; Gormsen, L.C.; Guo, Z.; Christiansen, J.S.; Jensen, M.D.; Nielsen, S.; Jorgensen, J.O. Growth hormone-induced insulin resistance is associated with increased intramyocellular triglyceride content but unaltered VLDL-triglyceride kinetics. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E920–E927. [Google Scholar] [CrossRef] [PubMed]
- Dijk, D.J. Slow-wave sleep deficiency and enhancement: Implications for insomnia and its management. World J. Biol. Psychiatry 2010, 11 (Suppl. 1), 22–28. [Google Scholar] [CrossRef]
- Schmid, S.M.; Hallschmid, M.; Jauch-Chara, K.; Wilms, B.; Lehnert, H.; Born, J.; Schultes, B. Disturbed glucoregulatory response to food intake after moderate sleep restriction. Sleep 2011, 34, 371–377. [Google Scholar] [CrossRef]
- Spiegel, K.; Leproult, R.; Van Cauter, E. Impact of sleep debt on metabolic and endocrine function. Lancet 1999, 354, 1435–1439. [Google Scholar] [CrossRef]
- Santiago, J.C.P.; Ngo, H.V.; Jickeli, C.; Peter, A.; Hallschmid, M. Intensifying sleep slow oscillations does not improve metabolic control in healthy men. Psychoneuroendocrinology 2019, 99, 1–7. [Google Scholar] [CrossRef]
- Schmid, S.M.; Hallschmid, M.; Schultes, B. The metabolic burden of sleep loss. Lancet Diabetes Endocrinol. 2015, 3, 52–62. [Google Scholar] [CrossRef]
- Alnaji, A.; Law, G.R.; Scott, E.M. The role of sleep duration in diabetes and glucose control. Proc. Nutr. Soc. 2016, 75, 512–520. [Google Scholar] [CrossRef]
- Achermann, P.; Borbely, A.A. Low-frequency (< 1 Hz) oscillations in the human sleep electroencephalogram. Neuroscience 1997, 81, 213–222. [Google Scholar]
- Besedovsky, L.; Ngo, H.V.; Dimitrov, S.; Gassenmaier, C.; Lehmann, R.; Born, J. Auditory closed-loop stimulation of EEG slow oscillations strengthens sleep and signs of its immune-supportive function. Nat. Commun. 2017, 8, 1984. [Google Scholar] [CrossRef] [PubMed]
- Ukraintseva, Y.V.; Liaukovich, K.M.; Saltykov, K.A.; Belov, D.A.; Nizhnik, A.N. Selective slow-wave sleep suppression affects glucose tolerance and melatonin secretion. The role of sleep architecture. Sleep Med. 2020, 67, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Killick, R.; Hoyos, C.M.; Melehan, K.L.; Dungan, G.C., 2nd; Poh, J.; Liu, P.Y. Metabolic and hormonal effects of ‘catch-up’ sleep in men with chronic, repetitive, lifestyle-driven sleep restriction. Clin. Endocrinol. 2015, 83, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.M.; Durrant, S.J.; Law, G.R.; Santiago, J.; Scott, E.M.; Curtis, F. The effect of slow-wave sleep and rapid eye-movement sleep interventions on glycaemic control: A systematic review and meta-analysis of randomised controlled trials. Sleep Med. 2022, 92, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Herzog, N.; Jauch-Chara, K.; Hyzy, F.; Richter, A.; Friedrich, A.; Benedict, C.; Oltmanns, K.M. Selective slow wave sleep but not rapid eye movement sleep suppression impairs morning glucose tolerance in healthy men. Psychoneuroendocrinology 2013, 38, 2075–2082. [Google Scholar] [CrossRef]
- Shaw, N.D.; McHill, A.W.; Schiavon, M.; Kangarloo, T.; Mankowski, P.W.; Cobelli, C.; Klerman, E.B.; Hall, J.E. Effect of Slow Wave Sleep Disruption on Metabolic Parameters in Adolescents. Sleep 2016, 39, 1591–1599. [Google Scholar] [CrossRef]
- Ngo, H.V.; Martinetz, T.; Born, J.; Molle, M. Auditory closed-loop stimulation of the sleep slow oscillation enhances memory. Neuron 2013, 78, 545–553. [Google Scholar] [CrossRef]
- Yoda, K.; Inaba, M.; Hamamoto, K.; Yoda, M.; Tsuda, A.; Mori, K.; Imanishi, Y.; Emoto, M.; Yamada, S. Association between poor glycemic control, impaired sleep quality, and increased arterial thickening in type 2 diabetic patients. PLoS ONE 2015, 10, e0122521. [Google Scholar] [CrossRef]
- Shea, S.A.; Hilton, M.F.; Orlova, C.; Ayers, R.T.; Mantzoros, C.S. Independent circadian and sleep/wake regulation of adipokines and glucose in humans. J. Clin. Endocrinol. Metab. 2005, 90, 2537–2544. [Google Scholar] [CrossRef]
- Morris, C.J.; Purvis, T.E.; Mistretta, J.; Scheer, F.A. Effects of the Internal Circadian System and Circadian Misalignment on Glucose Tolerance in Chronic Shift Workers. J. Clin. Endocrinol. Metab. 2016, 101, 1066–1074. [Google Scholar] [CrossRef]
- Shechter, A.; O’Keeffe, M.; Roberts, A.L.; Zammit, G.K.; RoyChoudhury, A.; St-Onge, M.P. Alterations in sleep architecture in response to experimental sleep curtailment are associated with signs of positive energy balance. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 303, R883–R889. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Y. Sleep Architecture Changes in Diabetes. J. Clin. Med. 2024, 13, 6851. https://doi.org/10.3390/jcm13226851
Mao Y. Sleep Architecture Changes in Diabetes. Journal of Clinical Medicine. 2024; 13(22):6851. https://doi.org/10.3390/jcm13226851
Chicago/Turabian StyleMao, Yuanjie. 2024. "Sleep Architecture Changes in Diabetes" Journal of Clinical Medicine 13, no. 22: 6851. https://doi.org/10.3390/jcm13226851
APA StyleMao, Y. (2024). Sleep Architecture Changes in Diabetes. Journal of Clinical Medicine, 13(22), 6851. https://doi.org/10.3390/jcm13226851