Characterizing Cerebral Perfusion Changes in Subjective Cognitive Decline Using Single Photon Emission Computed Tomography: A Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Neuropsychological Tests
2.3. Cerebral Perfusion Imaging Acquisition and Analysis
2.3.1. Cerebral Perfusion SPECT Acquisition
2.3.2. Image Pre-Processing
2.3.3. Voxel-Wise Analysis
2.4. Statistical Analysis
3. Results
3.1. Demographic and Clinical Data
3.2. Voxel-Wise Comparisons of Cerebral Perfusion Imaging in Patients with SCD and HCs
3.3. Relationship Between Regional UR Changes and Clinical Variables
4. Discussion
4.1. Correlations Between Memory Function and rCBF
4.2. Superior Temporal Gyrus and Cognitive Functions
4.3. Caudate and Cognitive Functions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, A.; Sidhu, J.; Goyal, A.; Tsao, J.W. Alzheimer Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Dhillon, S. Aducanumab: First Approval. Drugs 2021, 81, 1437–1443. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Chu, F.; Zhu, F.; Zhu, J. Impact of Anti-amyloid-β Monoclonal Antibodies on the Pathology and Clinical Profile of Alzheimer’s Disease: A Focus on Aducanumab and Lecanemab. Front. Aging Neurosci. 2022, 14, 870517. [Google Scholar] [CrossRef]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2011, 7, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2018, 14, 535–562. [Google Scholar] [CrossRef]
- Jessen, F.; Amariglio, R.E.; van Boxtel, M.; Breteler, M.; Ceccaldi, M.; Chételat, G.; Dubois, B.; Dufouil, C.; Ellis, K.A.; van der Flier, W.M.; et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2014, 10, 844–852. [Google Scholar] [CrossRef]
- Taylor, C.A.; Bouldin, E.D.; McGuire, L.C. Subjective Cognitive Decline Among Adults Aged ≥45 Years—United States, 2015–2016. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 753–757. [Google Scholar] [CrossRef] [PubMed]
- Rabin, L.A.; Smart, C.M.; Crane, P.K.; Amariglio, R.E.; Berman, L.M.; Boada, M.; Buckley, R.F.; Chételat, G.; Dubois, B.; Ellis, K.A.; et al. Subjective Cognitive Decline in Older Adults: An Overview of Self-Report Measures Used Across 19 International Research Studies. J. Alzheimers Dis. 2015, 48 (Suppl. S1), S63–S86. [Google Scholar] [CrossRef]
- Mitchell, A.J.; Beaumont, H.; Ferguson, D.; Yadegarfar, M.; Stubbs, B. Risk of dementia and mild cognitive impairment in older people with subjective memory complaints: Meta-analysis. Acta Psychiatr. Scand. 2014, 130, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Slot, R.E.R.; Sikkes, S.A.M.; Berkhof, J.; Brodaty, H.; Buckley, R.; Cavedo, E.; Dardiotis, E.; Guillo-Benarous, F.; Hampel, H.; Kochan, N.A.; et al. Subjective cognitive decline and rates of incident Alzheimer’s disease and non-Alzheimer’s disease dementia. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2019, 15, 465–476. [Google Scholar] [CrossRef]
- Buckley, R.F.; Maruff, P.; Ames, D.; Bourgeat, P.; Martins, R.N.; Masters, C.L.; Rainey-Smith, S.; Lautenschlager, N.; Rowe, C.C.; Savage, G.; et al. Subjective memory decline predicts greater rates of clinical progression in preclinical Alzheimer’s disease. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2016, 12, 796–804. [Google Scholar] [CrossRef]
- Kogure, D.; Matsuda, H.; Ohnishi, T.; Asada, T.; Uno, M.; Kunihiro, T.; Nakano, S.; Takasaki, M. Longitudinal Evaluation of Early Alzheimer’s Disease Using Brain Perfusion SPECT. J. Nucl. Med. 2000, 41, 1155–1162. [Google Scholar] [PubMed]
- Johnson, K.A.; Moran, E.K.; Becker, J.A.; Blacker, D.; Fischman, A.J.; Albert, M.S. Single photon emission computed tomography perfusion differences in mild cognitive impairment. J. Neurol. Neurosurg. Psychiatry 2007, 78, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Jagust, W.J.; Budinger, T.F.; Reed, B.R. The diagnosis of dementia with single photon emission computed tomography. Arch. Neurol. 1987, 44, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Bradley, K.M.; O’Sullivan, V.T.; Soper, N.D.; Nagy, Z.; King, E.M.; Smith, A.D.; Shepstone, B.J. Cerebral perfusion SPET correlated with Braak pathological stage in Alzheimer’s disease. Brain 2002, 125, 1772–1781. [Google Scholar] [CrossRef]
- Johnson, K.A.; Jones, K.; Holman, B.L.; Becker, J.A.; Spiers, P.A.; Satlin, A.; Albert, M.S. Preclinical prediction of Alzheimer’s disease using SPECT. Neurology 1998, 50, 1563–1571. [Google Scholar] [CrossRef] [PubMed]
- Niwa, F.; Kondo, M.; Sakurada, K.; Nakagawa, M.; Imanishi, J.; Mizuno, T. Regional Cerebral Blood Flow in [123]I-IMP Single-photon Emission Computed Tomography and the Wechsler Memory Scale-revised in Nondemented Elderly Subjects with Subjective Cognitive Impairment. Intern. Med. 2016, 55, 3571–3578. [Google Scholar] [CrossRef]
- Funaki, K.; Nakajima, S.; Noda, Y.; Wake, T.; Ito, D.; Yamagata, B.; Yoshizaki, T.; Kameyama, M.; Nakahara, T.; Murakami, K.; et al. Can we predict amyloid deposition by objective cognition and regional cerebral blood flow in patients with subjective cognitive decline? Psychogeriatrics 2019, 19, 325–332. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Teng, E.L.; Hasegawa, K.; Homma, A.; Imai, Y.; Larson, E.; Graves, A.; Sugimoto, K.; Yamaguchi, T.; Sasaki, H.; Chiu, D.; et al. The Cognitive Abilities Screening Instrument (CASI): A practical test for cross-cultural epidemiological studies of dementia. Int. Psychogeriatr. 1994, 6, 45–58, discussion 62. [Google Scholar] [CrossRef]
- Petersen, R.C. Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 2004, 256, 183–194. [Google Scholar] [CrossRef]
- Yesavage, J.A.; Brink, T.L.; Rose, T.L.; Lum, O.; Huang, V.; Adey, M.; Leirer, V.O. Development and validation of a geriatric depression screening scale: A preliminary report. J. Psychiatr. Res. 1982, 17, 37–49. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, H. Role of neuroimaging in Alzheimer’s disease, with emphasis on brain perfusion SPECT. J. Nucl. Med. 2007, 48, 1289–1300. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.C. The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology 1993, 43, 2412–2414. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, J.I.; Yesavage, J.A. Geriatric Depression Scale (GDS): Recent evidence and development of a shorter version. Clin. Gerontol. J. Aging Ment. Health 1986, 5, 165–173. [Google Scholar] [CrossRef]
- Liu, C.Y.; Wang, S.J.; Teng, E.L.; Fuh, J.L.; Lin, C.C.; Lin, K.N.; Chen, H.M.; Lin, C.H.; Wang, P.N.; Yang, Y.Y.; et al. Depressive disorders among older residents in a Chinese rural community. Psychol. Med. 1997, 27, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Crum, R.M.; Anthony, J.C.; Bassett, S.S.; Folstein, M.F. Population-based norms for the Mini-Mental State Examination by age and educational level. Jama 1993, 269, 2386–2391. [Google Scholar] [CrossRef]
- Tzeng, R.C.; Yang, Y.W.; Hsu, K.C.; Chang, H.T.; Chiu, P.Y. Sum of boxes of the clinical dementia rating scale highly predicts conversion or reversion in predementia stages. Front. Aging Neurosci. 2022, 14, 1021792. [Google Scholar] [CrossRef]
- Kwiatek, R.; Barnden, L.; Tedman, R.; Jarrett, R.; Chew, J.; Rowe, C.; Pile, K. Regional cerebral blood flow in fibromyalgia: Single-photon–emission computed tomography evidence of reduction in the pontine tegmentum and thalami. Arthritis Rheum. 2000, 43, 2823–2833. [Google Scholar] [CrossRef]
- Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002, 15, 273–289. [Google Scholar] [CrossRef]
- Pickut, B.A.; Dierckx, R.A.; Dobbeleir, A.; Audenaert, K.; Van Laere, K.; Vervaet, A.; De Deyn, P.P. Validation of the cerebellum as a reference region for SPECT quantification in patients suffering from dementia of the Alzheimer type. Psychiatry Res. Neuroimaging 1999, 90, 103–112. [Google Scholar] [CrossRef]
- Chen, J.J.; Rosas, H.D.; Salat, D.H. Age-associated reductions in cerebral blood flow are independent from regional atrophy. NeuroImage 2011, 55, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Huxley, V.H.; Kemp, S.S. Sex-Specific Characteristics of the Microcirculation. Adv. Exp. Med. Biol. 2018, 1065, 307–328. [Google Scholar] [CrossRef] [PubMed]
- Stern, Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012, 11, 1006–1012. [Google Scholar] [CrossRef]
- Tudorascu, D.L.; Rosano, C.; Venkatraman, V.K.; MacCloud, R.L.; Harris, T.; Yaffe, K.; Newman, A.B.; Aizenstein, H.J. Multimodal MRI markers support a model of small vessel ischemia for depressive symptoms in very old adults. Psychiatry Res. 2014, 224, 73–80. [Google Scholar] [CrossRef]
- Talairach, J. Co-Planar Stereotaxic Atlas of the Human Brain-3-Dimensional Proportional System. An Approach to Cerebral Imaging; Thieme Publishing Group: Leipzig, Germany, 1988. [Google Scholar]
- Hill, N.L.; Bhargava, S.; Bratlee-Whitaker, E.; Turner, J.R.; Brown, M.J.; Mogle, J. Longitudinal Relationships Between Subjective Cognitive Decline and Objective Memory: Depressive Symptoms Mediate Between-Person Associations. J. Alzheimers Dis. 2021, 83, 1623–1636. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.W.; Hsu, K.C.; Wei, C.Y.; Tzeng, R.C.; Chiu, P.Y. Operational Determination of Subjective Cognitive Decline, Mild Cognitive Impairment, and Dementia Using Sum of Boxes of the Clinical Dementia Rating Scale. Front. Aging Neurosci. 2021, 13, 705782. [Google Scholar] [CrossRef]
- Kikyo, H.; Miyashita, Y. Temporal lobe activations of “feeling-of-knowing” induced by face-name associations. NeuroImage 2004, 23, 1348–1357. [Google Scholar] [CrossRef]
- Zacková, L.; Jáni, M.; Brázdil, M.; Nikolova, Y.S.; Marečková, K. Cognitive impairment and depression: Meta-analysis of structural magnetic resonance imaging studies. Neuroimage Clin. 2021, 32, 102830. [Google Scholar] [CrossRef]
- Uddin, L.Q.; Nomi, J.S.; Hébert-Seropian, B.; Ghaziri, J.; Boucher, O. Structure and Function of the Human Insula. J. Clin. Neurophysiol. 2017, 34, 300–306. [Google Scholar] [CrossRef]
- Igelström, K.M.; Webb, T.W.; Kelly, Y.T.; Graziano, M.S. Topographical Organization of Attentional, Social, and Memory Processes in the Human Temporoparietal Cortex. eNeuro 2016, 3, ENEURO.0060-16.2016. [Google Scholar] [CrossRef]
- Grahn, J.A.; Parkinson, J.A.; Owen, A.M. The cognitive functions of the caudate nucleus. Prog. Neurobiol. 2008, 86, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Bauer, E.; Toepper, M.; Gebhardt, H.; Gallhofer, B.; Sammer, G. The significance of caudate volume for age-related associative memory decline. Brain Res. 2015, 1622, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Iizuka, T.; Kameyama, M. Metabolic correlate of memory-deficit awareness in dementia with Lewy bodies: Implication in cortical midline structure. Psychiatry Res. Neuroimaging 2017, 269, 43–47. [Google Scholar] [CrossRef]
- Perrotin, A.; Desgranges, B.; Landeau, B.; Mézenge, F.; La Joie, R.; Egret, S.; Pélerin, A.; de la Sayette, V.; Eustache, F.; Chételat, G. Anosognosia in Alzheimer disease: Disconnection between memory and self-related brain networks. Ann. Neurol. 2015, 78, 477–486. [Google Scholar] [CrossRef]
- Kringelbach, M.L. The human orbitofrontal cortex: Linking reward to hedonic experience. Nat. Rev. Neurosci. 2005, 6, 691–702. [Google Scholar] [CrossRef]
- Studart, A.N.; Nitrini, R. Subjective cognitive decline: The first clinical manifestation of Alzheimer’s disease? Dement. Neuropsychol. 2016, 10, 170–177. [Google Scholar] [CrossRef]
- Kameyama, M. Lassen’s equation is a good approximation of permeability-surface model: New α values for ⁹⁹mTc-HMPAO and ⁹⁹mTc-ECD. J. Cereb. Blood Flow Metab. 2014, 34, 1157–1161. [Google Scholar] [CrossRef] [PubMed]
- Minoshima, S.; Foster, N.L.; Kuhl, D.E. Posterior cingulate cortex in Alzheimer’s disease. Lancet 1994, 344, 895. [Google Scholar] [CrossRef]
- Kumakura, Y.; Momose, T.; Oku, S.; Ohtake, T.; Nishikawa, J.; Sasaki, Y. Analysis of cerebral blood flow SPECT imaging on standard brain atlas in patients with dementia of Alzheimer type. Kaku Igaku 1998, 35, 29–32. [Google Scholar]
- Habeck, C.; Risacher, S.; Lee, G.J.; Glymour, M.M.; Mormino, E.; Mukherjee, S.; Kim, S.; Nho, K.; DeCarli, C.; Saykin, A.J.; et al. Relationship between baseline brain metabolism measured using [¹⁸F]FDG PET and memory and executive function in prodromal and early Alzheimer’s disease. Brain Imaging Behav. 2012, 6, 568–583. [Google Scholar] [CrossRef]
- Perrotin, A.; La Joie, R.; de La Sayette, V.; Barre, L.; Mezenge, F.; Mutlu, J.; Guilloteau, D.; Egret, S.; Eustache, F.; Chetelat, G. Subjective cognitive decline in cognitively normal elders from the community or from a memory clinic: Differential affective and imaging correlates. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2017, 13, 550–560. [Google Scholar] [CrossRef] [PubMed]
- Sperling, R.A.; Rentz, D.M.; Johnson, K.A.; Karlawish, J.; Donohue, M.; Salmon, D.P.; Aisen, P. The A4 study: Stopping AD before symptoms begin? Sci. Transl. Med. 2014, 6, 228fs213. [Google Scholar] [CrossRef] [PubMed]
- Vermunt, L.; Sikkes, S.A.M.; van den Hout, A.; Handels, R.; Bos, I.; van der Flier, W.M.; Kern, S.; Ousset, P.J.; Maruff, P.; Skoog, I.; et al. Duration of preclinical, prodromal, and dementia stages of Alzheimer’s disease in relation to age, sex, and APOE genotype. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2019, 15, 888–898. [Google Scholar] [CrossRef] [PubMed]
Demographic Variable | Healthy Control | SCD Group | p |
---|---|---|---|
Age (yr) | 71.00 ± 6.66 | 71.35 ± 6.68 | 0.869 |
Sex (M/F) | 9/11 | 8/12 | 0.757 |
Education (year) | 11.25 ± 4.51 | 11.60 ± 3.97 | 0.796 |
GDS score | 3.40 ± 2.56 | 4.00 ± 2.47 | 0.456 |
MMSE score | 27.80 ± 1.96 | 28.45 ± 0.94 | 0.190 |
CASI score | 90.60 ± 7.55 | 92.73 ± 3.55 | 0.259 |
Long-term memory | 9.85 ± 0.49 | 9.85 ± 0.49 | 1.000 |
Short-term memory | 10.79 ± 0.97 | 11.27 ± 0.90 | 0.108 |
Attention | 7.30 ± 0.92 | 7.75 ± 0.55 | 0.069 |
Mental manipulation | 8.95 ± 1.54 | 9.25 ± 1.02 | 0.472 |
Orientation | 17.15 ± 1.76 | 17.15 ± 1.23 | 1.000 |
Abstraction and judgement | 9.75 ± 1.25 | 9.90 ± 1.12 | 0.692 |
Language | 9.31 ± 1.19 | 9.91 ± 0.25 | 0.033 |
Visual construction | 9.75 ± 1.12 | 9.80 ± 0.62 | 0.862 |
List-generating fluency | 7.75 ± 2.17 | 7.90 ± 1.89 | 0.817 |
Global CDR | 0.33 ± 0.24 | 0.50 ± 0.00 | 0.003 |
CDR-SB | 0.40 ± 0.45 | 0.50 ± 0.00 | 0.324 |
CDR Memory domain | 0.35 ± 0.29 | 0.50 ± 0.00 | 0.024 |
MNI Coordinates | Voxel Size | Left or Right | Anatomical Region | Brodmann Area | Regional Uptake Ratio, Mean ± SD | T Score a | |||
---|---|---|---|---|---|---|---|---|---|
x | y | z | Healthy Control | SCD Group | |||||
54 | −4 | −4 | 440 | Right | Superior Temporal Gyrus | 22 | 1.030 ± 0.074 | 0.864 ± 0.090 | 4.48 |
6 | 10 | −10 | 536 | Right | Caudate | Caudate Head | 0.947 ± 0.062 | 0.783 ± 0.068 | 3.95 |
8 | 18 | −6 | Right | Caudate | Caudate Head | 3.89 | |||
10 | 12 | 2 | Right | Caudate | Caudate Body | 3.75 |
Anatomical Region | CASI | Long-Term Memory | Short-Term Memory | Attention | Mental Manipulation | Orientation | Abstraction and Judgement | Language | Visual Construction | List-Generating Fluency | Global CDR | CDR-SB | CDR M |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R Superior Temporal Gyrus | 0.08 (0.595) | 0.26 (0.103) | −0.08 (0.591) | 0.07 (0.652) | 0.16 (0.316) | −0.04 (0.784) | 0.17 (0.285) | 0.01 (0.932) | 0.11 (0.487) | −0.03 (0.829) | −0.36 (0.019) * | −0.37 (0.016) * | −0.31 (0.046) * |
R Caudate | 0.16 (0.310) | 0.34 (0.027) * | 0.04 (0.804) | 0.13 (0.410) | 0.24 (0.134) | −0.02 (0.863) | 0.11 (0.492) | 0.08 (0.582) | 0.18 (0.256) | 0.003 (0.981) | −0.36 (0.021) * | −0.39 (0.011) * | −0.35 (0.024) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-K.; Lin, L.-F.; Kao, C.-H.; Chen, I.-J.; Cheng, C.-Y.; Tsai, C.-L.; Lee, J.-T.; Sung, Y.-F.; Chou, C.-H.; Yen, S.-Y.; et al. Characterizing Cerebral Perfusion Changes in Subjective Cognitive Decline Using Single Photon Emission Computed Tomography: A Case-Control Study. J. Clin. Med. 2024, 13, 6855. https://doi.org/10.3390/jcm13226855
Lin Y-K, Lin L-F, Kao C-H, Chen I-J, Cheng C-Y, Tsai C-L, Lee J-T, Sung Y-F, Chou C-H, Yen S-Y, et al. Characterizing Cerebral Perfusion Changes in Subjective Cognitive Decline Using Single Photon Emission Computed Tomography: A Case-Control Study. Journal of Clinical Medicine. 2024; 13(22):6855. https://doi.org/10.3390/jcm13226855
Chicago/Turabian StyleLin, Yu-Kai, Li-Fan Lin, Chun-Hao Kao, Ing-Jou Chen, Cheng-Yi Cheng, Chia-Lin Tsai, Jiunn-Tay Lee, Yueh-Feng Sung, Chung-Hsing Chou, Shang-Yi Yen, and et al. 2024. "Characterizing Cerebral Perfusion Changes in Subjective Cognitive Decline Using Single Photon Emission Computed Tomography: A Case-Control Study" Journal of Clinical Medicine 13, no. 22: 6855. https://doi.org/10.3390/jcm13226855
APA StyleLin, Y. -K., Lin, L. -F., Kao, C. -H., Chen, I. -J., Cheng, C. -Y., Tsai, C. -L., Lee, J. -T., Sung, Y. -F., Chou, C. -H., Yen, S. -Y., Chiu, C. -H., & Yang, F. -C. (2024). Characterizing Cerebral Perfusion Changes in Subjective Cognitive Decline Using Single Photon Emission Computed Tomography: A Case-Control Study. Journal of Clinical Medicine, 13(22), 6855. https://doi.org/10.3390/jcm13226855