Dysfunction and Morphological Involvement of Inner Macular Layers in Glaucoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
- (1)
- Age between 30 and 75 years;
- (2)
- IOP > 22 mmHg (average of the two highest readings of the daily curve, from 8:00 a.m. to 6:00 p.m., six independent readings, one every two hours) without medical treatment;
- (3)
- Diagnosis of OAG with a repeatable HFA 24-2 SITA Standard and visual field defect compatible with glaucoma, with an MD between −2 and −25 dB;
- (4)
- Typical glaucomatous optic nerve head appearance.
- (1)
- BCVA less than 0.0 logMAR with a refractive error between +2.00 and −2.00 spherical-equivalent diopters.
- (2)
- IOP values greater than 18 mmHg. For OAG patients, the IOP was considered under topical hypotensive treatment (monotherapy as well as combined therapy) during, at least, the eight months preceding the electrophysiological and morphological evaluation. This is because it is known that the RGC function could be modified by a reduction in the IOP with beta-blocker treatment [27,28,29].
- (3)
- Ocular surgery, including cataract surgery, in the last 3 months.
- (4)
- Cataract or macular diseases.
- (5)
- Argon Laser Trabeculoplasty in the last 6 months.
- (6)
- Secondary OHT, including steroid-induced OHT.
- (7)
- Ocular or systemic diseases that could affect the outcome of the study.
- (8)
- Changes in systemic treatments that could affect IOP values.
- (9)
- Pregnancy, breast feeding.
- (10)
- Diabetes.
- (11)
- Systemic lupus erythematosus, rheumatoid arthritis, and connectivitis.
2.2. Instrumentation and Procedures
2.2.1. Multifocal Photopic Negative Responses Recordings
2.2.2. Optical Coherence Tomography
- (1)
- Ring analysis: the central area (named Area 1) encompassed the superpixels in a 6.35° radius centered on the fovea, Area 2 analyzed the superpixels enclosed between 6.35° and 9.37° from the fovea, and the third area (Area 3) analyzed the superpixels enclosed between 9.31° and 12.5° from the fovea;
- (2)
- Sectors analysis: identified four sectors determined by the horizontal and vertical midlines of the posterior pole and intersecting at the fovea. The ST, IT, SN, and IN sectors comprised 13 superpixels each, corresponding to the ST, IT, SN, and IN portion of the posterior pole, respectively.
2.3. Statistical Analysis
3. Results
3.1. Multifocal PhNR and OCT Data in Rings and Areas
3.2. Multifocal PhNR and OCT Data in Sectors
4. Discussion
4.1. Functional Data
4.2. Morphological Data
4.3. Morpho-Functional Correlations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations and Acronyms
ANOVA | one-way analysis of variance |
BCVA | best-corrected visual acuity |
CLs | confidence limits |
ETDRS | Early Treatment Diabetic Retinopathy Study |
ff-ERG | full-field electroretinogram |
GCL | ganglion cell layer |
GCL-T | ganglion cell layer thickness |
HFA | Humphrey Field Analyzer |
IN | inferior nasal |
INL | inner nuclear layer |
IOP | intraocular pressure |
IPL | inner plexiform layer |
IT | inferior temporal |
logMAR | logarithm of the minimum angle of resolution |
MD | mean deviation |
mfERG | multifocal electroretinogram |
mfPhNR | multifocal photopic negative response |
MS-ON | multiple sclerosis-optic neuritis |
N | number of eyes of each group |
OAG | open-angle glaucoma |
OCT | optical coherence tomography |
OHT | ocular hypertension |
PERG | pattern electroretinogram |
PhNR | photopic negative response |
R | ring |
RAD | response amplitude density |
RGCs | retinal ganglion cells |
RNFL | retinal nerve fiber layer |
SD | one standard deviation of the mean |
SD-OCT | spectral domain–optical coherence tomography |
SN | superior nasal |
ST | superior temporal |
VEP | visual evoked potential |
References
- Furlanetto, R.L.; Teixeira, S.H.; Gracitelli, C.P.B.; Lottenberg, C.L.; Emori, F.; Michelan, M.; Amaro, E., Jr.; Paranhos, A., Jr. Structural and functional analyses of the optic nerve and lateral geniculate nucleus in glaucoma. PLoS ONE 2018, 13, e0194038. [Google Scholar] [CrossRef]
- Parisi, V. Impaired visual function in glaucoma. Clin. Neurophysiol. 2001, 112, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Parisi, V.; Ziccardi, L.; Tanga, L.; Roberti, G.; Barbano, L.; Carnevale, C.; Manni, G.; Oddone, F. Neural conduction along postretinal visual pathways in glaucoma. Front. Aging Neurosci. 2021, 13, 697425. [Google Scholar] [CrossRef] [PubMed]
- Curcio, C.A.; Allen, K.A. Topography of ganglion cells in human retina. J. Comp. Neurol. 1990, 300, 5–25. [Google Scholar] [CrossRef]
- Aulhorn, D.; Harms, H. Early visual field defects in glaucoma. In Proceedings of the Glaucoma Tutzing Symposium, Tutzing Castle, Germany, 5–10 August 1966; Leydhecker, W., Ed.; S. Karger Ltd.: New York, NY, USA, 1967. [Google Scholar]
- Drance, S.M. The early field defects in glaucoma. Investig. Ophthalmol. Vis. Sci. 1969, 8, 84–91. [Google Scholar]
- Aulhorn, D.; Karmeyer, H. Frequency distribution in early glaucomatous visual field defects. Doc. Ophthalmol. Proc. Ser. 1977, 14, 75–83. [Google Scholar]
- Nicholas, S.P.; Werner, E.B. Location of early glaucomatous visual field defects. Can. J. Ophthalmol. 1980, 15, 131–133. [Google Scholar]
- Anctil, J.L.; Anderson, D.R. Early foveal involvement and generalized depression of the visual field in glaucoma. Arch. Ophthalmol. 1984, 102, 363–370. [Google Scholar] [CrossRef]
- Heijl, A.; Lundqvist, L. The frequency distribution of earliest glaucomatous visual field defects documented by automatic perimetry. Acta Ophthalmol. 1984, 62, 658–664. [Google Scholar] [CrossRef]
- Gallo Afflitto, G.; Chou, T.H.; Swaminathan, S.S.; Aiello, F.; Gedde, S.J.; Nucci, C.; Porciatti, V. Pattern electroretinogram in ocular hypertension, glaucoma suspect, and early manifest glaucoma eyes: A systematic review and meta-analysis. Ophthalmol. Sci. 2023, 3, 100322. [Google Scholar] [CrossRef]
- Kirkiewicz, M.; Lubiński, W.; Penkala, K. Photopic negative response of full-field electroretinography in patients with different stages of glaucomatous optic neuropathy. Doc. Ophthalmol. 2016, 132, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Machida, S.; Toba, Y.; Ohtaki, A.; Gotoh, Y.; Kaneko, M.; Kurosava, D. Photopic negative response of focal electoretinograms in glaucomatous eyes. Investig. Ophthalmol. Vis. Sci. 2008, 49, 5636–5644. [Google Scholar] [CrossRef] [PubMed]
- Machida, S.; Kaneko, M.; Kurosaka, D. Regional variations in correlation between photopic negative response of focal electoretinograms and ganglion cell complex in glaucoma. Curr. Eye Res. 2015, 40, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, M.; Machida, S.; Hoshi, Y.; Kurosaka, D. Alterations of photopic negative response of multifocal electroretinogram in patients with glaucoma. Curr. Eye Res. 2015, 40, 77–86. [Google Scholar] [CrossRef]
- Li, B.; Barnes, G.E.; Holt, W.F. The decline of the photopic negative response (PhNR) in the rat after optic nerve transection. Doc. Ophthalmol. 2005, 111, 23–31. [Google Scholar] [CrossRef]
- Kondo, M.; Kurimoto, Y.; Sakai, T.; Koyasu, T.; Miyata, K.; Ueno, S.; Terasaki, H. Recording focal macular photopic negative response (PhNR) from monkeys. Investig. Ophthalmol. Vis. Sci. 2008, 49, 3544–3550. [Google Scholar] [CrossRef]
- Viswanathan, S.; Frishman, L.J.; Robson, J.G.; Walters, J.W. The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Investig. Ophthalmol. Vis. Sci. 2001, 42, 514–522. [Google Scholar]
- Machida, S.; Raz-Prag, D.; Fariss, R.N.; Sieving, P.A.; Bush, R.A. Photopic ERG negative response from amacrine cell signaling in RCS rat retinal degeneration. Investig. Ophthalmol. Vis. Sci. 2008, 49, 442–452. [Google Scholar] [CrossRef]
- Barbano, L.; Ziccardi, L.; Antonelli, G.; Gabri Nicoletti, C.; Landi, D.; Mataluni, G.; Falsini, B.; Marfia, G.A.; Centonze, D.; Parisi, V. Multifocal Electroretinogram Photopic Negative Response: A Reliable Paradigm to Detect Localized Retinal Ganglion Cells’ Impairment in Retrobulbar Optic Neuritis Due to Multiple Sclerosis as a Model of Retinal Neurodegeneration. Diagnostics 2022, 12, 1156. [Google Scholar] [CrossRef]
- Parisi, V.; Barbano, L.; Antonelli, G.; Gabri Nicoletti, C.; Landi, D.; Mataluni, G.; Di Renzo, A.; Buttari, F.; Marfia, G.A.; Centonze, D.; et al. Topographical Correlation between Structural and Functional Impairment of the Macular Inner Retinal Layers in Multiple Sclerosis Eyes with a History of Optic Neuropathy. J. Clin. Med. 2023, 12, 7175. [Google Scholar] [CrossRef]
- Al-Nosairy, K.O.; Thieme, H.; Hoffmann, M.B. Diagnostic performance of multifocal photopic negative responses, pattern electroretinogram and optical coherence tomography in glaucoma. Exp. Eye Res. 2020, 200, 108242. [Google Scholar] [CrossRef] [PubMed]
- Ishizuka, M.; Machida, S.; Hara, Y.; Tada, A.; Ebihara, S.; Gonmori, M.; Nishimura, T. Significant correlations between focal photopic negative response and focal visual sensitivity and ganglion cell complex thickness in glaucomatous eyes. Jpn. J. Ophthalmol. 2022, 66, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Jeoung, J.W.; Park, K.H. Inferior macular damage in glaucoma: Its relationship to retinal nerve fiber layer defect in macular vulnerability zone. J. Glaucoma 2017, 26, 126–132. [Google Scholar] [CrossRef]
- Hood, D.C.; Raza, A.S.; de Moraes, C.G.; Liebmann, J.M.; Ritch, R. Glaucomatous damage of the macula. Prog. Retin. Eye Res. 2013, 32, 1–21. [Google Scholar] [CrossRef]
- Jansonius, N.M.; Nevalainen, J.; Selig, B.; Zangwill, L.M.; Sample, P.A.; Budde, W.M.; Jonas, J.B.; Lagreze, W.A.; Airaksinen, P.J.; Vonthein, L.A.; et al. A mathematical description of nerve fiber bundle trajectories and their variability in the human retina. Vision. Res. 2009, 49, 2157–2163. [Google Scholar] [CrossRef]
- Papst, N.; Bopp, M.; Schnaudigel, O.E. The pattern evoked electroretinogram associated with elevated intraocular pressure. Graefes Arch. Clin. Exp. Ophthalmol. 1984, 222, 34–37. [Google Scholar] [CrossRef]
- Arden, G.B.; O’Sullivan, F. Longitudinal follow up of glaucoma suspects tested with pattern electroretinogram. Bull. Soc. Belge. Ophtalmol. 1992, 244, 147–154. [Google Scholar]
- Colotto, A.; Salgarello, T.; Giudiceandrea, A.; De Luca, L.A.; Coppè, A.; Buzzonetti, L.; Falsini, B. Pattern electroretinogram in treated ocular hypertension: A cross-sectional study after timolol maleate therapy. Ophthalmic Res. 1995, 27, 168–177. [Google Scholar] [CrossRef]
- Cruz-Herranz, A.; Balk, L.J.; Oberwahrenbrock, T.; Saidha, S.; Martinez-Lapiscina, E.H.; Lagreze, W.A.; Schuman, J.S.; Villoslada, P.; Calabresi, P.; Balcer, L.; et al. The APOSTEL recommendations for reporting quantitative optical coherence tomography studies. Neurology 2016, 86, 2303–2309. [Google Scholar] [CrossRef]
- Drasdo, N.; Millican, C.L.; Katholi, C.R.; Curcio, C.A. The length of Henle fibers in the human retina and a model of ganglion receptive field density in the visual field. Vis. Res. 2007, 47, 2901–2911. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Parisi, V.; Falsini, B. Electrophysiological evaluation of the macular cone system: Focal electroretinography and visual evoked potentials after photostress. Semin. Ophthalmol. 1998, 13, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Parisi, V.; Bucci, M.G. Visual evoked potentials after photostress in patients with primary open-angle glaucoma and ocular hypertension. Investig. Ophthalmol. Vis. Sci. 1992, 33, 436–442. [Google Scholar]
- Parisi, V.; Ziccardi, L.; Centofanti, M.; Tanga, L.; Gallinaro, G.; Falsini, B.; Bucci, M.G. Macular function in eyes with open-angle glaucoma evaluated by multifocal electroretinogram. Investig. Ophthalmol. Vis. Sci. 2012, 53, 6973–6980. [Google Scholar] [CrossRef]
- Quigley, H.A.; Green, W.R. The histology of human glaucoma cupping and optic nerve damage: Clinicopathologic correlation in 21 eyes. Ophthalmology 1979, 86, 1803–1830. [Google Scholar] [CrossRef]
- Jonas, J.B.; Fernández, M.C.; Stürmer, J. Pattern of glaucomatous neuroretinal rim loss. Ophthalmology 1993, 100, 63–68. [Google Scholar] [CrossRef]
- Parisi, V. Correlation between morphological and functional retinal impairment in patients affected by ocular hypertension, glaucoma, demyelinating optic neuritis and Alzheimer’s disease. Semin. Ophthalmol. 2003, 18, 50–57. [Google Scholar]
- Parisi, V.; Manni, G.; Centofanti, M.; Gandolfi, S.A.; Olzi, D.; Bucci, M.G. Correlation between optical coherence tomography, pattern electroretinogram, and visual evoked potentials in open-angle glaucoma patients. Ophthalmology 2001, 108, 905–912. [Google Scholar] [CrossRef]
- Tabl, A.A.; Tabl, M.A. Correlation between OCT-angiography and photopic negative response in patients with primary open angle glaucoma. Int. Ophthalmol. 2023, 43, 1889–1901. [Google Scholar] [CrossRef]
- Bekollari, M.; Dettoraki, M.; Stavrou, V.; Skouroliakou, A.; Liaparinos, P. Investigating the Structural and Functional Changes in the Optic Nerve in Patients with Early Glaucoma Using the Optical Coherence Tomography (OCT) and RETeval System. Sensors 2023, 23, 4504. [Google Scholar] [CrossRef]
- Awwad, M.H.; Nada, O.; Hamdi, M.M.; El-Shazly, A.A.E.; Elwan, S. Correlation Between Optical Coherence Tomography and Photopic Negative Response of Flash Electroretinography in Ganglion Cell Complex Assessment in Glaucoma Patients. Clin. Ophthalmol. 2022, 16, 893–904. [Google Scholar] [CrossRef]
- Wilsey, L.J.; Fortune, B. Macular structure and function in nonhuman primate experimental glaucoma. Investig. Ophthalmol. Vis. Sci. 2016, 57, 1892–1900. [Google Scholar] [CrossRef]
Rings/Areas | Sectors | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R1 a/Area 1 | R2 a/Area 2 | R3 + R4 b/Area 3 | R2 + R3 + R4 c ST d | R2 + R3 + R4 c IT e | R2 + R3 + R4 c IN f | R2 + R3 + R4 c SN g | ||||||||
mfPhNR h RAD i (nV/deg2) l | GCL-T m (µ) n | mfPhNR h RAD i (nV/deg2) l | GCL-T m (µ) n | mfPhNR h RAD i (nV/deg2) l | GCL-T m (µ) n | mfPhNR h RAD i (nV/deg2) l | GCL-T m (µ) n | mfPhNR h RAD i (nV/deg2) l | GCL-T m (µ) n | mfPhNR h RAD i (nV/deg2) l | GCL-T m (µ) n | mfPhNR h RAD i (nV/deg2) l | GCL-T m (µ) n | |
OAG#1 | 10.8 | 21.7 | 8.5 | 21.4 | 4.7 | 19.4 | 1.9 | 17.4 | 2.1 | 17.3 | 1.4 | 24.2 | 1.8 | 22.8 |
OAG#2 | 10.3 | 20.7 | 4.6 | 20.8 | 2.4 | 18.8 | 1.9 | 15.8 | 1.6 | 18.1 | 1.7 | 23.9 | 1.2 | 21.0 |
OAG#3 | 16.3 | 25.6 | 7.5 | 27.4 | 4.8 | 22.4 | 2.4 | 23.4 | 2.3 | 26.4 | 1.9 | 24.7 | 1.8 | 24.5 |
OAG#4 | 14.4 | 25.3 | 8.6 | 24.2 | 5.9 | 19.3 | 1.5 | 18.6 | 1.9 | 21.0 | 1.9 | 23.4 | 1.7 | 23.9 |
OAG#5 | 22.3 | 33.1 | 8.2 | 27.6 | 4.3 | 22.2 | 2.8 | 22.5 | 3.4 | 23.7 | 2.4 | 32.4 | 1.5 | 28.9 |
OAG#6 | 20.1 | 33.6 | 7.2 | 27.5 | 5.0 | 20.6 | 2.9 | 23.7 | 2.1 | 19.8 | 2 | 24.8 | 1.7 | 29.2 |
OAG#7 | 6.1 | 20.0 | 3.7 | 20.3 | 2.3 | 18.8 | 1.3 | 17.3 | 1.9 | 18.2 | 1.6 | 21.5 | 1.5 | 21.3 |
OAG#8 | 20.6 | 38.1 | 10.8 | 29.6 | 5.4 | 20.1 | 3.2 | 28.3 | 1.8 | 16.9 | 0.9 | 22.7 | 2.0 | 30.8 |
OAG#9 | 11.4 | 20.4 | 4.9 | 20.9 | 4.9 | 20.1 | 1.5 | 16.6 | 1.7 | 23.7 | 1.5 | 21.8 | 1.5 | 19.4 |
OAG#10 | 21.7 | 33.6 | 7.6 | 27.2 | 5.6 | 22.6 | 2.1 | 20.1 | 3.2 | 25.7 | 2.3 | 26.0 | 1.6 | 29.3 |
OAG#11 | 19.6 | 31.4 | 4.2 | 21.7 | 5.3 | 19.3 | 2.8 | 29.9 | 0.8 | 19.3 | 1.5 | 12.8 | 2.1 | 18.8 |
OAG#12 | 12.4 | 21.9 | 6.5 | 22.2 | 1.1 | 18.2 | 2.1 | 18.3 | 1.8 | 17.1 | 1.3 | 22.8 | 1.3 | 22.4 |
OAG#13 | 25.7 | 39.0 | 7.1 | 24.0 | 2.1 | 18.5 | 1.6 | 21.4 | 2.3 | 24.5 | 1.8 | 22.9 | 1.6 | 18.6 |
OAG#14 | 7.4 | 20.4 | 3.1 | 19.8 | 2.4 | 18.2 | 1.0 | 19.4 | 1.1 | 10.0 | 1.9 | 20.4 | 1.0 | 15.9 |
OAG#15 | 11.2 | 20.7 | 5.0 | 20.1 | 3.6 | 18.9 | 2.2 | 17.2 | 1.9 | 17.2 | 1.6 | 21.3 | 1.2 | 22.0 |
OAG#16 | 17.6 | 23.8 | 7.8 | 23.5 | 4.2 | 20.6 | 1.6 | 15.6 | 2.5 | 26.2 | 2.1 | 24.7 | 0.9 | 21.2 |
OAG#17 | 16.2 | 22.1 | 7.5 | 23.7 | 4.7 | 22.5 | 2.8 | 20.5 | 3.1 | 19.4 | 2.2 | 30.0 | 1.3 | 24.7 |
OAG#18 | 18.6 | 30.3 | 11.9 | 29.6 | 6.4 | 24.1 | 3.4 | 35.6 | 0.9 | 15.6 | 0.8 | 20.2 | 2.4 | 35.9 |
OAG#19 | 15.4 | 28.0 | 7.4 | 23.4 | 5.2 | 20.3 | 2.1 | 23.7 | 1.3 | 17.4 | 1.3 | 21.2 | 1.9 | 25.7 |
OAG#20 | 20.5 | 31.3 | 5.7 | 26.6 | 5.3 | 19.9 | 3.5 | 22.7 | 1.8 | 16.9 | 1.2 | 23.6 | 1.9 | 29.7 |
OAG#21 | 15.8 | 22.4 | 4.9 | 20.1 | 4.1 | 19.2 | 1.6 | 13.6 | 1.8 | 20.9 | 2.0 | 21.7 | 0.8 | 19.4 |
CL o | 26.92 | 43.51 | 12.71 | 32.20 | 6.72 | 23.27 | 4.41 | 26.03 | 4.41 | 27.40 | 4.56 | 28.05 | 4.59 | 28.83 |
Controls | OAG | ANOVA b: C vs. OAG: f (1, 40) | |||||||
---|---|---|---|---|---|---|---|---|---|
(A) Rings or Areas | Mean | 1 SD a | Mean | 1 SD a | f= | p Value | No c | Ab d | %Ab d |
mfPhNR e R1 f RAD g (nV/deg2) h | 30.047 | 4.616 | 15.924 | 5.188 | 84.49 | <0.001 | 0 | 21 | 100 |
GCL-T i Area 1 (µ) l | 45.224 | 3.865 | 26.829 | 6.207 | 128.22 | <0.001 | 0 | 21 | 100 |
mfPhNR e R2 f RAD g (nV/deg2) h | 14.737 | 5.073 | 6.795 | 2.236 | 42.79 | <0.001 | 0 | 21 | 100 |
GCL-T i Area 1 (µ) l | 33.150 | 2.160 | 23.886 | 3.270 | 113.34 | <0.001 | 0 | 21 | 100 |
mfPhNR e R3 + R4 m RAD g (nV/deg2) h | 7.175 | 0.962 | 4.271 | 1.430 | 57.61 | <0.001 | 0 | 21 | 100 |
GCL-T i Area 1 (µ) l | 24.030 | 1.707 | 0.190 | 1.663 | 53.23 | <0.001 | 1 | 20 | 95.2 |
(B) Sectors | |||||||||
mfPhNR e R2 + R3 + R4 n ST o RAD g (nV/deg2) h | 5.041 | 1.431 | 2.200 | 0.716 | 65.59 | <0.001 | 0 | 21 | 100 |
GCL-T i ST o Sector (µ)l | 27.200 | 2.575 | 21.029 | 5.288 | 22.20 | <0.001 | 2 | 19 | 90.4 |
mfPhNR e R2 + R3 + R4 n IT p RAD g (nV/deg2) h | 5.127 | 1.624 | 1.967 | 0.687 | 66.99 | <0.001 | 0 | 21 | 100 |
GCL-T i IT p Sector (µ) l | 28.486 | 2.444 | 19.776 | 4.104 | 67.30 | <0.001 | 0 | 21 | 100 |
mfPhNR e R2 + R3 + R4 m IN q RAD g (nV/deg2) h | 5.382 | 1.859 | 1.681 | 0.434 | 78.82 | <0.001 | 0 | 21 | 100 |
GCL-T i IN q Sector (µ) l | 28.941 | 2.021 | 23.190 | 3.793 | 36.17 | <0.001 | 2 | 19 | 90.4 |
mfPhNR e R2 + R3 + R4 m SN r RAD g (nV/deg2) h | 5.314 | 1.637 | 1.557 | 0.407 | 103.99 | <0.001 | 0 | 21 | 100 |
GCL-T i SN r Sector (µ) l | 29.632 | 1.812 | 24.067 | 4.996 | 22.03 | <0.001 | 6 | 15 | 71.4 |
Parameter 1 | Parameter 2 | Estimate | 95% CL a | R2 b | p Value |
---|---|---|---|---|---|
mfPhNR c R1 d RAD e (nV/deg2) f | GCL-T g Area 1 (µ) h | 0.75 | 0.57–0.92 | 0.80 | <0.001 |
mfPhNR c R2 d RAD e (nV/deg2) f | GCL-T g Area 2 (µ) h | 0.53 | 0.33–0.74 | 0.62 | <0.001 |
mfPhNR c R3 + R4 i RAD e (nV/deg2) f | GCL-T g Area 3 (µ) h | 0.56 | 0.25–0.88 | 0.43 | 0.001 |
mfPhNR c R2 + R3 + R4 l ST m RAD e (nV/deg2) f | GCL-T g ST m Sector (µ) h | 0.09 | 0.05–0.14 | 0.53 | <0.001 |
mfPhNR c R2 + R3 + R4 l IT n RAD e (nV/deg2) f | GCL-T g IT n Sector (µ) h | 0.10 | 0.04–0.16 | 0.39 | 0.002 |
mfPhNR c R2 + R3 + R4 l IN o RAD e (nV/deg2) f | GCL-T g IN o Sector (µ) h | 0.06 | 0.01–0.11 | 0.30 | 0.009 |
mfPhNR c R2 + R3 + R4 l SN p RAD e (nV/deg2) f | GCL-T g SN p Sector (µ) h | 0.05 | 0.02–0.08 | 0.41 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parisi, V.; Ziccardi, L.; Giammaria, S.; Barbano, L.; Tanga, L.; Michelessi, M.; Roberti, G.; Carnevale, C.; Dell’Aquila, C.; D’Andrea, M.; et al. Dysfunction and Morphological Involvement of Inner Macular Layers in Glaucoma. J. Clin. Med. 2024, 13, 6882. https://doi.org/10.3390/jcm13226882
Parisi V, Ziccardi L, Giammaria S, Barbano L, Tanga L, Michelessi M, Roberti G, Carnevale C, Dell’Aquila C, D’Andrea M, et al. Dysfunction and Morphological Involvement of Inner Macular Layers in Glaucoma. Journal of Clinical Medicine. 2024; 13(22):6882. https://doi.org/10.3390/jcm13226882
Chicago/Turabian StyleParisi, Vincenzo, Lucia Ziccardi, Sara Giammaria, Lucilla Barbano, Lucia Tanga, Manuele Michelessi, Gloria Roberti, Carmela Carnevale, Carmen Dell’Aquila, Mattia D’Andrea, and et al. 2024. "Dysfunction and Morphological Involvement of Inner Macular Layers in Glaucoma" Journal of Clinical Medicine 13, no. 22: 6882. https://doi.org/10.3390/jcm13226882
APA StyleParisi, V., Ziccardi, L., Giammaria, S., Barbano, L., Tanga, L., Michelessi, M., Roberti, G., Carnevale, C., Dell’Aquila, C., D’Andrea, M., Manni, G., & Oddone, F. (2024). Dysfunction and Morphological Involvement of Inner Macular Layers in Glaucoma. Journal of Clinical Medicine, 13(22), 6882. https://doi.org/10.3390/jcm13226882