Cardiovascular Magnetic Resonance Reveals Cardiac Inflammation and Fibrosis in Symptomatic Patients with Post-COVID-19 Syndrome: Findings from the INSPIRE-CMR Multicenter Study
Abstract
:1. Introduction
2. Patients-Methods
2.1. Patients
2.2. Methods
2.3. CMR Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Limitations
- (1)
- The retrospective design of our study may have led to selection biases of patients referred for CMR. This may have resulted in an under- or over-estimation of patients with cardiac involvement.
- (2)
- The lack of 1-year CMR re-evaluation in the majority of the patients.
- (3)
- The lack of >1-year follow up of the patients.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giustino, G.; Croft, L.B.; Oates, C.P.; Rahman, K.; Lerakis, S.; Reddy, V.Y.; Goldman, M. Takotsubo Cardiomyopathy in COVID-19. J. Am. Coll. Cardiol. 2020, 76, 628. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.W.; Strom, J.B.; Chang, J.D.; Manning, W.J. COVID-19-Associated Stress (Takotsubo) Cardiomyopathy. Circ. Cardiovasc. Imaging 2020, 13, e011222. [Google Scholar] [CrossRef] [PubMed]
- Fox, S.E.; Lameira, F.S.; Rinker, E.B.; Vander Heide, R.S. Cardiac Endotheliitis and Multisystem Inflammatory Syndrome after COVID-19. Ann. Intern. Med. 2020, 173, 1025. [Google Scholar] [CrossRef] [PubMed]
- Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020, 395, 1417. [Google Scholar] [CrossRef] [PubMed]
- Creel-Bulos, C.; Hockstein, M.; Amin, N.; Melhem, S.; Truong, A.; Sharifpour, M. Acute Cor Pulmonale in Critically Ill Patients with COVID-19. N. Engl. J. Med. 2020, 382, e70. [Google Scholar] [CrossRef]
- Wichmann, D.; Sperhake, J.-P.; Lütgehetmann, M.; Steurer, S.; Edler, C.; Heinemann, A.; Heinrich, F.; Mushumba, H.; Kniep, I.; Schröder, A.S.; et al. Autopsy Findings and Venous Thromboembolism in Patients with COVID-19: A Prospective Cohort Study. Ann. Intern. Med. 2020, 173, 268. [Google Scholar] [CrossRef]
- Danzi, G.B.; Loffi, M.; Galeazzi, G.; Gherbesi, E. Acute pulmonary embolism and COVID-19 pneumonia: A random association? Eur. Heart J. 2020, 41, 1858. [Google Scholar] [CrossRef]
- Poissy, J.; Goutay, J.; Caplan, M.; Parmentier, E.; Duburcq, T.; Lassalle, F.; Jeanpierre, P.; Rauch, P.; Labreuche, J.; Susen, S. Pulmonary Embolism in Patients with COVID-19: Awareness of an Increased Prevalence. Circulation 2020, 142, 184. [Google Scholar] [CrossRef]
- Klok, F.A.; Kruip, M.J.H.A.; van der Meer, N.J.M.; Arbous, M.S.; Gommers, D.A.M.P.J.; Kant, K.M.; Kaptein, F.H.J.; van Paassen, J.; Stals, M.A.M.; Huisman, M.V.; et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020, 191, 145. [Google Scholar] [CrossRef]
- Huette, P.; Beyls, C.; Guilbart, M.; Haye, G.; Najid, F.-Z.; Mestan, B.; Roger, P.-A.; Dupont, H.; Abou-Arab, O.; Mahjoub, Y. Acute Cor Pulmonale in COVID-19-Related ARDS: Improvement with Almitrine Infusion. JACC Case Rep. 2020, 2, 1311. [Google Scholar] [CrossRef]
- Shi, S.; Qin, M.; Shen, B.; Cai, Y.; Liu, T.; Yang, F.; Gong, W.; Liu, X.; Liang, J.; Zhao, Q.; et al. Association of Cardiac Injury with Mortality in Hospitalized Patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020, 5, 802. [Google Scholar] [CrossRef] [PubMed]
- Caforio, A.L.P.; Pankuweit, S.; Arbustini, E.; Basso, C.; Gimeno-Blanes, J.; Felix, S.B.; Fu, M.; Heliö, T.; Heymans, S.; Jahns, R.; et al. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: A position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2013, 34, 2636. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Ma, Y.T.; Zhang, J.Y.; Xie, X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 2020, 17, 259. [Google Scholar] [CrossRef]
- Tersalvi, G.; Vicenzi, M.; Calabretta, D.; Biasco, L.; Pedrazzini, G.; Winterton, D. Elevated Troponin in Patients with Coronavirus Disease 2019: Possible Mechanisms. J. Card. Fail. 2020, 26, 470. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Lüscher, T. COVID-19 is, in the end, an endothelial disease. Eur. Heart J. 2020, 41, 3038. [Google Scholar] [CrossRef]
- Akhmerov, A.; Marbán, E. COVID-19 and the Heart. Circ. Res. 2020, 126, 1443. [Google Scholar] [CrossRef]
- Castiello, T.; Georgiopoulos, G.; Finocchiaro, G.; Claudia, M.; Gianatti, A.; Delialis, D.; Aimo, A.; Prasad, S. COVID-19 and myocarditis: A systematic review and overview of current challenges. Heart Fail. Rev. 2022, 27, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Petersen, S.E.; Friedrich, M.G.; Leiner, T.; Elias, M.D.; Ferreira, V.M.; Fenski, M.; Flamm, S.D.; Fogel, M.; Garg, R.; Halushka, M.K.; et al. Cardiovascular Magnetic Resonance for Patients with COVID-19. JACC Cardiovasc. Imaging 2022, 15, 685–699. [Google Scholar] [CrossRef]
- PuntmAnn, V.O.; Carerj, M.L.; Wieters, I.; Fahim, M.; Arendt, C.; HoffmAnn, J.; Shchendrygina, A.; Escher, F.; Vasa-Nicotera, M.; Zeiher, A.M.; et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered from Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 1265–1273. [Google Scholar] [CrossRef]
- Wojtowicz, D.; Dorniak, K.; Ławrynowicz, M.; Wąż, P.; Fijałkowska, J.; Kulawiak-Gałąska, D.; Rejszel-Baranowska, J.; Knut, R.; Haberka, M.; Szurowska, E.; et al. Cardiac Magnetic Resonance Findings in Patients Recovered from COVID-19 Pneumonia and Presenting with Persistent Cardiac Symptoms: The TRICITY-CMR Trial. Biology 2022, 11, 1848. [Google Scholar] [CrossRef]
- Friedrich, M.G.; Sechtem, U.; Schulz-Menger, J.; Holmvang, G.; Alakija, P.; Cooper, L.T.; White, J.A.; Abdel-Aty, H.; Gutberlet, M.; Prasad, S.; et al. International Consensus Group on Cardiovascular Magnetic Resonance in Myocarditis. Cardiovascular magnetic resonance in myocarditis: A JACC White Paper. J. Am. Coll. Cardiol. 2009, 53, 1475–1487. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.M.; Schulz-Menger, J.; Holmvang, G.; Kramer, C.M.; Carbone, I.; Sechtem, U.; KindermAnn, I.; Gutberlet, M.; Cooper, L.T.; Liu, P.; et al. Cardiovascular Magnetic Resonance in Nonischemic Myocardial Inflammation: Expert Recommendations. J. Am. Coll. Cardiol. 2018, 72, 3158–3176. [Google Scholar] [CrossRef] [PubMed]
- Mavrogeni, S.; Apostolou, D.; Argyriou, P.; Velitsista, S.; Papa, L.; Efentakis, S.; Vernardos, E.; Kanoupaki, M.; Kanoupakis, G.; Manginas, A. T1 and T2 Mapping in Cardiology: “Mapping the Obscure Object of Desire”. Cardiology 2017, 138, 207–217. [Google Scholar] [CrossRef]
- Moravsky, G.; Ofek, E.; Rakowski, H.; Butany, J.; Williams, L.; Ralph-Edwards, A.; Wintersperger, B.J.; Crean, A. Myocardial fibrosis in hypertrophic cardiomyopathy: Accurate reflection of histopathological findings by CMR. JACC Cardiovasc. Imaging 2013, 6, 587–596. [Google Scholar] [CrossRef]
- Hanneman, K.; Crean, A.M.; Wintersperger, B.J.; Thavendiranathan, P.; Nguyen, E.T.; Kayedpour, C.; Wald, R.M. The relationship between cardiovascular magnetic resonance imaging measurement of extracellular volume fraction and clinical outcomes in adults with repaired tetralogy of Fallot. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 777–784. [Google Scholar] [CrossRef]
- Robison, S.; Karur, G.R.; Wald, R.M.; Thavendiranathan, P.; Crean, A.M.; Hanneman, K. Noninvasive hematocrit assessment for cardiovascular magnetic resonance extracellular volume quantification using a point-of-care device and synthetic derivation. J. Cardiovasc. Magn. Reson. 2018, 20, 19. [Google Scholar] [CrossRef]
- Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’Em, Y.; Redfield, S.; Austin, J.P.; Akrami, A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinical Med. 2021, 38, 10101. [Google Scholar]
- Ziauddeen, N.; Gurdasani, D.; O’hara, M.E.; Hastie, C.; Roderick, P.; Yao, G.; Alwan, N.A. Characteristics and impact of Long Covid: Findings from an online survey. PLOS ONE 2022, 17, e0264331. [Google Scholar] [CrossRef] [PubMed]
- Rudski, L.; Januzzi, J.L.; Rigolin, V.H.; Bohula, E.A.; DPhil, R.B.; Patel, A.R.; Bucciarelli-Ducci, C.; Sunil, V.R.; Villines, T.C.; Di Carli, M.F. Multimodality imaging in evaluation of cardiovascular complications in patients with COVID-19: JACC scientific expert panel. J. Am. Coll. Cardiol. 2020, 76, 1345–1357. [Google Scholar] [CrossRef]
- Phelan, D.; Kim, J.H.; Elliott, M.D.; Wasfy, M.M.; Cremer, P.; Johri, A.M.; Emery, M.S.; Sengupta, P.P.; Sharma, S.; Martinez, M.W. Screening of potential cardiac involvement in competitive athletes recovering from COVID-19: An expert consensus statement. J. Am. Coll. Cardiol. Imaging 2020, 13, 2635–2652. [Google Scholar] [CrossRef]
- Task Force for the management of COVID-19 of the European Society of Cardiology. ESC guidance for the diagnosis and management of cardiovascular disease during the COVID-19 pandemic: Part 2-care pathways, treatment, and follow-up. Cardiovasc. Res. 2022, 118, 1618–1666. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.M.; Plein, S.; Wong, T.C.; Tao, Q.; Raisi-Estabragh, Z.; Jain, S.S.; Han, Y.; Ojha, V.; Bluemke, D.A.; Hanneman, K.; et al. Cardiovascular magnetic resonance for evaluation of cardiac involvement in COVID-19: Recommendations by the Society for Cardiovascular Magnetic Resonance. J. Cardiovasc. Magn. Reson. 2023, 25, 21. [Google Scholar]
- Huang, L.; Zhao, P.; Tang, D.; Zhu, T.; Han, R.; Zhan, C.; Liu, W.; Zeng, H.; Tao, Q.; Xia, L. Cardiac Involvement in Patients Recovered from COVID-2019 Identified Using Magnetic Resonance Imaging. JACC Cardiovasc. Imaging 2020, 13, 2330–2339. [Google Scholar] [CrossRef] [PubMed]
- Shafiabadi Hassani, N.; Talakoob, H.; Karim, H.; Mozafari Bazargany, M.H.; Rastad, H. Cardiac Magnetic Resonance Imaging Findings in 2954 COVID-19 Adult Survivors: A Comprehensive Systematic Review. J. Magn. Reson. Imaging 2022, 55, 866–880. [Google Scholar] [CrossRef] [PubMed]
- Bohnen, S.; Radunski, U.K.; Lund, G.K.; Ojeda, F.; Looft, Y.; Senel, M.; Radziwolek, L.; Avanesov, M.; Tahir, E.; Stehning, C.; et al. Tissue characterization by T1 and T2 mapping cardiovascular magnetic resonance imaging to monitor myocardial inflammation in healing myocarditis. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 744–751. [Google Scholar] [CrossRef]
- Jeuthe, S.; Wassilew, K.; O H-Ici, D.; da Silva, T.F.; Münch, F.; Berger, F.; Kuehne, T.; Pieske, B.; Messroghli, D.R. Myocardial T1 maps reflect histological findings in acute and chronic stages of myocarditis in a rat model. J. Cardiovasc. Magn. Reson. 2016, 18, 19. [Google Scholar] [CrossRef]
- Gannon, M.P.; Schaub, E.; Grines, C.L.; Saba, S.G. State of the art: Evaluation and prognostication of myocarditis using cardiac MRI. J. Magn. Reson. Imaging 2019, 49, e122–e131. [Google Scholar] [CrossRef]
- Thavendiranathan, P.; Zhang, L.; Zafar, A.; Drobni, Z.D.; Mahmood, S.S.; Cabral, M.; Awadalla, M.; Nohria, A.; Zlotoff, D.A.; Thuny, F.; et al. Myocardial T1 and T2 Mapping by Magnetic Resonance in Patients with Immune Checkpoint Inhibitor-Associated Myocarditis. J. Am. Coll. Cardiol. 2021, 77, 1503–1516. [Google Scholar] [CrossRef]
- Roca-Fernandez, A.; Wamil, M.; Telford, A.; Carapella, V.; Borlotti, A.; Monteiro, D.; Thomaides-Brears, H.; Kelly, M.; Dennis, A.; Banerjee, R.; et al. Cardiac abnormalities in Long COVID 1-year post-SARS-CoV-2 infection. Open Heart 2023, 10, e002241. [Google Scholar] [CrossRef]
- Tajstra, M.; Wojtaszczyk, A.; Sterliński, M.; Świerżyńska, E.; Szumowski, Ł.; Tomasiuk, M.; Grabowski, M.; Januszkiewicz, Ł.J.; Romanek, J.; Przybylski, A.; et al. Patients with heart failure and an implanted cardioverter-defibrillator during the coronavirus disease 2019 pandemic: Insights from a multicenter registry in Poland. Kardiol. Pol. 2021, 79, 562–565. [Google Scholar]
- Buttà, C.; Zappia, L.; Laterra, G.; Roberto, M. Diagnostic and prognostic role of electrocardiogram in acute myocarditis: A comprehensive review. Ann. Noninvasive Electrocardiol. 2020, 25, e12726. [Google Scholar] [CrossRef]
- Sozzi, F.B.; Gherbesi, E.; Faggiano, A.; Gnan, E.; Maruccio, A.; Schiavone, M.; Iacuzio, L.; Carugo, S. Viral Myocarditis: Classification, Diagnosis, and Clinical Implications. Front. Cardiovasc. Med. 2022, 9, 908663. [Google Scholar] [CrossRef] [PubMed]
- Tanacli, R.; Doeblin, P.; Götze, C.; Zieschang, V.; Faragli, A.; Stehning, C.; Korosoglou, G.; Erley, J.; Weiss, J.; Berger, A.; et al. COVID-19 vs. Classical Myocarditis Associated Myocardial Injury Evaluated by Cardiac Magnetic Resonance and Endomyocardial Biopsy. Front. Cardiovasc. Med. 2021, 8, 737257. [Google Scholar] [CrossRef] [PubMed]
- Karakasis, P.; Nasoufidou, A.; Sagris, M.; Fragakis, N.; Tsioufis, K. Vascular Alterations Following COVID-19 Infection: A Comprehensive Literature Review. Life 2024, 14, 545. [Google Scholar] [CrossRef] [PubMed]
Population Characteristics | COVID-19 Patients Characteristics (n = 174) |
---|---|
Age | 26–54 yrs |
Sex | 72 (41%) women |
Autoimmune disease, muscular dystrophy, cancer | 17 (9, 7%) |
Known fully vaccinated pts | 116 (75%) |
Mild or moderate intensity of COVID-19 disease | 148 (85%) |
CMR Parameters | CMR Findings in COVID-19 Patients (n = 174) |
---|---|
Non-ischemic LGE | 149 (86%) |
Ischemic LGE | None |
≥1 pathologic T1 index | 141/145 (97%) |
≥1 pathologic T2 index | 62/173 (36%) |
Both positive T1- and T2-criterion | 48/145 (33%) |
Pericardial enhancement | None |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markousis-Mavrogenis, G.; Vartela, V.; Pepe, A.; Sierra-Galan, L.; Androulakis, E.; Perazzolo, A.; Christidi, A.; Belegrinos, A.; Giannakopoulou, A.; Bonou, M.; et al. Cardiovascular Magnetic Resonance Reveals Cardiac Inflammation and Fibrosis in Symptomatic Patients with Post-COVID-19 Syndrome: Findings from the INSPIRE-CMR Multicenter Study. J. Clin. Med. 2024, 13, 6919. https://doi.org/10.3390/jcm13226919
Markousis-Mavrogenis G, Vartela V, Pepe A, Sierra-Galan L, Androulakis E, Perazzolo A, Christidi A, Belegrinos A, Giannakopoulou A, Bonou M, et al. Cardiovascular Magnetic Resonance Reveals Cardiac Inflammation and Fibrosis in Symptomatic Patients with Post-COVID-19 Syndrome: Findings from the INSPIRE-CMR Multicenter Study. Journal of Clinical Medicine. 2024; 13(22):6919. https://doi.org/10.3390/jcm13226919
Chicago/Turabian StyleMarkousis-Mavrogenis, George, Vasiliki Vartela, Alessia Pepe, Lilia Sierra-Galan, Emmanouil Androulakis, Anna Perazzolo, Aikaterini Christidi, Antonios Belegrinos, Aikaterini Giannakopoulou, Maria Bonou, and et al. 2024. "Cardiovascular Magnetic Resonance Reveals Cardiac Inflammation and Fibrosis in Symptomatic Patients with Post-COVID-19 Syndrome: Findings from the INSPIRE-CMR Multicenter Study" Journal of Clinical Medicine 13, no. 22: 6919. https://doi.org/10.3390/jcm13226919
APA StyleMarkousis-Mavrogenis, G., Vartela, V., Pepe, A., Sierra-Galan, L., Androulakis, E., Perazzolo, A., Christidi, A., Belegrinos, A., Giannakopoulou, A., Bonou, M., Vrettou, A. -R., Lazarioti, F., Skantzos , V., Quaia, E., Mohiaddin, R., & Mavrogeni, S. I. (2024). Cardiovascular Magnetic Resonance Reveals Cardiac Inflammation and Fibrosis in Symptomatic Patients with Post-COVID-19 Syndrome: Findings from the INSPIRE-CMR Multicenter Study. Journal of Clinical Medicine, 13(22), 6919. https://doi.org/10.3390/jcm13226919