Gut Microbial Taxonomy and Its Role as a Biomarker in Aortic Diseases: A Systematic Review and Future Perspectives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Selection Criteria
2.4. Quality Assessment
2.5. Data Analysis
3. Results
3.1. Characteristics of the Studies Included
3.2. Patient Population Demographics
3.3. Gut Microbiome Samples
3.4. Gut Microbiome Genomics and Metagenomics
3.5. Gut Microbiota Diversity
4. Discussion
4.1. Taxonomic Composition
4.2. Clinical Significance
4.3. Clinical Microbiome Studies
5. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bossone, E.; Eagle, K.A. Epidemiology and management of aortic disease: Aortic aneurysms and acute aortic syndromes. Nat. Rev. Cardiol. 2021, 18, 331–348. [Google Scholar] [CrossRef] [PubMed]
- Members, W.C.; Isselbacher, E.M.; Preventza, O.; Hamilton Black, J., III; Augoustides, J.G.; Beck, A.W.; Bolen, M.A.; Braverman, A.C.; Bray, B.E.; Brown-Zimmerman, M.M. 2022 ACC/AHA Guideline for the diagnosis and management of aortic disease: A report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2022, 80, e223–e393. [Google Scholar]
- Suzuki, T.; Bossone, E.; Sawaki, D.; Jánosi, R.A.; Erbel, R.; Eagle, K.; Nagai, R. Biomarkers of aortic diseases. Am. Heart J. 2013, 165, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Sangiorgi, G.; Biondi-Zoccai, G.; Pizzuto, A.; Martelli, E. Commentary: Biochemical Markers for Diagnosis and Follow-up of Aortic Diseases: An Endless Search for the Holy Grail. J. Endovasc. Ther. 2019, 26, 836–842. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, B.O.; Bäckhed, F. Signals from the gut microbiota to distant organs in physiology and disease. Nat. Med. 2016, 22, 1079–1089. [Google Scholar] [CrossRef]
- Ahmad, A.F.; Dwivedi, G.; O’Gara, F.; Caparros-Martin, J.; Ward, N.C. The gut microbiome and cardiovascular disease: Current knowledge and clinical potential. Am. J. Physiol.—Heart Circ. Physiol. 2019, 317, H923–H938. [Google Scholar] [CrossRef]
- Luedde, M.; Winkler, T.; Heinsen, F.-A.; Rühlemann, M.C.; Spehlmann, M.E.; Bajrovic, A.; Lieb, W.; Franke, A.; Ott, S.J.; Frey, N. Heart failure is associated with depletion of core intestinal microbiota. ESC Heart Fail. 2017, 4, 282–290. [Google Scholar] [CrossRef]
- Jie, Z.; Xia, H.; Zhong, S.-L.; Feng, Q.; Li, S.; Liang, S.; Zhong, H.; Liu, Z.; Gao, Y.; Zhao, H.; et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 2017, 8, 845. [Google Scholar] [CrossRef]
- National Heart, Lung and Blood Institute. Study Quality Assessment Tools. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 25 July 2024).
- Schoch, C.L.; Ciufo, S.; Domrachev, M.; Hotton, C.L.; Kannan, S.; Khovanskaya, R.; Leipe, D.; Mcveigh, R.; O’Neill, K.; Robbertse, B.; et al. NCBI Taxonomy: A Comprehensive Update on Curation, Resources and Tool. Database 2020, 2020, baaa062. Available online: https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Tree (accessed on 14 August 2024). [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. bmj 2021, 372, n71. [Google Scholar] [CrossRef]
- Manabe, Y.; Ishibashi, T.; Asano, R.; Tonomura, S.; Maeda, Y.; Motooka, D.; Ueda, J.; Yanagawa, M.; Edamoto-Taira, Y.; Chikaishi-Kirino, T.; et al. Gut dysbiosis is associated with aortic aneurysm formation and progression in Takayasu arteritis. Arthritis Res. Ther. 2023, 25, 46. [Google Scholar] [CrossRef]
- Jiang, F.; Cai, M.; Peng, Y.; Li, S.; Liang, B.; Ni, H.; Lin, Y. Changes in the gut microbiome of patients with type a aortic dissection. Front. Microbiol. 2023, 14, 1092360. [Google Scholar] [CrossRef] [PubMed]
- Ito, E.; Ohki, T.; Toya, N.; Nakagawa, H.; Horigome, A.; Odamaki, T.; Xiao, J.-Z.; Koido, S.; Nishikawa, Y.; Ohkusa, T. Impact of Bifidobacterium adolescentis in patients with abdominal aortic aneurysm: A cross-sectional study. Biosci. Microbiota Food Health 2023, 42, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Chen, J.; Pan, L.; Xin, X.; Geng, B.; Yang, L.; Wang, Q.; Ma, W.; Lou, Y.; Bian, J.; et al. Alterations of Gut Microbiome, Metabolome, and Lipidome in Takayasu Arteritis. Arthritis Rheumatol. 2023, 75, 266–278. [Google Scholar] [CrossRef]
- Tian, Z.; Zhang, Y.; Zheng, Z.; Zhang, M.; Zhang, T.; Jin, J.; Zhang, X.; Yao, G.; Kong, D.; Zhang, C.; et al. Gut microbiome dysbiosis contributes to abdominal aortic aneurysm by promoting neutrophil extracellular trap formation. Cell Host Microbe 2022, 30, 1450–1463.e1458. [Google Scholar] [CrossRef]
- Desbois, A.C.; Ciocan, D.; Saadoun, D.; Perlemuter, G.; Cacoub, P. Specific microbiome profile in Takayasu’s arteritis and giant cell arteritis. Sci. Rep. 2021, 11, 5926. [Google Scholar] [CrossRef]
- Getz, T.M.; Hoffman, G.S.; Padmanabhan, R.; Villa-Forte, A.; Roselli, E.E.; Blackstone, E.; Johnston, D.; Pettersson, G.; Soltesz, E.; Svensson, L.G.; et al. Microbiomes of inflammatory thoracic aortic aneurysms due to giant cell arteritis and clinically isolated aortitis differ from those of non-inflammatory aneurysms. Pathog. Immun. 2019, 4, 105–123. [Google Scholar] [CrossRef]
- Zheng, S.; Shao, S.; Qiao, Z.; Chen, X.; Piao, C.; Yu, Y.; Gao, F.; Zhang, J.; Du, J. Clinical Parameters and Gut Microbiome Changes before and after Surgery in Thoracic Aortic Dissection in Patients with Gastrointestinal Complications. Sci. Rep. 2017, 7, 15228. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, K.; Furuyama, T.; Matsubara, Y.; Morisaki, K.; Onohara, T.; Ikeda, T.; Yoshizumi, T. Gut dysbiosis and bacterial translocation in the aneurysmal wall and blood in patients with abdominal aortic aneurysm. PLoS ONE 2022, 17, e0278995. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Hou, Y.; Wei, X.; Wang, M.; Yin, Z.; Xie, M.; Duan, A.; Ma, C.; Si, K.; Wang, Z. Causal association between gut microbiomes and different types of aneurysms: A Mendelian randomization study. Front. Microbiol. 2024, 15, 1267888. [Google Scholar] [CrossRef]
- Lv, Y.; Shen, D.; Zhang, G.; Wang, B.; Wang, H.; Zhang, J.; Tang, J. Causal Associations Between the Gut Microbiome and Aortic Aneurysm: A Mendelian Randomization Study. Cardiovasc. Innov. Appl. 2024, 9, 956. [Google Scholar] [CrossRef]
- Li, D.; Li, F.; Jin, J.; Yang, Y.; Tong, Q. Unraveling the Causal Nexus: Exploring the Relationship between Gut Microbiota and Aortic Dissection. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Yan, Q.; Gu, Y.; Li, X.; Yang, W.; Jia, L.; Chen, C.; Han, X.; Huang, Y.; Zhao, L.; Li, P.; et al. Alterations of the Gut Microbiome in Hypertension. Front. Cell. Infect. Microbiol. 2017, 7, 381. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Caporaso, J.G.; Jiang, X.-T.; Sheng, H.-F.; Huse, S.M.; Rideout, J.R.; Edgar, R.C.; Kopylova, E.; Walters, W.A.; Knight, R.; et al. Stability of operational taxonomic units: An important but neglected property for analyzing microbial diversity. Microbiome 2015, 3, 20. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chia, N.; Kalari, K.R.; Yao, J.Z.; Novotna, M.; Paz Soldan, M.M.; Luckey, D.H.; Marietta, E.V.; Jeraldo, P.R.; Chen, X.; et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci. Rep. 2016, 6, 28484. [Google Scholar] [CrossRef]
- Jin, M.; Qian, Z.; Yin, J.; Xu, W.; Zhou, X. The role of intestinal microbiota in cardiovascular disease. J. Cell. Mol. Med. 2019, 23, 2343–2350. [Google Scholar] [CrossRef]
- Petakh, P.; Oksenych, V.; Kamyshnyi, A. The F/B ratio as a biomarker for inflammation in COVID-19 and T2D: Impact of metformin. Biomed. Pharmacother. 2023, 163, 114892. [Google Scholar] [CrossRef]
- Yang, T.; Santisteban, M.M.; Rodriguez, V.; Li, E.; Ahmari, N.; Carvajal, J.M.; Zadeh, M.; Gong, M.; Qi, Y.; Zubcevic, J.; et al. Gut Dysbiosis Is Linked to Hypertension. Hypertension 2015, 65, 1331–1340. [Google Scholar] [CrossRef]
- Brunt, V.E.; Gioscia-Ryan, R.A.; Casso, A.G.; VanDongen, N.S.; Ziemba, B.P.; Sapinsley, Z.J.; Richey, J.J.; Zigler, M.C.; Neilson, A.P.; Davy, K.P. Trimethylamine-N-oxide promotes age-related vascular oxidative stress and endothelial dysfunction in mice and healthy humans. Hypertension 2020, 76, 101–112. [Google Scholar] [CrossRef]
- Sayin, S.I.; Wahlström, A.; Felin, J.; Jäntti, S.; Marschall, H.-U.; Bamberg, K.; Angelin, B.; Hyötyläinen, T.; Orešič, M.; Bäckhed, F. Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-beta-muricholic Acid, a Naturally Occurring FXR Antagonist. Cell Metab. 2013, 17, 225–235. [Google Scholar] [CrossRef]
- D’Aquila, P.; Giacconi, R.; Malavolta, M.; Piacenza, F.; Bürkle, A.; Villanueva, M.M.; Dollé, M.E.T.; Jansen, E.; Grune, T.; Gonos, E.S.; et al. Microbiome in Blood Samples From the General Population Recruited in the MARK-AGE Project: A Pilot Study. Front. Microbiol. 2021, 12, 707515. [Google Scholar] [CrossRef] [PubMed]
- Malla, M.A.; Dubey, A.; Kumar, A.; Yadav, S.; Hashem, A.; Abd_Allah, E.F. Exploring the Human Microbiome: The Potential Future Role of Next-Generation Sequencing in Disease Diagnosis and Treatment. Front. Immunol. 2019, 9, 2868. [Google Scholar] [CrossRef] [PubMed]
- Galloway-Peña, J.; Hanson, B. Tools for Analysis of the Microbiome. Dig. Dis. Sci. 2020, 65, 674–685. [Google Scholar] [CrossRef] [PubMed]
- Marcos-Zambrano, L.J.; Karaduzovic-Hadziabdic, K.; Loncar Turukalo, T.; Przymus, P.; Trajkovik, V.; Aasmets, O.; Berland, M.; Gruca, A.; Hasic, J.; Hron, K.; et al. Applications of Machine Learning in Human Microbiome Studies: A Review on Feature Selection, Biomarker Identification, Disease Prediction and Treatment. Front. Microbiol. 2021, 12, 634511. [Google Scholar] [CrossRef]
First Author | Year | Country | Aortic Disease/Control | Study Design | Diagnostic Criteria | Number of Participants (Case/Control) | Mean Age (Years) (Case/Control) | Female, n% (Case/Control) | Body Mass Index (kg/m2, Case/Control) |
---|---|---|---|---|---|---|---|---|---|
Y. Manabe et al. [12] | 2023 | Japan | TAK/HC | Case-control | ACR or Japanese Circulation Society | 76/56 | 51/48 (median) | 67 (88.2%)/48 (85.7%) | 22.0/21.2 |
F. Jiang et al. [13] | 2023 | China | AD/HC | Case-control | NA | 20/20 | 60.1 ± 9.91/57.85 ± 12.09 | 2 (10%)/2 (10%) | 24.52 ± 3.66/23.15 ± 1.98 (median) |
E. Ito et al. [14] | 2023 | China | AAA/HC | Case-control | Aneurysm diameter | 30/30 | 75/75 | 6 (13%)/4 (10%) | 24/23 |
L. Fan et al. [15] | 2023 | China | TAK/HC | Case-control (discovery cohort) | 1990 ACR | 57/40 | 38 ± 15/39 ± 13 | 44 (77.2%)/30 (75.0%) | 22.5/22.2 |
Z. Tian et al. [16] | 2022 | China | AAA/HC | Case-control | ASVS guideline | 33/31 | 68.73 ± 7.13/67.77 ± 5.04 | 8/10 | 24.56 ± 2.51/23.41 ± 2.25 |
A. C. Desbois et al. [17] | 2021 | France | LVV (GCA or TAK)/HC | Case-control | Disease activity criteria | (13 TAK; 9 GCA)/15 | (45 TAK; 74 GCA)/NA | (54.5% TAK; 85% GCA)/NA | NA |
GCA (active/inactive) | 6/5 | 77.4/70.1 (median) | 3 (50%)/3 (60%) | NA | |||||
TAK (active/inactive) | 10/10 | 43.8/41.4 (median) | 8 (80%)/9 (90%) | NA | |||||
T. M. Getz et al. [18] | 2019 | USA | TAA (CIA)/non-inflammatory TAA | Case-control | TAA surgery | 12/23 | 68.5 ± 11.0/66.6 ± 8.5 | 9 (75%)/20 (87.0%) | 20.2 ± 2.1/27.0 ± 1.3 |
TAA (GCA)/non-inflammatory TAA | 14/23 | 73.2 ± 6.8/66.6 ± 8.5 | 13 (92.9%)/20 (87.0%) | 29.9 ± 1.9/27.0 ± 1.3 | |||||
S. Zheng et al. [19] | 2017 | China | TAAD (pre-operative/post-operative) | Case-control | TAAD surgery | 40/10 | NR | NR | NR |
K. Nakayama et al. [20] | 2022 | Japan | AAA/HC | Cross-sectional | Open AAA repair | 30/NA | 66.9 ± 8.9/NA | 28 (93%)/NA | 24.2 ± 4.2/NA |
Y. Qiu et al. [21] | 2024 | China (Finnish database) | AA | GWAS | ICD-10 | 18,340/317,899 | NA | NA | NA |
Y. Lv et al. [22] | 2024 | China (Finnish database) | AA | GWAS | ICD-8, 9, 10, and NOMESCO | 18,473/34,539 | NA | NA | NA |
D. Li et al. [23] | 2023 | China (Finnish database) | AD/HC | GWAS | ICD-10 codes “I71.00”, “I71.01”, and “I71.09” | 18,340/349,539 | NA | NA | NA |
First Author | Year | Aortic Disease Type | Biological Sample Type | Sequencing Method | Metagenome Sequencing, Sequence Region | Taxonomic Profiling |
---|---|---|---|---|---|---|
Y. Manabe et al. [12] | 2023 | TAK | Stool | rRNA | Illumina MiSeq; V1–V2 | OTU with 99% similarity using QIIME 2 (v.2021.2) |
F. Jiang et al. [13] | 2023 | AD | Stool | 16S rDNA | Illumina Novaseq; V3–V4 | ASVs |
E. Ito et al. [14] | 2023 | AAA | Stool | 16S rRNA | Illumina MiSeq; V3–V4 | QIIME 2 (v. 2017.10) and DADA2 (v.0.99.8) |
L. Fan et al. [15] | 2023 | TAK | Stool | Shotgun metagenomics | Illumina Novaseq; 3′ end | MetaPhlAn (v. 2.7.7) and HUMAnN2 (v.2.8.1) |
Z. Tian et al. [16] | 2022 | AAA | Stool | Shotgun metagenomics | Illumina Novaseq; V3–V4 | MetaPhlAn2 (v.2.7.7) and Kraken2 (v2.0.8) |
A. C. Desbois et al. [17] | 2021 | LVV (GCA or TAK) | Blood | 16S rDNA | Illumina MiSeq; V3–V4 | Closed-reference OTU with 97% similarity using QIIME (v1.9.0) |
T. M. Getz et al. [18] | 2019 | TAA | Tissue (aortic biopsy) | 16S rRNA | Illumina MiSeq; V3–V4 | Open-reference OTU with 97% similarity using QIIME (1.9) |
S. Zheng et al. [19] | 2017 | TAAD | Stool | 16S rDNA | Illumina HiSeq X; paired-end | MetaPhlAn (v2.0) |
K. Nakayama et al. [20] | 2022 | AAA | Stool Blood Tissue (aneurysmal wall, intraluminal thrombus) | 16S rRNA | Illumina MiSeq; V3–V4 | QIIME (v1.8.0) |
Y. Qiu et al. [21] | 2024 | AA | SNP (Finnish biobank) | 16S rRNA | NA | Fixed or random effect IVW |
Y. Lv et al. [22] | 2024 | AA | SNP (Finnish biobank) | 16S rRNA | NA, V1–V2, V3–V4, and V4 | Random effect IVW |
D. Li et al. [23] | 2023 | AD | SNP (Finnish biobank) | 16S rRNA | NA | IVW |
First Author | Year | Aortic Disease Type | Diversity Metric (Diversity Index, Representation) | Microbial Dysbiosis Index Analysis | Main Findings (R and p-Values) |
---|---|---|---|---|---|
Y. Manabe et al. [12] | 2023 | TAK | α-diversity (Shannon index) α-diversity (Faith’s PD) α-diversity (observed OTUs) β-diversity (weighted UniFrac, PCoA) β-diversity (weighted UniFrac) Microbial dysbiosis index | Welch’s t test * Mann–Whitney U test ** Fisher’s exact test ** PERMANOVA Welch’s t test * Mann–Whitney U test | ns ns ns p < 0.05 p < 0.05 p < 0.0001 |
F. Jiang et al. [13] | 2023 | AD | α-diversity (Shannon index) α-diversity (Chao 1 index) β-diversity (Jaccard index) | Wilcoxon rank sum test Wilcoxon rank sum test ANOSIM | p = 0.19 p = 0.4 R2 = 0.251; p = 0.001 |
E. Ito et al. [14] | 2023 | AAA | α-diversity (PD whole tree) α-diversity (Chao 1) α-diversity (observed OTUs) α-diversity (Shannon index) β-diversity β-diversity (weighted UniFrac, PCoA) β-diversity (unweighted UniFrac, PCoA) | Mann–Whitney U test Mann–Whitney U test Mann–Whitney U test Mann–Whitney U test NR PERMANOVA PERMANOVA | ns ns ns ns ns p = 0.402 p = 0.829 |
L. Fan et al. [15] | 2023 | TAK | α-diversity (number of species) α-diversity (Chao 1 index) β-diversity (NMDS) β-diversity (Bray–Curtis) | Wilcoxon’s rank-sum test Wilcoxon’s rank-sum test Adonis MANOVA | p = 0.037 p = 0.037 R2 = 0.024; p = 0.016 p < 0.01 |
Z. Tian et al. [16] | 2022 | AAA | α-diversity (richness: Shannon index) α-diversity (abundance: Simpson index) α-diversity (richness: Chao 1 index) β-diversity (Bray–Curtis, PCoA) β-diversity (Bray–Curtis) | Wilcoxon’s rank-sum test Wilcoxon’s rank-sum test Wilcoxon’s rank-sum test PERMANOVA ANOSIM | ns ns p = 0.042 †; p = 0.022 ‡; p = 0.018 †† p = 0.001 p = 0.001 |
A. C. Desbois et al. [17] | 2021 | TAK GCA LVV | Abundance (LEfSe) α-diversity (Faith’s PD whole tree) α-diversity (Shannon index) β-diversity (weighted UniFrac) β-diversity (unweighted UniFrac) | Wilcoxon’s rank-sum test Student’s t-tests Monte Carlo t-test Mann–Whitney U tests ANOSIM | p < 0.05 NA NA NA NA |
T. M. Getz et al. [18] | 2019 | TAA/non-inflammatory | α-diversity (Shannon diversity index) β-diversity (unweighted UniFrac) | DESeq2 PCoA | p = 0.018 p = 0.024 |
GCA/CIA | α-diversity (Shannon diversity index) β-diversity (unweighted UniFrac) | DESeq2 PCoA | p > 0.7 p > 0.7 | ||
Aorta/temporal arteries | β-diversity (unweighted UniFrac) | PCoA | R2 = 0.06; p = 0.0002 | ||
Non-inflammatory aortas/non-inflammatory temporal arteries | β-diversity (unweighted UniFrac) | PCoA | R2 = 0.11; p = 0.001 | ||
GCA-affected aorta/GCA-affected temporal arteries | β-diversity (unweighted UniFrac) | PCoA | R2 = 0.07; p = 0.001 | ||
S. Zheng et al. [19] | 2017 | TAAD (pre-operative vs. post-operative) | α-diversity (Simpson’s test) β-diversity (PCA) | Student’s t-test Spearman’s rank test | NR (slight change) p < 0.05 |
K. Nakayama et al. [20] | 2022 | AAA | α-diversity (richness: Shannon index) α-diversity (richness: Chao 1) Gut dysbiosis (F/B) | Fisher’s exact test Fisher’s exact test NA (F/B ratio) | 6.2 (4.5–7.6) 2545 (1143–4617) 39.7 |
Y. Qiu et al. [21] § | 2024 | AA | NA | NA | NA |
Y. Lv et al. [22] § | 2024 | AA | NA | NA | NA |
D. Li et al. [23] § | 2023 | AD | NA | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neiroukh, D.; Hajdarpasic, A.; Ayhan, C.; Sultan, S.; Soliman, O. Gut Microbial Taxonomy and Its Role as a Biomarker in Aortic Diseases: A Systematic Review and Future Perspectives. J. Clin. Med. 2024, 13, 6938. https://doi.org/10.3390/jcm13226938
Neiroukh D, Hajdarpasic A, Ayhan C, Sultan S, Soliman O. Gut Microbial Taxonomy and Its Role as a Biomarker in Aortic Diseases: A Systematic Review and Future Perspectives. Journal of Clinical Medicine. 2024; 13(22):6938. https://doi.org/10.3390/jcm13226938
Chicago/Turabian StyleNeiroukh, Dina, Aida Hajdarpasic, Cagri Ayhan, Sherif Sultan, and Osama Soliman. 2024. "Gut Microbial Taxonomy and Its Role as a Biomarker in Aortic Diseases: A Systematic Review and Future Perspectives" Journal of Clinical Medicine 13, no. 22: 6938. https://doi.org/10.3390/jcm13226938
APA StyleNeiroukh, D., Hajdarpasic, A., Ayhan, C., Sultan, S., & Soliman, O. (2024). Gut Microbial Taxonomy and Its Role as a Biomarker in Aortic Diseases: A Systematic Review and Future Perspectives. Journal of Clinical Medicine, 13(22), 6938. https://doi.org/10.3390/jcm13226938