Myval Transcatheter Heart Valve: The Future of Transcatheter Valve Replacement and Significance in Current Timeline
Abstract
:1. Introduction
2. Myval Transcatheter Heart Valve System
Myval Octacor
3. Pre-Clinical Evaluation of Myval
4. MyVal-1 First In-Human Study
5. Early Clinical and Hemodynamic Outcomes of Myval in Comparison to Other THVs
6. Myval Intermediate Follow-Up Outcomes
7. The LANDMARK Trial
8. Diverse Use of Myval THV in Specific Clinical Scenarios
8.1. Myval and Conduction Disturbances
8.2. Myval in Low-Risk as Patients
8.3. Myval in Bicuspid Aortic Valve Severe Stenosis
8.4. Myval for Non-Calcified Aortic Regurgitation
8.5. Myval Sizing Using Annulus Perimeter
8.6. Myval for Dysfunctional Stenosed RVOT Conduits
8.7. TAVI for AR in Patients with Left Ventricular Assist Device (LVAD)
8.8. Myval via Trans-Carotid Access and Trans-Axillary Route in Patients with PVD
8.9. ViV with Myval THV
8.9.1. Transcatheter Mitral Valve-in-Valve Implantation (ViV) with Myval THV
8.9.2. Myval in Tricuspid ViV
8.10. Myval for Pulmonary Valve Replacement
8.11. Myval for Aortic Stenosis and Cardiac Amyloidosis
9. Importance of Extra-Large (XL) Size of Myval THV
9.1. The 32 mm Myval for Treatment in Patients with Extremely Large Aortic Annuli in Real-World Scenario: First Global, Multicenter Experience
9.2. XL-Myval 32 mm in Large Bicuspid Anatomy
10. Clinical Advantages and Design Innovations of the Myval Transcatheter Heart Valve
11. Gaps in Evidence and Future Directions
12. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cribier, A.; Eltchaninoff, H.; Bash, A.; Borenstein, N.; Tron, C.; Bauer, F.; Derumeaux, G.; Anselme, F.; Laborde, F.; Leon, M.B. Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis: First Human Case Description. Circulation 2002, 106, 3006–3008. [Google Scholar] [CrossRef] [PubMed]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P.; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients with Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, e35–e71. [Google Scholar] [CrossRef] [PubMed]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the Management of Valvular Heart Disease: Developed by the Task Force for the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Rev. Esp. Cardiol. 2022, 75, 524. [Google Scholar] [CrossRef] [PubMed]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter Aortic-Valve Replacement with a Balloon-Expandable Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef]
- Popma, J.J.; Deeb, G.M.; Yakubov, S.J.; Mumtaz, M.; Gada, H.; O’Hair, D.; Bajwa, T.; Heiser, J.C.; Merhi, W.; Kleiman, N.S.; et al. Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients. N. Engl. J. Med. 2019, 380, 1706–1715. [Google Scholar] [CrossRef]
- Thyregod, H.G.H.; Steinbrüchel, D.A.; Ihlemann, N.; Nissen, H.; Kjeldsen, B.J.; Petursson, P.; Chang, Y.; Franzen, O.W.; Engstrøm, T.; Clemmensen, P.; et al. Transcatheter Versus Surgical Aortic Valve Replacement in Patients with Severe Aortic Valve Stenosis: 1-Year Results From the All-Comers NOTION Randomized Clinical Trial. J. Am. Coll. Cardiol. 2015, 65, 2184–2194. [Google Scholar] [CrossRef]
- Akodad, M.; Gall, E. New-Generation Myval Transcatheter Heart Valve in Severe Aortic Stenosis. Lancet 2024, 403, 2664–2665. [Google Scholar] [CrossRef]
- Hanzel, G.S.; Gersh, B.J. Transcatheter Aortic Valve Replacement in Low-Risk, Young Patients: Natural Expansion or Cause for Concern? Circulation 2020, 142, 1317–1319. [Google Scholar] [CrossRef]
- Gcm, S.; Pavel, O.; Thomas, J.C.; Thomas, M.; Bernard, P.; Fabien, P.; Thomas, P.; Tatjana, P.; Adriani, N.; Georgia, S.; et al. Transcatheter Aortic Valve Implantation vs. Surgical Aortic Valve Replacement for Treatment of Symptomatic Severe Aortic Stenosis: An Updated Meta-Analysis. Eur. Heart J. 2019, 40, 3143–3153. [Google Scholar] [CrossRef]
- Blankenberg, S.; Seiffert, M.; Vonthein, R.; Baumgartner, H.; Bleiziffer, S.; Borger, M.A.; Choi, Y.-H.; Clemmensen, P.; Cremer, J.; Czerny, M.; et al. Transcatheter or Surgical Treatment of Aortic-Valve Stenosis. N. Engl. J. Med. 2024, 390, 1572–1583. [Google Scholar] [CrossRef]
- Sa, Y.K.; Hwang, B.-H.; Chung, W.-B.; Lee, K.Y.; Lee, J.; Kang, D.; Ko, Y.-G.; Yu, C.W.; Kim, J.; Choi, S.-H.; et al. Real-World Comparison of Transcatheter Versus Surgical Aortic Valve Replacement in the Era of Current-Generation Devices. J. Clin. Med. 2023, 12, 571. [Google Scholar] [CrossRef] [PubMed]
- Senguttuvan, N.B.; Bhatt, H.; Balakrishnan, V.K.; Krishnamoorthy, P.; Goel, S.; Reddy, P.M.K.; Subramanian, V.; Claessen, B.E.; Kumar, A.; Majmundar, M.; et al. The Safety and Efficacy of Balloon-Expandable versus Self-Expanding Trans-Catheter Aortic Valve Replacement in High-Risk Patients with Severe Symptomatic Aortic Stenosis. Front. Cardiovasc. Med. 2023, 10, 1130354. [Google Scholar] [CrossRef] [PubMed]
- Van Belle, E.; Vincent, F.; Labreuche, J.; Auffret, V.; Debry, N.; Lefèvre, T.; Eltchaninoff, H.; Manigold, T.; Gilard, M.; Verhoye, J.-P.; et al. Balloon-Expandable Versus Self-Expanding Transcatheter Aortic Valve Replacement. Circulation 2020, 141, 243–259. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Rao, R.S.; Chandra, P.; Goel, P.K.; Bharadwaj, P.; Joseph, G.; Jose, J.; Mahajan, A.U.; Mehrotra, S.; Sengottovelu, G.; et al. First-in-Human Evaluation of a Novel Balloon-Expandable Transcatheter Heart Valve in Patients with Severe Symptomatic Native Aortic Stenosis: The MyVal-1 Study. EuroIntervention 2020, 16, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Seth, A.; Kumar, V.; Singh, V.P.; Kumar, D.; Varma, P.; Rastogi, V. Myval: A Novel Transcatheter Heart Valve for the Treatment of Severe Aortic Stenosis. Interv. Cardiol. 2023, 18, e12. [Google Scholar] [CrossRef]
- Jose, J.; Mandalay, A.; Cholenahally, M.N.; Khandenahally, R.S.; Budnur, S.C.; Parekh, M.; Rao, R.S.; Seth, A.; Chandra, P.; Kapoor, R.; et al. Safety and Effectiveness of the Novel Myval Octacor Transcatheter Heart Valve in Severe, Symptomatic Aortic Valve Stenosis—A Real-World Indian Experience (The OCTACOR India Study). Cardiovasc. Revasc. Med. 2024, 63, 1–7. [Google Scholar] [CrossRef]
- Elkoumy, A.; Jose, J.; Gunasekaran, S.; Kumar, A.; Srinivas, B.C.; Manjunath, C.N.; Ravindranath, K.S.; Parekh, M.; Chandra, P.; Kapoor, R.; et al. Angiographic Quantification of Aortic Regurgitation Following Myval Octacor Implantation; Independent Core Lab Adjudication. Int. J. Cardiol. 2023, 382, 68–75. [Google Scholar] [CrossRef]
- Revaiah, P.C.; Tsai, T.-Y.; Tobe, A.; Chandra, P.; Serruys, P.W. Novel Transcatheter Aortic Valve Implantation Systems from India. In Transcatheter Aortic Valve Implantation; Taylor & Francis Group: Abingdon, UK, 2024. [Google Scholar]
- Revaiah, P.C.; Mandalay, A.; Sengottuvelu, G.; Elkoumy, A.; Elzomor, H.; Abdelshafy, M.; Bhatt, S.; Onuma, Y.; Soliman, O.; Serruys, P.W. CRT-700.47 Commissural/Coronary Alignment with the Novel Myval Octacor THV—The Octa Align Technique. JACC Cardiovasc. Interv. 2023, 16, S94–S95. [Google Scholar] [CrossRef]
- Abdelshafy, M.; Serruys, P.W.; Kim, W.-K.; Rück, A.; Wang, R.; Tao, L.; Elkoumy, A.; Elzomor, H.; Garg, S.; Onuma, Y.; et al. Quantitative Angiographic Assessment of Aortic Regurgitation Following 11 TAVR Devices: An Update of a Multicenter Pooled Analysis. J. Soc. Cardiovasc. Angiogr. Interv. 2022, 1, 100037. [Google Scholar] [CrossRef]
- Buszman, P.P.; Kachel, M.; Ceballos, C.F.; Łukasik, K.; Domaradzki, W.; Pruski, M.; Tellez, A.; Rousselle, S.; Konopko, M.; Glanc, M.; et al. 6-Month Evaluation of a Transcatheter Aortic Valve (Myval) in a Novel Ovine, Supra-Aortic Banding Model. JACC Basic. Transl. Sci. 2022, 7, 486–495. [Google Scholar] [CrossRef]
- Kawashima, H.; Wang, R.; Mylotte, D.; Jagielak, D.; De Marco, F.; Ielasi, A.; Onuma, Y.; Den Heijer, P.; Terkelsen, C.J.; Wijns, W.; et al. Quantitative Angiographic Assessment of Aortic Regurgitation after Transcatheter Aortic Valve Implantation among Three Balloon-Expandable Valves. Glob. Heart 2021, 16, 20. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, H.; Serruys, P.W.; Mylotte, D.; Rosseel, L.; Amat-Santos, I.J.; Rao, R.S.; Onuma, Y.; Wijns, W.; Abdel-Wahab, M.; Baumbach, A.; et al. Operator Preference and Determinants of Size Selection When Additional Intermediate-Size Aortic Transcatheter Heart Valves Are Made Available. Int. J. Cardiol. 2021, 338, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Arana, J.R.; Gordillo-Monge, M.X.; Halim, J.; De Marco, F.; Trani, C.; Martin, P.; Infusino, F.; Ancona, M.; den Heijer, P.; Bedogni, F.; et al. Early Clinical and Haemodynamic Matched Comparison of Balloon-Expandable Valves. Heart 2022, 108, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Barki, M.; Ielasi, A.; Buono, A.; Maliandi, G.; Pellicano, M.; Bande, M.; Casilli, F.; Messina, F.; Uccello, G.; Briguglia, D.; et al. Clinical Comparison of a Novel Balloon-Expandable Versus a Self-Expanding Transcatheter Heart Valve for the Treatment of Patients with Severe Aortic Valve Stenosis: The EVAL Registry. J. Clin. Med. 2022, 11, 959. [Google Scholar] [CrossRef] [PubMed]
- Halim, J.; Rooijakkers, M.; Den Heijer, P.; El Haddad, M.; Van Den Branden, B.; Vos, J.; Schölzel, B.; Meuwissen, M.; Van Gameren, M.; El Messaoudi, S.; et al. Assessing the Novel Myval Balloon-Expandable Valve with the Evolut Valve: A Propensity-Matched Study. J. Clin. Med. 2023, 12, 4213. [Google Scholar] [CrossRef]
- Halim, J.; Den Heijer, P.; Van Den Branden, B.; Meuwissen, M.; Vos, J.; Schölzel, B.; IJsselmuiden, A. Short-Term Outcome after Transcatheter Aortic Valve Replacement with a Novel Balloon-Expandable Valve. Neth. Heart J. 2023, 31, 500–505. [Google Scholar] [CrossRef]
- Belluschi, I.; Buzzatti, N.; Denti, P.; Romano, V.; Miceli, A.; Alfieri, O.; De Bonis, M.; Glauber, M.; Castiglioni, A.; Montorfano, M. First-in-man Valve-in-Valve with the New Balloon-expandable Myval Transcatheter Heart Valve in a Failed Sutureless Perceval Bioprosthesis. J. Card. Surg. 2021, 36, 2546–2548. [Google Scholar] [CrossRef]
- Baumbach, A.; van Royen, N.; Amat-Santos, I.J.; Hudec, M.; Bunc, M.; Ijsselmuiden, A.; Laanmets, P.; Unic, D.; Merkely, B.; Hermanides, R.S. LANDMARK comparison of early outcomes of newer-generation Myval transcatheter heart valve series with contemporary valves (Sapien and Evolut) in real-world individuals with severe symptomatic native aortic stenosis: A randomised non-inferiority trial. Lancet 2024, 403, 2695–2708. [Google Scholar] [CrossRef]
- Testa, L.; Criscione, E.; Popolo Rubbio, A.; Squillace, M.; Ielasi, A.; Tespili, M.; Brambilla, N.; Bedogni, F. Safety and Performance Parameters of the Myval Transcatheter Aortic Valve Bioprosthesis: The SAPPHIRE Prospective Registry. Cardiovasc. Revasc. Med. 2023, 55, 22–27. [Google Scholar] [CrossRef]
- Moscarella, E.; Ielasi, A.; Montonati, C.; Pellegrini, D.; Pellicano, M.; Briguglia, D.; D’Alessandro, V.; Giannini, F.; Gamardella, M.; Medda, M.; et al. Comparing Two-Year Outcomes of Balloon-Expandable Myval and Self-Expanding Evolut R in Severe Aortic Valve Stenosis. Int. J. Cardiol. 2024, 400, 131701. [Google Scholar] [CrossRef]
- Kilic, T.; Ielasi, A.; Ninios, V.; Korkmaz, L.; Panagiotakos, D.; Yerlikaya, G.; Ozderya, A.; Montonati, C.; Tespili, M.; Coskun, S.; et al. Clinical Outcomes of the Myval Transcatheter Heart Valve System in Patients with Severe Aortic Valve Stenosis: A Two-Year Follow-up Observational Study. Arch. Med. Sci. 2024, 20, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Santos-Martinez, S.; Halim, J.; Castro-Mejía, A.; Marco, F.D.; Trani, C.; Martin, P.; Infusino, F.; Ancona, M.; Moreno, R.; den Heijer, P.; et al. Myval versus Alternative Balloon- and Self-Expandable Transcatheter Heart Valves: A Central Core Lab Analysis of Conduction Disturbances. Int. J. Cardiol. 2022, 351, 25–31. [Google Scholar] [CrossRef] [PubMed]
- García-Gómez, M.; Delgado-Arana, J.R.; Halim, J.; De Marco, F.; Trani, C.; Martin, P.; Won-Keun, K.; Montorfano, M.; Den Heijer, P.; Bedogni, F.; et al. Next-generation Balloon-expandable Myval Transcatheter Heart Valve in Low-risk Aortic Stenosis Patients. Catheter. Cardiovasc. Interv. 2022, 99, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Roberts, W.C.; Ko, J.M. Frequency by Decades of Unicuspid, Bicuspid, and Tricuspid Aortic Valves in Adults Having Isolated Aortic Valve Replacement for Aortic Stenosis, With or Without Associated Aortic Regurgitation. Circulation 2005, 111, 920–925. [Google Scholar] [CrossRef]
- Elkoumy, A.; Jose, J.; Terkelsen, C.J.; Nissen, H.; Gunasekaran, S.; Abdelshafy, M.; Seth, A.; Elzomor, H.; Kumar, S.; Bedogni, F.; et al. One-Year Outcomes after Myval Implantation in Patients with Bicuspid Aortic Valve Stenosis—A Multicentre Real-World Experience. J. Clin. Med. 2023, 12, 2398. [Google Scholar] [CrossRef]
- Amat-Santos, I.J.; García-Gómez, M.; De Marco, F.; Won-Keun, K.; Brito, J.; Halim, J.; Jose, J.; Sengotuvelu, G.; Seth, A.; Terkelsen, C.; et al. Latest-Iteration Balloon- and Self-Expandable Transcatheter Valves for Severe Bicuspid Aortic Stenosis: The TRITON Study. Rev. Esp. Cardiol. 2023, 76, 872–880. [Google Scholar] [CrossRef]
- Takagi, H.; Hari, Y.; Kawai, N.; Ando, T. Meta-Analysis and Meta-Regression of Transcatheter Aortic Valve Implantation for Pure Native Aortic Regurgitation. Heart Lung Circ. 2020, 29, 729–741. [Google Scholar] [CrossRef]
- Hensey, M.; Murdoch, D.J.; Sathananthan, J.; Alenezi, A.; Sathananthan, G.; Moss, R.; Blanke, P.; Leipsic, J.; Wood, D.A.; Cheung, A.; et al. First-in-Human Experience of a New-Generation Transfemoral Transcatheter Aortic Valve for the Treatment of Severe Aortic Regurgitation: The J-Valve Transfemoral System. EuroIntervention 2019, 14, e1553–e1555. [Google Scholar] [CrossRef]
- Wienemann, H.; Elzomor, H.; Kuhn, E.; Sinning, J.-M.; Baldus, S.; Serruys, P.W.; Adam, M. Transcatheter Aortic Valve Implantation of a Novel System for Severe Pure Native Aortic Regurgitation in a Patient with an Ascending Aorta Aneurysm. EuroIntervention 2023, 18, 1442–1443. [Google Scholar] [CrossRef]
- Sanchez-Luna, J.P.; Martín, P.; Dager, A.E.; Charry, P.D.; Beltrán, J.R.; Sánchez-Recalde, Á.; Giannini, F.; Gómez-Menchero, A.; Pan, M.; Ielasi, A.; et al. Clinical Outcomes of TAVI with the Myval Balloon-Expandable Valve for Non-Calcified Aortic Regurgitation. EuroIntervention 2023, 19, 580–588. [Google Scholar] [CrossRef]
- Halim, J.; Den Heijer, P.; Vos, J.; Schölzel, B.E.; Meuwissen, M.; Van Den Branden, B.; Baumbach, A.; Ijsselmuiden, A.J.J. Balloon-Expandable TAVR Bioprostheses: Area or Perimeter Sizing? A Prospective Pilot Study. J. Interv. Cardiol. 2022, 2022, 3139476. [Google Scholar] [CrossRef]
- Sivaprakasam, M.C.; Reddy, J.R.V.; Gunasekaran, S.; Sivakumar, K.; Pavithran, S.; Rohitraj, G.R.; Jayranganath, M.; Francis, E. Early Multicenter Experience of a New Balloon Expandable MyVal Transcatheter Heart Valve in Dysfunctional Stenosed Right Ventricular Outflow Tract Conduits. Ann. Pediatr. Cardiol. 2021, 14, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Houeijeh, A.; Sudre, A.; Juthier, F.; Godart, F. Pulmonary Valve Replacement in a Large and Tortuous Right Ventricle Outflow Tract with a 32 Mm Myval Valve under Local Anaesthesia: Challenges and Technical Considerations: A Case Report. Eur. Heart J. Case Rep. 2023, 7, ytad322. [Google Scholar] [CrossRef] [PubMed]
- Bouabdallaoui, N.; El-Hamamsy, I.; Pham, M.; Giraldeau, G.; Parent, M.-C.; Carrier, M.; Rouleau, J.L.; Ducharme, A. Aortic Regurgitation in Patients with a Left Ventricular Assist Device: A Contemporary Review. J. Heart Lung Transplant. 2018, 37, 1289–1297. [Google Scholar] [CrossRef]
- Ancona, M.B.; Moroni, F.; Romano, V.; Agricola, E.; Esposito, A.; Ajello, S.; De Bonis, M.; Cappelletti, A.M.; Zangrillo, A.; Scandroglio, A.M.; et al. Transcatheter aortic valve implantation for aortic regurgitation in patients with left ventricular assist device. G. Ital. Cardiol. 2021, 22, 39S–42S. [Google Scholar] [CrossRef]
- Tagliari, A.P.; Saadi, R.P.; Ferrari, E.; Taramasso, M.; Saadi, E.K. The Role of the Axillary Artery as a Second Access Choice in TAVI Procedures. Braz. J. Cardiovasc. Surg. 2021, 36, 237–243. [Google Scholar] [CrossRef]
- Ayhan, H.; Karaduman, B.D.; Keleş, T.; Uğuz, E.; Boysan, E.; Bozkurt, E. Transcarotid Transcatheter Aortic Valve Implantation with a Novel Balloon Expandable Myval® THV under the Local Anesthesia. J. Geriatr. Cardiol. 2022, 19, 562–564. [Google Scholar] [CrossRef]
- Keleş, T.; Özcan Çelebi, Ö.; Uğuz, E.; Balcı, K.; Bozkurt, E. Transcatheter Aortic Valve Implantation via the Left Axillary Artery Route in a Patient with a Permanent Pacemaker: The First Transaxillary Artery Route Experience with a Meril’s MyvalTM Transaortic Valve in Turkey. Anatol. J. Cardiol. 2021, 25, 517–519. [Google Scholar] [CrossRef]
- Ielasi, A.; Buono, A.; Medda, M.; Casilli, F.; Bande, M.; Pellicano, M.; Glauber, M.; Donatelli, F.; Tespili, M. Transcatheter Valve-in-Valve Implantation with a Novel Balloon-Expandable Device in Patients with Bioprosthetic Heart Valve Failure: A Case Series. Cardiovasc. Revasc. Med. 2021, 28, 98–101. [Google Scholar] [CrossRef]
- Ielasi, A.; Buono, A.; Medda, M.; Tespili, M. MyVal and Mini-Chimney Stenting to Prevent Coronary Obstruction During Full Root Stent-Less Aortic Valve-In-Valve Procedure. Cardiovasc. Revasc. Med. 2021, 22, 122–123. [Google Scholar] [CrossRef]
- Moscarella, E.; Ielasi, A.; Mussayev, A.; Montorfano, M.; Mullassari, A.; Martin, P.; Testa, L.; Jose, J.; Ninios, V.; Toutouzas, K.; et al. Transcatheter Valve-in-Valve or Valve-in-Ring Implantation with a Novel Balloon-Expandable Device in Patients with Bioprosthetic Left Side Heart Valves Failure: 1-Year Follow-up from a Multicenter Experience. Int. J. Cardiol. 2023, 376, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Drakopoulou, M.; Latsios, G.; Synetos, A.; Benetos, G.; Soulaidopoulos, S.; Oikonomou, G.; Apostolos, A.; Aggeli, K.; Lozos, V.; Lymperiadis, D.; et al. Transcatheter Mitral Valve-in-valve Replacement Transeptally Using a Novel Balloon-expandable Device. J. Card. Surg. 2022, 37, 3376–3377. [Google Scholar] [CrossRef] [PubMed]
- Blasco-Turrión, S.; Serrador-Frutos, A.; Jose, J.; Sengotuvelu, G.; Seth, A.; Aldana, V.G.; Sánchez-Luna, J.P.; Gonzalez-Gutiérrez, J.C.; García-Gómez, M.; Gómez-Herrero, J.; et al. Transcatheter Mitral Valve-in-Valve Implantation with the Balloon-Expandable Myval Device. J. Clin. Med. 2022, 11, 5210. [Google Scholar] [CrossRef]
- Sankardas, M.A.; Subban, V.; Kothandam, S.; Chopra, A.; Kalidoss, L.; Udhayakumar, K.; Sollimuthu, R.; Chidambaram, K.; Anandan, H.; Rao, R.S. Clinical Outcomes Following Transcatheter Mitral Valve-in-Valve Replacement Using a Meril Myval Transcatheter Heart Valve. Heart Lung Circ. 2024, 33, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Mahboobi, S.K.; Ahmed, A.A. Tricuspid Valve Repair. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Mussayev, A.; Alimbayev, S.; Tanaliev, N.; Kuanyshbek, A.; Marat, A.; Lesbekov, T.; Raissov, Y.; Sadykova, A.; Kamila, A.K.; Mukarov, M.; et al. Case Report: Transcatheter Tricuspid Valve-in-Valve Implantation Using Novel Balloon-Expandable Aortic Valve with 1 Year Follow-Up. Front. Cardiovasc. Med. 2023, 10, 1152280. [Google Scholar] [CrossRef]
- Bonhoeffer, P.; Boudjemline, Y.; Saliba, Z.; Merckx, J.; Aggoun, Y.; Bonnet, D.; Acar, P.; Le Bidois, J.; Sidi, D.; Kachaner, J. Percutaneous Replacement of Pulmonary Valve in a Right-Ventricle to Pulmonary-Artery Prosthetic Conduit with Valve Dysfunction. Lancet 2000, 356, 1403–1405. [Google Scholar] [CrossRef]
- Odemis, E.; Yenidogan, I. First Experiences with Myval Transcatheter Heart Valve System in the Treatment of Severe Pulmonary Regurgitation in Native Right Ventricular Outflow Tract and Conduit Dysfunction. Cardiol. Young 2022, 32, 1609–1615. [Google Scholar] [CrossRef]
- Jaiswal, V.; Agrawal, V.; Khulbe, Y.; Hanif, M.; Huang, H.; Hameed, M.; Shrestha, A.B.; Perone, F.; Parikh, C.; Gomez, S.I.; et al. Cardiac amyloidosis and aortic stenosis: A state-of-the-art review. Eur. Heart J. Open 2023, 3, oead106. [Google Scholar] [CrossRef]
- Sathananthan, J.; Sellers, S.; Barlow, A.; Fraser, R.; Stanová, V.; Cheung, A.; Ye, J.; Alenezi, A.; Murdoch, D.J.; Hensey, M.; et al. Overexpansion of the SAPIEN 3 Transcatheter Heart Valve. JACC Cardiovasc. Interv. 2018, 11, 1696–1705. [Google Scholar] [CrossRef]
- Sellers, S.L.; Sathananthan, J.; Bouchareb, R.; Mostaço-Guidolin, L.B.; Lau, K.P.; Bugis, J.; Hensey, M.; Blanke, P.; Payne, G.W.; Lebeche, D.; et al. Impact of Over-Expansion on SAPIEN 3 Transcatheter Heart Valve Pericardial Leaflets. Struct. Heart 2020, 4, 214–220. [Google Scholar] [CrossRef]
- Holzamer, A.; Bedogni, F.; Van Wyk, P.; Barwad, P.; Protasiewicz, M.; Ielasi, A.; Nombela-Franco, L.; Seidler, T.; Hilker, M. Performance of the 32 mm Myval Transcatheter Heart Valve for Treatment of Aortic Stenosis in Patients with Extremely Large Aortic Annuli in Real-world Scenario: First Global, Multicenter Experience. Catheter. Cardiovasc. Interv. 2023, 102, 1364–1375. [Google Scholar] [CrossRef]
- Xiong, T.-Y.; Ali, W.B.; Feng, Y.; Hayashida, K.; Jilaihawi, H.; Latib, A.; Lee, M.K.-Y.; Leon, M.B.; Makkar, R.R.; Modine, T.; et al. Transcatheter Aortic Valve Implantation in Patients with Bicuspid Valve Morphology: A Roadmap towards Standardization. Nat. Rev. Cardiol. 2023, 20, 52–67. [Google Scholar] [CrossRef] [PubMed]
- Elkoumy, A.; Terkelsen, C.J.; Abdelshafy, M.; Ellert-Gregersen, J.; Elzomor, H.; Thim, T.; Serruys, P.W.; Soliman, O.; Nissen, H. Case Report: Transcatheter Aortic Valve Replacement in a Large Bicuspid Anatomy Using the XL-Myval 32 Mm. Front. Cardiovasc. Med. 2022, 9, 1045280. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Ogando, A.; Ballesteros, F.; Martínez, J.L.Z. Pulmonary Percutaneous Valve Implantation in Large Native Right Ventricular Outflow Tract with 32 mm Myval Transcatheter Heart Valve. Catheter. Cardiovasc. Interv. 2022, 99, E38–E42. [Google Scholar] [CrossRef]
S. No. | Recommendations | Class of Recommendation/Level of Evidence |
---|---|---|
1 | In adults with severe high-gradient AS (Stage D1) and symptoms of exertional dyspnea, HF, angina, syncope, or presyncope by history or on exercise testing | Class 1/A |
2 | In asymptomatic patients with severe AS and an LVEF < 50% (Stage C2) | Class 1/B-NR |
3 | In asymptomatic patients with severe AS (Stage C1) who are undergoing cardiac surgery for other indications | Class 1/B-NR |
4 | In symptomatic patients with low-flow, low-gradient severe AS with reduced LVEF (Stage D2) | Class 1/B-NR |
5 | In symptomatic patients with low-flow, low-gradient severe AS with normal LVEF (Stage D3), if AS is the most likely cause of symptoms | Class 1/B-NR |
6 | In apparently asymptomatic patients with severe AS (Stage C1) and low surgical risk, AVR is reasonable when an exercise test demonstrates decreased exercise tolerance (normalized for age and sex) or a fall in systolic blood pressure of ≥10 mm Hg from baseline to peak exercise | Class 2a/B-NR |
7 | In asymptomatic patients with very severe AS (defined as an aortic velocity of ≥5 m/s) and low surgical risk, AVR is reasonable | Class 2a/B-R |
8 | In apparently asymptomatic patients with severe AS (Stage C1) and low surgical risk, AVR is reasonable when the serum B-type natriuretic peptide (BNP) level is >3 times normal | Class 2a/B-NR |
9 | In asymptomatic patients with high-gradient severe AS (Stage C1) and low surgical risk, AVR is reasonable when serial testing shows an increase in aortic velocity ≥ 0.3 m/s per year | Class 2a/B-NR |
10 | In asymptomatic patients with severe high gradient AS (Stage C1) and a progressive decrease in LVEF on at least three serial imaging studies to <60%, AVR may be considered | Class 2b/B-NR |
11 | In patients with moderate AS (Stage B) who are undergoing cardiac surgery for other indications, AVR may be considered | Class 2b/C-EO |
Class of Recommendation/Level of Evidence | SAVR | TAVI | Shared Decision-Making |
---|---|---|---|
Class 1/A | For symptomatic and asymptomatic patients with severe AS and any indication for AVR who are <65 years of age or have a life expectancy > 20 years | For symptomatic patients with severe AS who are >80 years of age or for younger patients with a life expectancy < 10 years and no anatomic contraindication to transfemoral TAVI, transfemoral TAVI is recommended | For symptomatic patients with severe AS who are 65 to 80 years of age and have no anatomic contraindication to transfemoral TAVI, either SAVR or transfemoral TAVI is recommended after shared decision-making about the balance between expected patient longevity and valve durability |
Class 1/B-NR | For asymptomatic patients with severe AS and an abnormal exercise test, very severe AS, rapid progression, or an elevated BNP (COR 2a indications for AVR) | - | In asymptomatic patients with severe AS and an LVEF < 50% who are ≤80 years of age and have no anatomic contraindication to transfemoral TAVI, the decision between TAVI and SAVR should follow the same recommendations as for symptomatic patients in three recommendations given above |
Class 1/A | For patients with an indication for AVR for whom a bioprosthetic valve is preferred but valve or vascular anatomy or other factors are not suitable for transfemoral TAVI | For symptomatic patients of any age with severe AS and a high or prohibitive surgical risk, TAVI is recommended if predicted post-TAVI survival is >12 months with an acceptable quality of life | - |
Class 1/C-EO | - | - | For symptomatic patients with severe AS for whom predicted post-TAVI or post-SAVR survival is <12 months or for whom minimal improvement in quality of life is expected, palliative care is recommended after shared decision-making, including discussion of patient preferences and values |
S. No. | Study | THV Comparison | Patient Population | Clinical Outcomes | Hemodynamic Outcomes |
---|---|---|---|---|---|
1 | Kawashima et al. [22] | Myval (n = 108) vs. Sapien 3 (n = 397) vs. Sapien XT (n = 239) | AR | Myval showed lower PVL attributed to its external skirt design and intermediate sizes | Myval THV had the lowest rate of moderate/severe quantitative AR (2.8%) compared to Sapien 3 (8.3%) and Sapien XT (10.9%) |
2 | Delgado-Arana et al. [24] | Myval (n = 103) vs. Sapien 3 (n = 103) | Severe symptomatic AS | 30-day mortality: Myval (0.97%) vs. Sapien 3 (2.9%) (p = 0.096); Lower rate of PPI with Myval (5.8% vs. 15.5%; p = 0.02) | Lower mean gradients for Myval (p < 0.001); and comparable rates of ≥moderate AR [Myval (0%) vs. Sapien 3 (1%); p = 0.314] |
3 | Barki et al. (EVAL registry) [25] | Myval (n = 58) vs. Evolut R SEV (n = 108) | Severe symptomatic AS | All-cause mortality: Myval—5.2% vs. Evolut—12.3%; comparable disabling stroke between groups; lower PPI with Myval (11% vs. 27.5%; p = 0.02) | Lower incidence of moderate-severe PVL in Myval group (6.9% vs. 19.8%, p = 0.039) |
4 | Halim et al. [26] | Myval (n = 91) vs. Evolut THV (n = 91) | Severe symptomatic AS | Cardiac death (1% vs. 2%, p = 0.56); Stroke (2% vs. 4%, p = 0.41); MI (1% vs. 3%, p = 0.31), and PPI (4% vs. 15%, p = 0.01) | Aortic valve area (1.98 ± 0.5 cm2 vs. 2.13 ± 0.5 cm2; p = 0.08); Mean gradient (7.8 ± 3.2 mmHg vs. 7.6 ± 3.2 mmHg; p = 0.63); Moderate to severe PVL (1% vs. 4%; p = 0.17) |
5 | Baumbach et al. [29] | Myval (n = 384) vs. Contemporary valves (Sapien and Evolut series) (n = 384) | Severe symptomatic AS | Comparable rates of all-cause mortality, all stroke, bleeding (types 3 & 4), and major vascular complications between Myval and contemporary series. New PPI rates: 15% in Myval vs. 17% in contemporary series (p = 0.49). | Moderate or severe PVR: 3% vs. 5%; p = 0.58 (Myval vs. contemporary valves). Mean gradient: Myval—8.20 mmHg vs. Contemporary—7.9 mmHg; p = NS. Effective orifice area: Myval—2.02 cm2 vs. Contemporary—2.05 cm2; p = NS. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kilic, T.; Coskun, S.; Mirzamidinov, D.; Yilmaz, I.; Yavuz, S.; Sahin, T. Myval Transcatheter Heart Valve: The Future of Transcatheter Valve Replacement and Significance in Current Timeline. J. Clin. Med. 2024, 13, 6857. https://doi.org/10.3390/jcm13226857
Kilic T, Coskun S, Mirzamidinov D, Yilmaz I, Yavuz S, Sahin T. Myval Transcatheter Heart Valve: The Future of Transcatheter Valve Replacement and Significance in Current Timeline. Journal of Clinical Medicine. 2024; 13(22):6857. https://doi.org/10.3390/jcm13226857
Chicago/Turabian StyleKilic, Teoman, Senol Coskun, Didar Mirzamidinov, Irem Yilmaz, Sadan Yavuz, and Tayfun Sahin. 2024. "Myval Transcatheter Heart Valve: The Future of Transcatheter Valve Replacement and Significance in Current Timeline" Journal of Clinical Medicine 13, no. 22: 6857. https://doi.org/10.3390/jcm13226857
APA StyleKilic, T., Coskun, S., Mirzamidinov, D., Yilmaz, I., Yavuz, S., & Sahin, T. (2024). Myval Transcatheter Heart Valve: The Future of Transcatheter Valve Replacement and Significance in Current Timeline. Journal of Clinical Medicine, 13(22), 6857. https://doi.org/10.3390/jcm13226857