The Effectiveness of Thermal Stimulation Plus Conventional Therapy for Functional Recovery After Stroke: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Protocol and Registration
2.2. Electronic Search
2.3. Eligibility Criteria
2.4. Study Selection
2.5. Data Collection Process
2.6. Risk of Bias in Individual Studies
2.7. Statistical Methods
2.8. Rating the Quality of Evidence
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Risk of Bias Assessment in the Individual Studies
3.4. Publication Bias
3.5. Synthesis of Results
3.5.1. Thermal Stimulation Plus Conventional Therapy vs. Conventional Therapy
Lower Limb Function
Motor Function
Balance
Walking
3.5.2. Noxious Thermal Stimulation Plus Conventional Therapy vs. Innocuous Thermal Stimulation Plus Conventional Therapy
Activities of Daily Living
3.5.3. Publication Bias
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Calafiore, D.; Negrini, F.; Tottoli, N.; Ferraro, F.; Ozyemisci-Taskiran, O.; de Sire, A. Efficacy of robotic exoskeleton for gait rehabilitation in patients with subacute stroke: A systematic review. Eur. J. Phys. Rehabil. Med. 2022, 58, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cagna-Castillo, D.; Salcedo-Carrillo, A.L.; Carrillo-Larco, R.M.; Bernabé-Ortiz, A. Prevalence and incidence of stroke in Latin America and the Caribbean: A systematic review and meta-analysis. Sci. Rep. 2023, 13, 6809. [Google Scholar] [CrossRef] [PubMed]
- Alkhachroum, A.M.; Miller, B.; Chami, T.; Tatsuoka, C.; Sila, C. A troponin study on patients with ischemic stroke, intracerebral hemorrhage and subarachnoid hemorrhage: Type II myocardial infarction is significantly associated with stroke severity, discharge disposition and mortality. J. Clin. Neurosci. 2019, 64, 83–88. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef]
- Hendricks, H.T.; van Limbeek, J.; Geurts, A.C.; Zwarts, M.J. Motor recovery after stroke: A systematic review of the literature. Arch. Phys. Med. Rehabil. 2002, 83, 1629–1637. [Google Scholar] [CrossRef]
- Demeco, A.; Zola, L.; Frizziero, A.; Martini, C.H.; Palumbo, A.; Foresti, R.; Buccino, G.; Costantino, C. Immersive Virtual Reality in Post-Stroke Rehabilitation: A Systematic Review. Sensors 2023, 23, 1712. [Google Scholar] [CrossRef]
- Szeto, S.G.; Wan, H.; Alavinia, M.; Dukelow, S.; MacNeill, H. Effect of mobile application types on stroke rehabilitation: A systematic review. J. Neuroeng. Rehabil. 2023, 20, 12. [Google Scholar] [CrossRef]
- Huang, J.; Ji, J.R.; Liang, C.; Zhang, Y.Z.; Sun, H.C.; Yan, Y.H.; Xiang, X.B. Effects of physical therapy-based rehabilitation on recovery of upper limb motor function after stroke in adults: A systematic review and meta-analysis of randomized controlled trials. Ann. Palliat. Med. 2022, 11, 521–531. [Google Scholar] [CrossRef]
- Chen, J.C.; Lin, C.H.; Wei, Y.C.; Hsiao, J.; Liang, C.C. Facilitation of motor and balance recovery by thermal intervention for the paretic lower limb of acute stroke: A single-blind randomized clinical trial. Clin. Rehabil. 2011, 25, 823–832. [Google Scholar] [CrossRef]
- Chen, J.C.; Shaw, F.Z. Progress in sensorimotor rehabilitative physical therapy programs for stroke patients. World J. Clin. Cases 2014, 2, 316–326. [Google Scholar] [CrossRef]
- Chen, S.; Qiu, Y.; Bassile, C.C.; Lee, A.; Chen, R.; Xu, D. Effectiveness and Success Factors of Bilateral Arm Training After Stroke: A Systematic Review and Meta-Analysis. Front Aging Neurosci. 2022, 14, 875794. [Google Scholar] [CrossRef] [PubMed]
- Santin-Amo, J.M.; Flores-Justa, A.; Román-Pena, P.; Raposo-Furelos, M.; Frieiro-Dantas, C.; Serramito García, R.; Villa, J.M.; Gelabert-Gonzalez, M. Intrathecal baclofen as a treatment for spasticity: Review of the cases treated in our hospital. Neurocir. Astur Engl. Ed. 2019, 30, 288–293. [Google Scholar] [CrossRef]
- Veerbeek, J.M.; van Wegen, E.; van Peppen, R.; van der Wees, P.J.; Hendriks, E.; Rietberg, M.; Kwakkel, G. What is the evidence for physical therapy poststroke? A systematic review and meta-analysis. PLoS ONE 2014, 9, e87987. [Google Scholar]
- Kollen, B.J.; Lennon, S.; Lyons, B.; Wheatley-Smith, L.; Scheper, M.; Buurke, J.H.; Halfens, J.; Geurts, A.C.H.; Kwakkel, G. The effectiveness of the Bobath concept in stroke rehabilitation: What is the evidence? Stroke 2009, 40, e89–e97. [Google Scholar] [CrossRef]
- Guiu-Tula, F.X.; Cabanas-Valdés, R.; Sitjà-Rabert, M.; Urrútia, G.; Gómara-Toldrà, N. The Efficacy of the proprioceptive neuromuscular facilitation (PNF) approach in stroke rehabilitation to improve basic activities of daily living and quality of life: A systematic review and meta-analysis protocol. BMJ Open 2017, 7, e016739. [Google Scholar] [CrossRef]
- Huo, Y.; Wang, X.; Zhao, W.; Hu, H.; Li, L. Effects of EMG-based robot for upper extremity rehabilitation on post-stroke patients: A systematic review and meta-analysis. Front. Physiol. 2023, 14, 1172958. [Google Scholar] [CrossRef]
- Ahmed, I.; Mustafaoglu, R.; Rossi, S.; Cavdar, F.A.; Agyenka, S.K.; Pang, M.Y.C.; Straudi, S. Non-invasive Brain Stimulation Techniques for the Improvement of Upper Limb Motor Function and Performance in Activities of Daily Living After Stroke: A Systematic Review and Network Meta-analysis. Arch. Phys. Med. Rehabil. 2023, 104, 1683–1697. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Yu, X.; Zhou, H.; Ding, Y.; Wang, J. Effect of Tai Chi Yunshou training on the balance and motor functions of stroke patients: A systematic review and meta-analysis of randomized controlled trials. Front. Neurol. 2023, 14, 1178234. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.C.; Liang, C.C.; Shaw, F.Z. Facilitation of sensory and motor recovery by thermal intervention for the hemiplegic upper limb in acute stroke patients: A single-blind randomized clinical trial. Stroke 2005, 36, 2665–2669. [Google Scholar] [CrossRef]
- Chen, C.C.; Tang, Y.C.; Hsu, M.J.; Lo, S.K.; Lin, J.H. Effects of the hybrid of neuromuscular electrical stimulation and noxious thermal stimulation on upper extremity motor recovery in patients with stroke: A randomized controlled trial. Top Stroke Rehabil. 2019, 26, 66–72. [Google Scholar] [CrossRef]
- Tai, I.; Lai, C.L.; Hsu, M.J.; Lin, R.T.; Huang, M.H.; Lin, C.L.; Hsieh, C.L.; Lin, J.H. Effect of thermal stimulation on corticomotor excitability in patients with stroke. Am. J. Phys. Med. Rehabil. 2014, 93, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez Espinoza, H.J.; Olguín Huerta, C.; Cereceda Muriel, C.; Figueroa-Ojeda, P. Estimulación térmica para la recuperación motora post accidente cerebrovascular. Revisión Sistemática. Acta Neurol. Colomb. 2016, 32, 248–259. [Google Scholar] [CrossRef]
- Raut, A.; Ganvir, S.S. Effect of thermal stimulation in sensorimotor recovery of upper limb and lower limb in patients with stroke: A systematic review: Thermal stimulation in sensorimotor recovery of upper limb and lower limb in patients with stroke. VIMS J. Phys. Ther. 2020, 2, 33–39. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions; Version 6.4; Cochrane: London, UK, 2023; Available online: www.training.cochrane.org/handbook (accessed on 30 September 2024).
- Chen, S.C.; Hsu, M.J.; Kuo, Y.T.; Lin, R.T.; Lo, S.K.; Lin, J.H. Immediate effects of noxious and innocuous thermal stimulation on brain activation in patients with stroke. Medicine 2020, 99, e19386. [Google Scholar] [CrossRef]
- Eldridge, S.; Campbell, M.K.; Campbell, M.J.; Drahota, A.K.; Giraudeau, B.; Reeves, B.C.; Siegfried, N. Revised Cochrane Risk of Bias Tool for Randomized Trials (RoB2). Additional Considerations for Cluster-Randomized Trials (RoB 2 CRT); Cochrane: London, UK, 2016; Available online: www.riskofbias.info/welcome/rob-2-0-tool/rob-2-for-cluster-randomized-trials (accessed on 31 July 2024).
- DerSimonian, R.; Kacker, R. Random-effects model for meta-analysis of clinical trials: An update. Contemp. Clin. Trials 2007, 28, 105–114. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; GRADE. An emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008, 336, 924–926. [Google Scholar] [CrossRef]
- Santesso, N.; Glenton, C.; Dahm, P.; Garner, P.; Akl, E.A.; Alper, B.; Brignardello-Petersen, R.; Carrasco-Labra, A.; De Beer, H.; Hultcrantz, M.; et al. GRADE guidelines 26: Informative statements to communicate the findings of systematic reviews of interventions. J. Clin. Epidemiol. 2020, 119, 126–135. [Google Scholar] [CrossRef]
- Wu, H.C.; Lin, Y.C.; Hsu, M.J.; Liu, S.M.; Hsieh, C.L.; Lin, J.H. Effect of thermal stimulation on upper extremity motor recovery 3 months after stroke. Stroke 2010, 41, 2378–2380. [Google Scholar] [CrossRef]
- Liang, C.C.; Hsieh, T.C.; Lin, C.H.; Wei, Y.C.; Hsiao, J.; Chen, J.C. Effectiveness of thermal stimulation for the moderately to severely paretic leg after stroke: Serial changes at one-year follow-up. Arch. Phys. Med. Rehabil. 2012, 93, 1903–1910. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.W.; Lee, C.L.; Hsu, M.J.; Wu, H.C.; Lin, R.; Hsieh, C.L.; Lin, J.H. Effects of noxious versus innocuous thermal stimulation on lower extremity motor recovery 3 months after stroke. Arch. Phys. Med. Rehabil. 2013, 94, 633–641. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Hsu, M.J.; Lin, R.T.; Huang, M.H.; Koh, C.L.; Hsieh, C.L.; Lin, J.H. No Difference Between Noxious and Innocuous Thermal Stimulation on Motor Recovery of Upper Extremity in Patients with Acute Stroke: A Randomized Controlled Trial With 6-Month Follow-up. PM&R 2017, 9, 1191–1199. [Google Scholar]
- Kim, K.H.; Kim, D.H. Effects of ankle joint proprioceptive training and thermal approach on stroke patients’ trunk, balance stability and gait parameter. J. Back Musculoskelet. Rehabil. 2022, 35, 1237–1246. [Google Scholar] [CrossRef]
- Sterne, J.A.; Egger, M.; Smith, G.D. Systematic reviews in health care: Investigating and dealing with publication and other biases in meta-analysis. BMJ 2001, 323, 101–105. [Google Scholar] [CrossRef]
- Sterne, J.A.; Sutton, A.J.; Ioannidis, J.P.; Terrin, N.; Jones, D.R.; Lau, J.; Carpenter, J.; Rucker, G.; Harbord, R.M.; Schmid, C.H.; et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 2011, 343, d4002. [Google Scholar] [CrossRef]
- Krause, A.A.; Reimold, N.K.; Embry, A.E.; Knight, H.L.; Jacobs, C.J.; Boan, A.D.; Dean, J.C. Effect of mediolateral leg perturbations on walking balance in people with chronic stroke: A randomized controlled trial. PLoS ONE 2024, 19, e0311727. [Google Scholar] [CrossRef]
- Jose, M.; Munoz-Novoa, M.; Alt Murphy, M. A reliable and valid assessment of upper limb movement quality after stroke: The observational Drinking Task Assessment. J. Rehabil. Med. 2024, 56, jrm40362. [Google Scholar] [CrossRef]
- Alwhaibi, M.R.; Mahmoud, N.F.; Basheer, M.A.; Zakaria, H.D.; Elzanaty, M.Y.; Ragab, W.M.; Al Awaji, N.N.; Elserougy, H.R. Impact of Somatosensory Training on Neural and Functional Recovery of Lower Extremity in Patients with Chronic Stroke: A Single Blind Controlled Randomized Trial. Int. J. Environ. Res. Public Health 2021, 18, 583. [Google Scholar] [CrossRef]
- Pedersen, B.K. Physical activity and muscle-brain crosstalk. Nat. Rev. Endocrinol. 2019, 15, 383–392. [Google Scholar] [CrossRef]
- Reddan, M.C.; Wager, T.D. Modeling Pain Using fMRI: From Regions to Biomarkers. Neurosci. Bull. 2018, 34, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.C.; Lin, J.H.; Hsu, J.S.; Shih, C.M.; Lai, J.J.; Hsu, M.J. Influence of Alternate Hot and Cold Thermal Stimulation in Cortical Excitability in Healthy Adults: An fMRI Study. J. Clin. Med. 2019, 9, 18. [Google Scholar] [CrossRef] [PubMed]
- Tracey, I.; Becerra, L.; Chang, I.; Breiter, H.; Jenkins, L.; Borsook, D.; Gonzalez, R.G. Noxious hot and cold stimulation produce common patterns of brain activation in humans: A functional magnetic resonance imaging study. Neurosci. Lett. 2000, 288, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Peltz, E.; Seifert, F.; DeCol, R.; Dörfler, A.; Schwab, S.; Maihöfner, C. Functional connectivity of the human insular cortex during noxious and innocuous thermal stimulation. Neuroimage 2011, 54, 1324–1335. [Google Scholar] [CrossRef] [PubMed]
- Sawaki, L.; Butler, A.J.; Leng, X.; Wassenaar, P.A.; Mohammad, Y.M.; Blanton, S.; Sathian, K.; Nichols-Larsen, D.S.; Wolf, S.L.; Good, D.C.; et al. Constraint-induced movement therapy results in increased motor map area in subjects 3 to 9 months after stroke. Neurorehabil. Neural Repair 2008, 22, 505–513. [Google Scholar] [CrossRef]
- Ansari, Y.; Remaud, A.; Tremblay, F. Modulation of corticomotor excitability in response to distal focal cooling. PeerJ 2018, 6, e6163. [Google Scholar] [CrossRef]
- Yang, H.; Chen, Y.; Wang, J.; Wei, H.; Chen, Y.; Jin, J. Activities of daily living measurement after ischemic stroke: Rasch analysis of the modified Barthel Index. Medicine 2021, 100, e24926. [Google Scholar] [CrossRef]
- King, M.; Carnahan, H. Revisiting the brain activity associated with innocuous and noxious cold exposure. Neurosci. Biobehav. Rev. 2019, 104, 197–208. [Google Scholar] [CrossRef]
- Naldrett, T.; Lester, L. Supporting roles within a stroke rehabilitation setting. Nurs. Older People 2003, 14, 18–21. [Google Scholar] [CrossRef]
- Boonruab, J.; Nimpitakpong, N.; Damjuti, W. The Distinction of Hot Herbal Compress, Hot Compress, and Topical Diclofenac as Myofascial Pain Syndrome Treatment. J. Evid. Based Integr. Med. 2018, 23, 2156587217753451. [Google Scholar] [CrossRef]
Author | Country | Population | Intervention | Outcomes | Follow-Up | Results | ||
---|---|---|---|---|---|---|---|---|
Sample Size (n) | Patients Mean (SD) | Intervention | Characteristics/Dose | |||||
Chen et al., 2005 [19] | Taiwan | CG: 14 EG: 15 | CG: 59.6 (12.0) EG: 58.5 (12.9) Patients with stroke <1 month | CG: Conventional therapy plus education. EG: Conventional therapy plus TS upper extremity. | CG: Conventional therapy (electromyographic biofeedback, active neuromuscular stimulation, acupuncture-like electrical stimulation and sensorimotor stimulation) for 6 weeks. EG: Conventional therapy plus TS intervention 30 sessions of 20–30 min duration 5 times weekly for 6 weeks. Each session of TS contained alternate cycles of 15 s of heating (48.8 ± 0.3 °C) and 30 s of cold (14.0 ± 0.2 °C) with ≥30 s pause. | -MMAS -Brunnstrom stage -Grasping -Wrist flexion -Wrist extension -Sensation | 6 weeks | -MMAS (p = 0.001) -Brunnstrom stage (p = 0.005) -Grasping (p = 0.019) -Wrist flexion (p = 0.007) -Wrist extension (p = 0.01) -Sensation (p = 0.02) |
Wu et al., 2010 [32] | CG: 11 EG: 12 | CG: 54.3 (10.3) EG: 59.9 (11.4) Patients with stroke onset >3 months and <3 years. | CG: Conventional therapy plus TS on lower extremity. EG: Conventional therapy plus TS on the upper extremity. | CG: Conventional therapy (physiotherapist and occupational therapy) plus TS intervention 24 sessions with alternate cycles of heating (46–47 °C) and cold (7–8 °C) on lower limb for 3 times per week for eight weeks. EG: Conventional therapy plus TS intervention 24 sessions with alternate cycles of heating (46–47 °C) and cold (7–8 °C) on upper limb for 3 times per week for eight weeks. | -UE-STREAM -ARAT -LE-STREAM -BI -MAS | 8 weeks/1 month | -UE-STREAM (p = 0.002) -ARAT (p = 0.009) -LE-STREAM (p = 0.16) -BI (p = 0.003) -MAS elbow (p = 0.003) -MAS wrist (p = 0.01) | |
Chen et al., 2011 [9] | Taiwan | CG: 16 EG: 17 | CG: 62.3 (11.3) EG: 58 (11.5) Patients with stroke <1 month | CG: Conventional therapy plus education. EG: Conventional therapy plus TS. | CG: Conventional therapy (techniques of rehabilitation neurologic) 3 times per week. EG: Conventional therapy plus TS intervention 30 sessions with alternate cycles of 30 s of heating (46.5 °C) and 45 s of cold (15.5 °C) Eight repetitions of TS followed by 30 s of rest. | -FMA-LE -MRC-LE -MMAS -PASS -BBS -FAC -IW | 6 weeks | -FMA-LE (p = <0.001) -MRC-LE (p = <0.001) -MMAS (p = 0.010) -PASS (p = 0.597) -BBS (p = 0.007) -FAC (p = <0.001) -IW (p = 0.057) |
Liang et al., 2012 [33] | Taiwan | CG: 15 EG: 15 | CG: 59.73 (11.6) EG: 56.1 (11.9) Patients with stroke <4 weeks | CG: Conventional therapy plus education. EG: Conventional therapy plus TS. | CG: Conventional therapy (Intensive exercise or cycling exercise, functional electrical stimulation, body weight support treadmill and robotic gait trainer) 3 times per 6 weeks, 18 sessions. EG: Conventional therapy plus TS intervention 30 sessions of 48 min. Alternate cycles of 30 s of heating (46.5 °C) and 45 s of cold (15.5 °C) 5 times a week for 6 weeks. | -FMA-LE -MRC-LE -FAC -BBS -MMAS -BI | 6 weeks/3 months/6 months/1 year | At 3 months -FMA-LE 5.1 (p = 0.000) -MRC-LE 3.5 (0.01) -FAC 4.4 (p = 0.005) -BBS 3.0 (0.038) -MMAS 3.2 (0.026) -BI 3 (0.031) At 6 months -FMA-LE 4.4 (p = 0.001) -MRC-LE 2.5 (0.07) -FAC 3.0 (p = 0.058) -BBS 2.7 (0.054) -MMAS 2.3 (0.225) -BI 2.4 (0.089) At a 1 year -FMA-LE 3.5 (p = 0.013) -MRC-LE 1.8 (0.2) -FAC 1.6 (p = 0.013) -BBS 2.6 (0.132) -MMAS 1.1 (0.429) -BI 1.5 (0.148) |
Hsu et al., 2013 [34] | Taiwan | CG: 17 EG: 17 | CG: 52.6 (13.3) EG: 51.1 (14) Patients with stroke >3 month and <1 year | CG: Conventional therapy plus innocuous TS. EG: Conventional therapy plus noxious TS. | CG: Conventional therapy (physical and occupational therapy focused on functional task practice) plus innocuous TS intervention 24 sessions in lower limb with alternate cycles of heating (46–47 °C) and cold (23–24 °C) 3 times per week for 8 weeks. EG: Conventional therapy plus noxious TS intervention 24 sessions in lower limb with alternate cycles of heating (46–47 °C) and cold (2–3 °C) 3 times per week for 8 weeks. | -LE-STREAM -MOB-STREAM -FAC -BI -PASS -MAS | 8 weeks/12 weeks | -LE-STREAM (p = 0.028) -MOB-STREAM (p = 0.043) -FAC (p = 0.073) -BI (p = 0.013) -PASS (p = 0.276) -MAS (p = 0.034) |
Lin et al., 2017 [35] | Taiwan | CG: 40 EG: 39 | CG: 61.8 (12.8) EG: 61.3 (12.0) Patients with stroke <1 month | CG: Conventional therapy plus innocuous TS. EG: Conventional therapy plus noxious TS. | CG: Conventional therapy plus innocuous TS intervention 20 to 24 sessions with alternate cycles of heating (40–41 °C) and cold (20–21 °C) for 30 min once per day. EG: Conventional therapy plus noxious TS intervention 20 to 24 sessions with alternate cycles of heating (46–47 °C) and cold (7–8 °C) for 30 min once per day. | -FMA-UE -ARAT -MI -BI -MAS | 4 weeks/1 month/6 months | 1 month -FMA-UE (p = 0.02) -ARAT (p = 0.002) -MI (p = 0.02) -BI (p = 0.01) -MAS (p = 0.02) 6 months -FMA-UE (p = 0.01) -ARAT (p = <0.001) -MI (p = 0.05) -BI (p = 0.02) -MAS (p = 0.02) |
Chen et al., 2018 [20] | Taiwan | IG1: 13 IG2: 13 IG3: 17 | IG1: 55.7 (14.0) IG2: 61.9 (11.0) IG3: 55.1 (16.7) Patients with stroke <6 months | IG1: NMES plus conventional therapy. IG2: TS plus conventional therapy. IG3: TS, NMES, plus conventional therapy. | IG1: NMES plus conventional therapy (stretching, endurance and strengthening exercises) 24 sessions. IG2: Conventional therapy (stretching, endurance and strengthening exercises) plus TS intervention 24 sessions with alternate cycles of heating (47 ± 1 °C) and cold (7 ± 1 °C). For 8 weeks, 3 times per week. IG3: Conventional therapy, NMES plus TS intervention 24 sessions with alternate cycles of heating (47 ± 1 °C) and cold (7 ± 1 °C). For 8 weeks, 3 times per week. | -FMA-UE -MI -MAS -BI | 4 weeks | -FMA-UE (p = 0.49) -MI (p = 0.73) -MAS (p = 0.29) -BI (p = 0.71) |
Kim et al., 2022 [36] | Korea | CG: 15 EG: 15 | CG: 54.1 (9.3) EG: 53.2 (10.1) | CG: Conventional therapy. EG: Conventional therapy and TS lower extremity. | CG: Conventional therapy (proprioceptive neuromuscular facilitation, Bobath neurodevelopment therapy, balance training, gait training, muscle strengthening exercises), 40 sessions. EG: Conventional therapy plus TS intervention 40 sessions, with alternate cycles of heating (45–48 °C) and cold (11–15 °C) for 15 min. For 8 weeks, 5 times per week. | -TIS -COP -LOS -BBS -FRT -ASL -ASS -GC -Cadence −10 m W/T | 8 weeks | -TIS (p = 0.001) -COP (p = 0.001) -LOS (p = 0.001) -BBS (p = 0.000) -FRT (p = 0.005) -ASL (p = 0.001) -ASS (p = 0.004) -GC (p = 0.001) -Cadence (p = 0.044) −10 m W/T (p = 0.003) |
Certainty Assessment | No. of Patients | Effect | Quality of Evidence (GRADE) | Importance | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No. of Studies | Study Design | Risk of Bias | Inconsistency | Indirectness | Imprecision | Publication Bias | Thermal Stimulation + CT | CT Alone | Relative (95% CI) | MD or SMD (95% CI) | ||
Function (Overall) (Assessed with Fugl Meyer scale lower extremity; scale 0 to 34) | ||||||||||||
2 | RCT | Not serious | Not serious | Not serious | Not serious | No detected | 31 | 32 | - | MD = 6.92 points (4.36 to 9.48) | ⨁⨁⨁⨁ High | CRITICAL |
Motor function (Overall) (Assessed with Modified motor assessment; scale 0 to 48) | ||||||||||||
3 | RCT | Not serious | Not serious | Not serious | Not serious | Not detected | 47 | 45 | - | MD = 6.31 (5.18 to 7.44) | ⨁⨁⨁⨁ High | CRITICAL |
Balance (Overall) (Assessed with Berg Balance Scale; scale 0 to 56) | ||||||||||||
3 | RCT | Not serious | Very serious | Not serious | Very serious | Not detected | 47 | 46 | - | MD = 4.41 (−2.59 to 11.4) | ⨁◯◯◯ Very low | CRITICAL |
Walking (Overall) (Assessed with Functional Ambulation Classification; scale 0 to 5) | ||||||||||||
3 | RCT | Not serious | Very serious | Not serious | Not serious | Not detected | 32 | 31 | - | MD = 1.01 (0.33 to 1.69) | ⨁⨁◯◯ Low | IMPORTANT |
‡ Daily living activity (Overall) (Assessed with Barthel modified index; scale 0 to 20) | ||||||||||||
3 | RCT | Not serious | Very serious | Not serious | Not serious | Not detected | 50 | 52 | - | MD = 1.19 (−0.46 to 2.84) | ⨁⨁⨁⨁ High | IMPORTANT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celi-Lalama, D.; Soria-Vizcaino, A.; Flores-Santy, L.F.; Araya-Quintanilla, F.; Esparza, W.D.; Cuyul-Vásquez, I.; Gutiérrez-Espinoza, H. The Effectiveness of Thermal Stimulation Plus Conventional Therapy for Functional Recovery After Stroke: A Systematic Review and Meta-Analysis. J. Clin. Med. 2024, 13, 6937. https://doi.org/10.3390/jcm13226937
Celi-Lalama D, Soria-Vizcaino A, Flores-Santy LF, Araya-Quintanilla F, Esparza WD, Cuyul-Vásquez I, Gutiérrez-Espinoza H. The Effectiveness of Thermal Stimulation Plus Conventional Therapy for Functional Recovery After Stroke: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2024; 13(22):6937. https://doi.org/10.3390/jcm13226937
Chicago/Turabian StyleCeli-Lalama, Daniela, Aida Soria-Vizcaino, Lucía Fernanda Flores-Santy, Felipe Araya-Quintanilla, Wilmer Danilo Esparza, Iván Cuyul-Vásquez, and Héctor Gutiérrez-Espinoza. 2024. "The Effectiveness of Thermal Stimulation Plus Conventional Therapy for Functional Recovery After Stroke: A Systematic Review and Meta-Analysis" Journal of Clinical Medicine 13, no. 22: 6937. https://doi.org/10.3390/jcm13226937
APA StyleCeli-Lalama, D., Soria-Vizcaino, A., Flores-Santy, L. F., Araya-Quintanilla, F., Esparza, W. D., Cuyul-Vásquez, I., & Gutiérrez-Espinoza, H. (2024). The Effectiveness of Thermal Stimulation Plus Conventional Therapy for Functional Recovery After Stroke: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 13(22), 6937. https://doi.org/10.3390/jcm13226937