Beta Thalassemia in Children: Established Approaches, Old Issues, New Non-Curative Therapies, and Perspectives on Healing
Abstract
:1. Introduction
2. Conventional Management Strategies
2.1. Initiation and Management of Transfusion Therapy
2.2. Management of Iron Status
2.3. Principles of Iron Chelation in Children
2.4. Role of Splenectomy in the 2020s
- –
- Increased transfusion requirements prevent optimal control of iron overload after ensuring that it is not due to allo/autoantibodies or bleeding. The annual transfusion volume used as a threshold for increased transfusion requirements is 200–275 mL/kg/year; if effective chelation therapy is maintained despite increased transfusion requirements, splenectomy may not be necessary.
- –
- Hypersplenism with cytopenia
- –
- Symptomatic splenomegaly (symptoms such as left hypochondrial pain or early satiety)
- –
- Cytopenias
- –
- Massive splenomegaly with risk of splenic rupture [6]
3. Growth and Puberty
4. Allogenic Hematopoietic Stem Cell Transplantation in Lights and Shadows
5. New Therapies in Children
5.1. New Non-Curative Therapies in Children
5.2. New Perspectives on Healing
6. Management of Thalassemia in Low-Resource Settings
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Modell, B.; Darlison, M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull. World Health Organ. 2008, 86, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Origa, R. β-Thalassemia. Genet. Med. 2017, 19, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Taher, A.T.; Musallam, K.M.; Cappellini, M.D. β-Thalassemias. N. Engl. J. Med. 2021, 384, 727–743. [Google Scholar] [CrossRef] [PubMed]
- Piel, F.B. Present and future global burdens of inherited disorders of hemoglobin. Hematol. Oncol. Clin. N. Am. 2016, 30, 327–341. [Google Scholar] [CrossRef] [PubMed]
- El-Beshlawy, A.; Dewedar, H.; Hindawi, S.; Alkindi, S.; Tantawy, A.A.; Yassin, M.A.; Taher, A.T. Management of transfusion-dependent β-thalassemia (TDT): Expert insights and practical overview from the Middle East. Blood Rev. 2024, 63, 101138. [Google Scholar] [CrossRef]
- Cappellini, M.D.; Cohen, A.; Porter, J.; Taher, A.; Viprakasit, V. (Eds.) Guidelines for the Management of Transfusion Dependent Thalassaemia (TDT), 3rd ed.; Thalassemia International Federation: Nicosia, Cyprus, 2014. [Google Scholar]
- Origa, R.; Tatti, F.; Zappu, A.; Leoni, G.B.; Dessì, C.; Moi, P.; Morittu, M.; Orecchia, V.; Denotti, A.R.; Pilia, M.P.; et al. Early initiation of transfusion and iron chelation therapies in recently born children with transfusion-dependent thalassemia. Am. J. Hematol. 2017, 92, E627–E628. [Google Scholar] [CrossRef]
- Cappellini, M.D.; Porter, J.B.; Musallam, K.M.; Kattamis, A.; Viprakasit, V.; Galanello, R.; Taher, A.T. Development of a new disease severity scoring system for patients with non-transfusion-dependent thalassemia. Eur. J. Intern. Med. 2016, 28, 91–96. [Google Scholar] [CrossRef]
- Kosaryan, M.; Mahdavi, M.R.; Roshan, P.; Hojjati, M.T. Prevalence of alloimmunization in patients with beta thalassemia major. Blood Transfus. 2012, 10, 396–397. [Google Scholar] [CrossRef]
- Camaschella, C.; Pagani, A.; Silvestri, L.; Nai, A. Mutual cross-talk between iron and erythropoiesis. Int. J. Hematol. 2022, 116, 182–191. [Google Scholar] [CrossRef]
- Taher, A.T.; Radwan, A.; Viprakasit, V. Transfusion therapy in patients with non-transfusion-dependent thalassemia. Vox Sang. 2015, 108, 1–10. [Google Scholar] [CrossRef]
- Cazzola, M.; Borgna-Pignatti, C.; Locatelli, F.; Ponchio, L.; Beguin, Y.; De Stefano, P. A moderate transfusion regimen may reduce iron loading in beta-thalassemia major without producing excessive expansion of erythropoiesis. Transfusion 1997, 37, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Cazzola, M.; De Stefano, P.; Ponchio, L.; Locatelli, F.; Beguin, Y.; Dessi, C.; Barella, S.; Cao, A.; Galanello, R. Relationship between transfusion regimen and suppression of erythropoiesis in β-thalassaemia major. Br. J. Haematol. 1995, 89, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Mokhtar, G.M.; Gadallah, M.; El Sherif, N.H.K.; Ali, H.T.A. Morbidities and mortality in patients with transfusion-dependent beta thalassemia patients (single-center experience). Pediatr. Hematol. Oncol. 2013, 30, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Musallam, K.M.; Taher, A.T.; Cappellini, M.D.; Hermine, O.; Kuo, K.H.M.; Sheth, S.; Viprakasit, V.; Porter, J.B. Untreated anemia in Nontransfusion-dependent β-thalassemia: Time to Sound the Alarm. Hemasphere 2022, 6, e806. [Google Scholar] [CrossRef] [PubMed]
- Marghalani, A.H.; Al-Mahmoud, A.S.; Nazir Chaar, D.M.; Rabie, G.M.; Alzurqi, N.I.; Al Zahra, F. Prevalence of malocclusion in the southern region of Jeddah, KSA, and its impact on quality of life—A cross-sectional study. J. Evol. Med. Dent. Sci. 2021, 10, 768–772. [Google Scholar] [CrossRef]
- Elangovan, A.; Mungara, J.; Joseph, E.; Guptha, V. Prevalence of dentofacial abnormalities in children and adolescents with β-thalassemia major. Indian J. Dent. Res. 2013, 24, 406–410. [Google Scholar] [CrossRef]
- Cohen, A.R.; Glimm, E.; Porter, J.B. Effect of transfusional iron intake on response to chelation therapy in β-thalassemia major. Blood 2008, 111, 583–587. [Google Scholar] [CrossRef]
- Berdoukas, V.; Nord, A.; Carson, S.; Puliyel, M.; Hofstra, T.; Wood, J.; Coates, T.D. Tissue iron evaluation in chronically transfused children shows significant levels of iron loading at a very young age. Am. J. Hematol. 2013, 88, E283–E285. [Google Scholar] [CrossRef]
- Wood, J.C.; Origa, R.; Agus, A.; Matta, G.; Coates, T.D.; Galanello, R. Onset of cardiac iron loading in pediatric patients with thalassemia major. Haematologica 2008, 93, 917–920. [Google Scholar] [CrossRef]
- Casale, M.; Meloni, A.; Filosa, A.; Cuccia, L.; Caruso, V.; Palazzi, G.; Gamberini, M.R.; Pitrolo, L.; Putti, M.C.; D’Ascola, D.G.; et al. Multiparametric cardiac magnetic resonance imaging survey in children with thalassemia major: A multicenter study. Circ. Cardiovasc. Imaging 2015, 8, e003230. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Z.; Zhong, J.; Yang, Q.; Yu, T.; Cheng, Z.; Chan, Q.; Guo, H.; Liang, B. MRI assessment of excess cardiac iron in thalassemia major: When to initiate? J. Magn. Reson. Imaging 2015, 42, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Pilania, K.; Jankharia, B.; Kazi, A. Cardiac MRI for iron overload in pediatric thalassemia patients: Right age to start in a resource-constrained environment. Indian J. Hematol. Blood Transfus. 2022, 38, 566–570. [Google Scholar] [CrossRef] [PubMed]
- Meloni, A.; Pistoia, L.; Putti, M.C.; Longo, F.; Corigliano, E.; Ricchi, P.; Rossi, V.; Casini, T.; Righi, R.; Renne, S.; et al. Pancreatic iron in pediatric transfusion-dependent beta-thalassemia patients: A longitudinal MRI study. Pediatr. Blood Cancer 2024, 71, e30923. [Google Scholar] [CrossRef] [PubMed]
- Noetzli, L.J.; Panigrahy, A.; Mittelman, S.D.; Hyderi, A.; Dongelyan, A.; Coates, T.D.; Wood, J.C. Pituitary iron and volume predict hypogonadism in transfusion iron overload. Am. J. Hematol. 2012, 87, 167–171. [Google Scholar] [CrossRef] [PubMed]
- De Sanctis, V.; Pinamonti, A.; Di Palma, A.; Sprocati, M.; Atti, G.; Gamberini, M.R.; Vullo, C. Growth and development in thalassemia major patients with severe bone lesions due to desferrioxamine. Eur. J. Pediatr. 1996, 155, 368–372. [Google Scholar] [CrossRef]
- De Virgiliis, S.D.; Congia, M.; Frau, F.; Argiolu, F.; Diana, G.; Cucca, F.; Varsi, A.; Sanna, G.; Podda, G.; Fodde, M. Deferoxamine-induced growth retardation in patients with thalassemia major. J. Pediatr. 1988, 113, 661–669. [Google Scholar] [CrossRef]
- Albera, R.; Pia, F.; Morra, B.; Lacilla, M.; Bianco, L.; Gabutti, V.; Piga, A. Hearing loss and desferrioxamine in homozygous beta-thalassemia. Audiology 1988, 27, 207–214. [Google Scholar] [CrossRef]
- Piga, A.; Luzzatto, L.; Capalbo, P.; Gambotto, S.; Tricta, F.; Gabutti, V. High-dose desferrioxamine as a cause of growth failure in patients with thalassemia. Eur. J. Haematol. 1988, 40, 380–381. [Google Scholar] [CrossRef]
- Casale, M.; Marsella, M.; Ammirabile, M.; Spasiano, A.; Costantini, S.; Cinque, P.; Ricchi, P.; Filosa, A. Predicting factors for liver iron overload at the first magnetic resonance imaging in children with thalassemia major. Blood Transfus. 2019, 17, 165–170. [Google Scholar] [CrossRef]
- Danjou, F.; Cabantchik, Z.I.; Origa, R.; Moi, P.; Marcias, M.; Barella, S.; Defraia, E.; Dessì, C.; Foschini, M.L.; Giagu, N.; et al. A decisional algorithm to start iron chelation in patients with beta thalassemia. Haematologica 2014, 99, e38–e40. [Google Scholar] [CrossRef]
- Harrington, J.M.; Chittamuru, S.; Dhungana, S.; Jacobs, H.K.; Gopalan, A.S.; Crumbliss, A.L. Synthesis and iron sequestration equilibria of novel exocyclic 3-hydroxy-2-pyridinone donor group siderophore mimics. Inorg. Chem. 2010, 49, 8208–8221. [Google Scholar] [CrossRef] [PubMed]
- Sohn, Y.S.; Breuer, W.; Munnich, A.; Cabantchik, Z.I. Redistribution of accumulated cell iron: A modality of chelation with therapeutic implications. Blood 2008, 111, 1690–1699. [Google Scholar] [CrossRef] [PubMed]
- Al-Refaie, F.N.; Wonke, B.; Hoffbrand, A.V.; Wickens, D.G.; Nortey, P.; Kontoghiorghes, G.J. Efficacy and possible adverse effects of the oral iron chelator 1,2-dimethyl-3-hydroxypyrid-4-one (L1) in thalassemia major. Blood 1992, 80, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.D.; Hider, R.C. Design of clinically useful iron(III)-selective chelators. Med. Res. Rev. 2002, 22, 26–64. [Google Scholar] [CrossRef] [PubMed]
- Elalfy, M.S.; Adly, A.; Awad, H.; Salam, M.; Berdoukas, V.; Tricta, F. Safety and efficacy of early start of iron chelation therapy with deferiprone in young children newly diagnosed with transfusion-dependent thalassemia: A randomized controlled trial. Am. J. Hematol. 2018, 93, 262–268. [Google Scholar] [CrossRef]
- Elalfy, M.S.; Hamdy, M.; Adly, A.; Ebeid, F.S.E.; Temin, N.T.; Rozova, A.; Lee, D.; Fradette, C.; Tricta, F. Efficacy and safety of early-start deferiprone in infants and young children with transfusion-dependent beta thalassemia: Evidence for iron shuttling to transferrin in a randomized, double-blind, placebo-controlled, clinical trial (START). Am. J. Hematol. 2023, 98, 1415–1424. [Google Scholar] [CrossRef]
- Maggio, A.; Kattamis, A.; Felisi, M.; Reggiardo, G.; El-Beshlawy, A.; Bejaoui, M.; Sherief, L.; Christou, S.; Cosmi, C.; Della Pasqua, O.; et al. Evaluation of the efficacy and safety of deferiprone compared with deferasirox in pediatric patients with transfusion-dependent haemoglobinopathies (DEEP-2): A multicenter, randomized, open-label, non-inferiority, phase 3 trial. Lancet Haematol. 2020, 7, e469–e478. [Google Scholar] [CrossRef]
- Botzenhardt, S.; Felisi, M.; Bonifazi, D.; Del Vecchio, G.C.; Putti, M.C.; Kattamis, A.; Ceci, A.; Wong, I.C.K.; Neubert, A.; DEEP consortium (collaborative group). Long-term safety of deferiprone treatment in children with beta-thalassemia major from the Mediterranean region: The DEEP-3 multi-center observational safety study. Haematologica 2018, 103, e1–e4. [Google Scholar] [CrossRef]
- Ceci, A.; Mangiarini, L.; Felisi, M.; Bartoloni, F.; Ciancio, A.; Capra, M.; D’Ascola, D.; Cianciulli, P.; Filosa, A. Mmanagement of iron chelation therapy: Preliminary data from a national registry of thalassaemic patients. Anemia 2011, 2011, 435683. [Google Scholar] [CrossRef]
- Taher, A.T.; Origa, R.; Perrotta, S.; Kourakli, A.; Ruffo, G.B.; Kattamis, A.; Goh, A.S.; Cortoos, A.; Huang, V.; Weill, M.; et al. New film-coated tablet formulation of deferasirox is well tolerated in patients with thalassemia or lower-risk MDS: Results of the randomized, phase II Eclipse study. Am. J. Hematol. 2017, 92, 420–428. [Google Scholar] [CrossRef]
- Kattamis, A.; Aydinok, Y.; Taher, A. Optimizing the management of deferasirox therapy for patients with transfusion-dependent thalassemia and lower-risk myelodysplastic syndrome. Eur. J. Haematol. 2018, 101, 272–282. [Google Scholar] [CrossRef] [PubMed]
- Taher, A.T.; Origa, R.; Perrotta, S.; Kouraklis, A.; Ruffo, G.B.; Kattamis, A.; Goh, A.S.; Huang, V.; Zia, A.; Herranz, R.M.; et al. Patient-reported outcomes of a randomized phase II study on deferasirox film-coated tablets in patients with transfusion-dependent anemia. Health Qual. Life Outcomes 2018, 16, 216. [Google Scholar] [CrossRef] [PubMed]
- Vichinsky, E.; El-Beshlawy, A.; Al Zoebie, A.; Kamdem, A.; Koussa, S.; Chotsampancharoen, T.; Bruederle, A.; Gilotti, G.; Han, J.; Elalfy, M. Long-term safety and efficacy of deferasirox in young pediatric patients with transfusional hemosiderosis: Results from a 5year observational study (ENTRUST). Pediatr. Blood Cancer 2017, 64, e26507. [Google Scholar] [CrossRef] [PubMed]
- Wali, Y.; Hassan, T.; Charoenkwan, P.; Trompeter, S.; Tartaglione, I.; Origa, R.; Gamberini, M.R.; Viprakasit, V.; Izquierdo, M.; Opio, S.; et al. Crush deferasirox film-coated tablets in pediatric patients with transfusional hemosiderosis: Results of a single-arm, interventional phase 4 study (MIMAS). Am. J. Hematol. 2022, 97, E292–E295. [Google Scholar] [CrossRef] [PubMed]
- Taher, A.T.; Wali, Y.; Cruz, M.C.; Charoenkwan, P.; Aydinok, Y.; Werner, O.; Govindaraju, S.; Romen, F.; Viprakasit, V. Compliance and clinical benefit of deferasirox granule and dispersible tablet formulation in pediatric patients with transfusional iron overload: In a randomized, open-label, multicenter, phase II study. Haematologica 2024, 109, 1413–1425. [Google Scholar] [CrossRef]
- Galanello, R.; Piga, A.; Forni, G.L.; Bertrand, Y.; Foschini, M.L.; Bordone, E.; Leoni, G.; Lavagetto, A.; Zappu, A.; Longo, F.; et al. Phase II clinical evaluation of deferasirox, a once-daily oral chelating agent, in pediatric patients with beta-thalassemia major. Haematologica 2006, 91, 1343–1351. [Google Scholar]
- Cappellini, M.D. A phase 3 study of deferasirox (ICL670), a once-daily oral iron chelator, in patients with thalassemia. Blood 2006, 107, 3455–3462. [Google Scholar] [CrossRef]
- Cappellini, M.D.; Bejaoui, M.; Agaoglu, L.; Canatan, D.; Capra, M.; Cohen, A.; Drelichman, G.; Economou, M.; Fattoum, S.; Kattamis, A.; et al. Iron chelation with deferasirox in adult and pediatric patients with thalassemia major: Efficacy and safety during 5 years of follow-up. Blood 2011, 118, 884–893. [Google Scholar] [CrossRef]
- Taher, A.; El-Beshlawy, A.; Elalfy, M.S.; Al Zir, K.; Daar, S.; Habr, D.; Kriemler-Krahn, U.; Hmissi, A.; Al Jefri, A. Efficacy and safety of deferasirox, an oral iron chelator, in heavily iron-overloaded patients with β-thalassaemia: The ESCALATOR study. Eur. J. Haematol. 2009, 82, 458–465. [Google Scholar] [CrossRef]
- Origa, R.; Zappu, A.; Foschini, M.L.; Leoni, G.; Morittu, M.; Moi, P.; Corpino, M.; Dessì, C. Deferasirox and children: From clinical trials to the real world. Am. J. Hematol. 2016, 91, E304–E305. [Google Scholar] [CrossRef]
- Cappellini, M.D.; Porter, J.; El-Beshlawy, A.; Li, C.K.; Seymour, J.F.; Elalfy, M.; Gattermann, N.; Giraudier, S.; Lee, J.W.; Chan, L.L.; et al. Tailoring iron chelation by iron intake and serum ferritin: A prospective EPIC study of deferasirox in 1744 patients with transfusion-dependent anemia. Haematologica 2010, 95, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Scoglio, M.; Cappellini, M.D.; D’Angelo, E.; Bianchetti, M.G.; Lava, S.A.G.; Agostoni, C.; Milani, G.P. Kidney tubular damage secondary to deferasirox: A systematic literature review. Children 2021, 8, 1104. [Google Scholar] [CrossRef] [PubMed]
- Bird, S.T.; Swain, R.S.; Tian, F.; Okusanya, O.O.; Waldron, P.; Khurana, M.; Durmowicz, E.L.; Ma, Y.; Major, J.M.; Gelperin, K. Effects of deferasirox dose and decreasing serum ferritin concentrations on kidney function in pediatric patients: An analysis of clinical laboratory data from pooled clinical studies. Lancet Child Adolesc. Health 2019, 3, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Ramaswami, A.; Rosen, D.J.; Chu, J.; Taipinghausen, B.; Arnon, R. Fulminant liver failure in a child with β-thalassemia on deferasirox: A case report. J. Pediatr. Hematol. Oncol. 2017, 39, 235–237. [Google Scholar] [CrossRef] [PubMed]
- Dee, C.M.A.; Cheuk, D.K.L.; Ha, S.Y.; Chiang, A.K.S.; Chan, G.C.F. Incidence of deferasirox-associated renal tubular dysfunction in children and young adults with beta-thalassaemia. Br. J. Haematol. 2014, 167, 434–436. [Google Scholar] [CrossRef]
- Tresa, A.; Shankar, G.H.; Sarangi, B.U.; Walimbe, A. Deferasirox causing duodenal ulcer leading to upper gastrointestinal bleeding and hemorrhagic shock in a child with beta-thalassemia major. Indian J. Pharmacol. 2023, 55, 335–337. [Google Scholar] [CrossRef]
- Yampayon, K.; Anantachoti, P.; Chongmelaxme, B.; Yodsurang, V. Genetic polymorphisms influencing deferasirox pharmacokinetics, efficacy, and adverse drug reactions: A systematic review and meta-analysis. Front. Pharmacol. 2023, 14, 1069854. [Google Scholar] [CrossRef]
- Galeotti, L.; Ceccherini, F.; Fucile, C.; Marini, V.; Di Paolo, A.; Maximova, N.; Mattioli, F. Evaluation of pharmacokinetics and pharmacodynamics of deferasirox in pediatric patients. Pharmaceutics 2021, 13, 1238. [Google Scholar] [CrossRef]
- Piolatto, A.; Berchialla, P.; Allegra, S.; De Francia, S.; Ferrero, G.B.; Piga, A.; Longo, F. Pharmacological and clinical evaluation of deferasirox formulations for treatment tailoring. Sci. Rep. 2021, 11, 12581. [Google Scholar] [CrossRef]
- Aydinok, Y. Combination Chelation Therapy. Ann. N. Y. Acad. Sci. 2023, 1529, 33–41. [Google Scholar] [CrossRef]
- Origa, R.; Cinus, M.; Pilia, M.P.; Gianesin, B.; Zappu, A.; Orecchia, V.; Clemente, M.G.; Pitturru, C.; Denotti, A.R.; Corongiu, F.; et al. Safety and efficacy of new combination iron chelation regimens in patients with transfusion-dependent thalassemia and severe iron overload. J. Clin. Med. 2022, 11, 2010. [Google Scholar] [CrossRef]
- Jetsrisuparb, A.; Komvilaisak, P.; Wiangnon, S.; Jetsrisuparb, C. Retrospective study on the combination of desferrioxamine and deferasirox for treatment of iron-overloaded thalassemic patients: First evidence of more than two years. J. Pediatr. Hematol. Oncol. 2010, 32, 400–403. [Google Scholar] [CrossRef] [PubMed]
- El-Beshlawy, A.; Manz, C.; Naja, M.; Eltagui, M.; Tarabishi, C.; Youssry, I.; Sobh, H.; Hamdy, M.; Sharaf, I.; Mostafa, A.; et al. Iron chelation in thalassemia: Combined or monotherapy? Egyptian Experience. Ann. Hematol. 2008, 87, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Origa, R.; Bina, P.; Agus, A.; Crobu, G.; Defraia, E.; Dessì, C.; Leoni, G.; Muroni, P.P.; Galanello, R. Combined therapy with deferiprone and desferrioxamine in thalassemia major. Haematologica 2005, 90, 1309–1314. [Google Scholar] [PubMed]
- Totadri, S.; Bansal, D.; Bhatia, P.; Attri, S.V.; Trehan, A.; Marwaha, R.K. The deferiprone and deferasirox combination is efficacious in iron overloaded patients with β-thalassemia major: A prospective, single center, open-label study. Pediatr. Blood Cancer 2015, 62, 1592–1596. [Google Scholar] [CrossRef] [PubMed]
- DivakarJose, R.R.; Delhikumar, C.G.; Ram Kumar, G. Efficacy and safety of combined oral chelation with deferiprone and deferasirox on iron overload in transfusion-dependent children with thalassemia: A prospective observational study. Indian J. Pediatr. 2021, 88, 330–335. [Google Scholar] [CrossRef]
- Gomber, S.; Jain, P.; Sharma, S.; Narang, M. Comparative efficacy and safety of oral iron chelators and their novel combination in children with thalassemia. Indian Pediatr. 2016, 53, 207–210. [Google Scholar] [CrossRef]
- Elalfy, M.S.; Adly, A.M.; Wali, Y.; Tony, S.; Samir, A.; Elhenawy, Y.I. Efficacy and safety of a novel combination of two oral chelators deferasirox/deferiprone over deferoxamine/deferiprone in severely iron-overloaded young patients with beta-thalassemia major. Eur. J. Haematol. 2015, 95, 411–420. [Google Scholar] [CrossRef]
- Aydinok, Y.; Kattamis, A.; Cappellini, M.D.; El-Beshlawy, A.; Origa, R.; Elalfy, M.; Kilinç, Y.; Perrotta, S.; Karakas, Z.; Viprakasit, V.; et al. Effects of deferasirox-deferoxamine on myocardial and liver iron in patients with severe transfusional iron overload. Blood 2015, 125, 3868–3877. [Google Scholar] [CrossRef]
- Lal, A.; Porter, J.; Sweeters, N.; Ng, V.; Evans, P.; Neumayr, L.; Kurio, G.; Harmatz, P.; Vichinsky, E. Combined chelation therapy with deferasirox and deferoxamine in thalassemia. Blood Cells Mol. Dis. 2013, 50, 99–104. [Google Scholar] [CrossRef]
- Arandi, N.; Haghpanah, S.; Safaei, S.; Zahedi, Z.; Ashrafi, A.; Eatemadfar, P.; Zarei, T.; Radwan, A.H.; Taher, A.T.; Karimi, M. Combination therapy-deferasirox and deferoxamine-in thalassemia major patients in emerging countries with limited resources. Transfus. Med. 2015, 25, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Eghbali, A.; Shokri, P.; Afzal, R.R.; Bagheri, B. A 1-year randomized trial of deferasirox alone versus deferasirox and deferoxamine combination for the treatment of iron overload in thalassemia major. Transfus. Apher. Sci. 2019, 58, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Forni, G.L.; Gianesin, B.; Musallam, K.M.; Longo, F.; Rosso, R.; Lisi, R.; Gamberini, M.R.; Pinto, V.M.; Graziadei, G.; Vitucci, A.; et al. Overall and complication-free survival in a large cohort of patients with β-thalassemia major followed over 50 years. Am. J. Hematol. 2023, 98, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Borenstain-Ben Yashar, V.; Barenholz, Y.; Hy-Am, E.; Rachmilewitz, E.A.; Eldor, A. Phosphatidylserine in the outer leaflet of red blood cells from beta-thalassemia patients may explain the chronic hypercoagulable state and thrombotic episodes. Am. J. Hematol. 1993, 44, 63–65. [Google Scholar] [CrossRef] [PubMed]
- Bou-Fakhredin, R.; Rivella, S.; Cappellini, M.D.; Taher, A.T. Pathogenic mechanisms in thalassemia I: Ineffective Erythropoiesis and Hypercoagulability. Hematol. Oncol. Clin. N. Am. 2023, 37, 341–351. [Google Scholar] [CrossRef]
- Iolascon, A.; Andolfo, I.; Barcellini, W.; Corcione, F.; Garçon, L.; De Franceschi, L.; Pignata, C.; Graziadei, G.; Pospisilova, D.; Rees, D.C.; et al. Recommendations for splenectomy for hereditary hemolytic anemias. Haematologica 2017, 102, 1304–1313. [Google Scholar] [CrossRef]
- Davies, J.M.; Lewis, M.P.N.; Wimperis, J.; Rafi, I.; Ladhani, S.; Bolton-Maggs, P.H.B.; British Committee for Standards in Haematology. Review of guidelines for the prevention and treatment of infection in patients with an absent or dysfunctional spleen: Prepared on behalf of the British Committee for Standards in Haematology by a Working Party of the Haemato-Oncology Task Force. Br. J. Haematol. 2011, 155, 308–317. [Google Scholar] [CrossRef]
- Sanpakit, K.; Narkbunnam, N.; Buaboonnam, J.; Takpradit, C.; Viprakasit, V.; Pongtanakul, B. Impact of splenectomy on outcomes of hematopoietic stem cell transplantation in pediatric patients with transfusion-dependent thalassemia. Pediatr. Blood Cancer 2020, 67, e28483. [Google Scholar] [CrossRef]
- Yacobovich, J.; Barzilai-Birenboim, S.; Steinberg-Shemer, O.; Stark, P.; Pazgal, I.; Tamary, H. Splenectomy in childhood for non-malignant hematologic disorders–Long-term follow-up shows minimal adverse effects. Br. J. Haematol. 2020, 190, 909–915. [Google Scholar] [CrossRef]
- Surapolchai, P.; Songdej, D.; Hantaweepant, C.; Tantiworawit, A.; Charoenkwan, P.; Lauhasurayotin, S.; Torcharus, K.; Sripornsawan, P.; Sutcharitchan, P.; Konwilaisak, P.; et al. Thalassemia-related complications in pediatric, adolescent, and young adult patients with transfusion-dependent thalassemia: A multicenter study in Thailand. Pediatr. Blood Cancer 2023, 70, e30599. [Google Scholar] [CrossRef]
- Akca, T.; Ozdemir, G.N.; Aycicek, A.; Ozkaya, G. Long-term Results of Splenectomy in Transfusion-dependent Thalassemia. J. Pediatr. Hematol. Oncol. 2023, 45, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Khirallah, M.G.; Kabbash, I.A.; El-Dessouki, N.E. Prognostic scoring system of laparoscopic splenectomy in children with benign hematological diseases: A retrospective cohort study. Ann. Med. Surg. 2021, 67, 102463. [Google Scholar] [CrossRef] [PubMed]
- Al-Salem, A.H. Splenectomy for children with thalassemia: Total or partial splenectomy, open or laparoscopic splenectomy. J. Pediatr. Hematol. Oncol. 2016, 38, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Casale, M.; Baldini, M.I.; Del Monte, P.; Gigante, A.; Grandone, A.; Origa, R.; Poggi, M.; Gadda, F.; Lai, R.; Marchetti, M.; et al. Good clinical practice of the Italian Society of Thalassemia and Hemoglobinopathies (SITE) for management of endocrine complications in patients with hemoglobinopathies. J. Clin. Med. 2022, 11, 1826. [Google Scholar] [CrossRef] [PubMed]
- De Sanctis, V.; Soliman, A.T.; Elsedfy, H.; Skordis, N.; Kattamis, C.; Angastiniotis, M.; Karimi, M.; Yassin, M.A.D.M.; El Awwa, A.; Stoeva, I.; et al. Growth and endocrine disorders in thalassemia: The international network on endocrine complications in thalassemia (I-CET) position statement and guidelines. Indian J. Endocrinol. Metab. 2013, 17, 8–18. [Google Scholar] [CrossRef]
- Murray, P.G.; Dattani, M.T.; Clayton, P.E. Controversies in the diagnosis and management of growth hormone deficiency in childhood and adolescence. Arch. Dis. Child. 2016, 101, 96–100. [Google Scholar] [CrossRef]
- Collett-Solberg, P.F.; Ambler, G.; Backeljauw, P.F.; Bidlingmaier, M.; Biller, B.M.K.; Boguszewski, M.C.S.; Cheung, P.T.; Choong, C.S.Y.; Cohen, L.E.; Cohen, P.; et al. Diagnosis, genetics, and therapy of short stature in children: A Growth Hormone Research Society international perspective. Horm. Res. Paediatr. 2019, 92, 1–14. [Google Scholar] [CrossRef]
- Ngim, C.F.; Lai, N.M.; Hong, J.Y.; Tan, S.L.; Ramadas, A.; Muthukumarasamy, P.; Thong, M.K. Growth hormone therapy for people with thalassaemia. Cochrane Database Syst. Rev. 2020, 5, CD012284. [Google Scholar] [CrossRef]
- Origa, R.; Danjou, F.; Orecchia, V.; Zappu, A.; Dessì, C.; Foschini, M.L.; Leoni, G.B.; Moi, P.; Morittu, M.; Demurtas, A.; et al. Current growth patterns of children and adolescents with thalassemia major. Blood 2016, 128, 2580–2582. [Google Scholar] [CrossRef]
- Shalitin, S.; Carmi, D.; Weintrob, N.; Phillip, M.; Miskin, H.; Kornreich, L.; Zilber, R.; Yaniv, I.; Tamary, H. Serum ferritin level as a predictor of impaired growth and puberty in patients with thalassemia major. Eur. J. Haematol. 2005, 74, 93–100. [Google Scholar] [CrossRef]
- Borgna-Pignatti, C.; Cappellini, M.D.; De Stefano, P.; Del Vecchio, G.C.; Forni, G.L.; Gamberini, M.R.; Ghilardi, R.; Origa, R.; Piga, A.; Romeo, M.A.; et al. Survival and complications in patients with thalassemia. Ann. N. Y. Acad. Sci. 2005, 1054, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, M.J.; Macklin, E.A.; Neufeld, E.J.; Cohen, A.R.; Thalassemia Clinical Research Network. Complications of β-thalassemia major in North America. Blood 2004, 104, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Di Maio, S.; Marzuillo, P.; Daar, S.; Kattamis, C.; Karimi, M.; Forough, S.; Banchev, A.; Kaleva, V.; Christou, S.; Fortugno, C.; et al. A multicenter ICE T-A study on age at menarche and menstrual cycle in patients with transfusion-dependent thalassemia (TDT) who started early chelation therapy with different chelating agents. Mediterr. J. Hematol. Infect. Dis. 2023, 15, e2023058. [Google Scholar] [CrossRef] [PubMed]
- Di Maio, S.; Marzuillo, P.; Mariannis, D.; Christou, S.; Ellinides, A.; Christodoulides, C.; de Sanctis, V. A retrospective long-term study on age at menarche and menstrual characteristics in 85 young women with transfusion-dependent β-thalassemia (TDT). Mediterr. J. Hematol. Infect. Dis. 2021, 13, e2021040. [Google Scholar] [CrossRef]
- Caocci, G.; Orofino, M.G.; Vacca, A.; Piroddi, A.; Piras, E.; Addari, M.C.; Caria, R.; Pilia, M.P.; Origa, R.; Moi, P.; et al. Long-term survival of beta thalassemia major patients treated with hematopoietic stem cell transplantation compared with survival with conventional treatment. Am. J. Hematol. 2017, 92, 1303–1310. [Google Scholar] [CrossRef]
- Angelucci, E.; Matthes-Martin, S.; Baronciani, D.; Bernaudin, F.; Bonanomi, S.; Cappellini, M.D.; Dalle, J.H.; Di Bartolomeo, P.; de Heredia, C.D.; Dickerhoff, R.; et al. Hematopoietic stem cell transplantation in thalassemia major and sickle cell disease: Indications and management recommendations from an international expert panel. Haematologica 2014, 99, 811–820. [Google Scholar] [CrossRef]
- Angelucci, E.; Pilo, F.; Coates, T.D. Transplantation in thalassemia: Revisiting the Pesaro risk factors 25 years later. Am. J. Hematol. 2017, 92, 411–413. [Google Scholar] [CrossRef]
- Lucarelli, G.; Galimberti, M.; Polchi, P.; Angelucci, E.; Baronciani, D.; Giardini, C.; Politi, P.; Durazzi, S.M.T.; Muretto, P.; Albertini, F. Bone marrow transplantation in patients with thalassemia. N. Engl. J. Med. 1990, 322, 417–421. [Google Scholar] [CrossRef]
- Baronciani, D.; Angelucci, E.; Potschger, U.; Gaziev, J.; Yesilipek, A.; Zecca, M.; Orofino, M.G.; Giardini, C.; Al-Ahmari, A.; Marktel, S.; et al. Hemopoietic stem cell transplantation in thalassemia: A report from the European Society for Blood and Bone Marrow Transplantation Hemoglobinopathy Registry, 2000–2010. Bone Marrow Transplant. 2016, 51, 536–541. [Google Scholar] [CrossRef]
- Li, C.; Mathews, V.; Kim, S.; George, B.; Hebert, K.; Jiang, H.; Li, C.; Zhu, Y.; Keesler, D.A.; Boelens, J.J.; et al. Related and Unrelated Donor Transplantation for b-Thalassemia Major: Results of an International Survey. Blood Adv. 2019, 3, 2562–2570. [Google Scholar] [CrossRef]
- Ruggeri, A.; Eapen, M.; Scaravadou, A.; Cairo, M.S.; Bhatia, M.; Kurtzberg, J.; Wingard, J.R.; Fasth, A.; Lo Nigro, L.; Ayas, M.; et al. Umbilical cord blood transplantation in children with thalassemia and sickle cell disease. Biol. Blood Marrow Transplant. 2011, 17, 1375–1382. [Google Scholar] [CrossRef] [PubMed]
- Sodani, P.; Isgrò, A.; Gaziev, J.; Polchi, P.; Paciaroni, K.; Marziali, M.; Simone, M.D.; Roveda, A.; Montuoro, A.; Alfieri, C.; et al. Purified T-depleted, CD34+ peripheral blood and bone marrow cell transplantation from a haploidentical mother into a child with thalassemia. Blood 2010, 115, 1296–1302. [Google Scholar] [CrossRef] [PubMed]
- Gaziev, J.; Isgrò, A.; Sodani, P.; Paciaroni, K.; De Angelis, G.; Marziali, M.; Ribersani, M.; Alfieri, C.; Lanti, A.; Galluccio, T.; et al. Haploidentical HSCT for hemoglobinopathies: Improved outcomes with TCRαβ+/CD19+-depleted grafts. Blood Adv. 2018, 2, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Andreani, M.; Testi, M.; Battarra, M.; Indigeno, P.; Guagnano, A.; Polchi, P.; Federici, G.; Lucarelli, G. Relationship between mixed chimerism and rejection after bone marrow transplantation in thalassemia. Blood Transfus. 2008, 6, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, M.E.; Piras, E.; Vacca, A.; Giorgiani, G.; Zecca, M.; Bertaina, A.; Pagliara, D.; Contoli, B.; Pinto, R.M.; Caocci, G.; et al. Allogeneic hematopoietic stem cell transplantation in thalassemia major: Results of a treosulfan-based reduced-toxicity conditioning regimen based on the use of treosulfan. Blood 2012, 120, 473–476. [Google Scholar] [CrossRef]
- Bernardo, M.E.; Zecca, M.; Piras, E.; Vacca, A.; Giorgiani, G.; Cugno, C.; Caocci, G.; Comoli, P.; Mastronuzzi, A.; Merli, P.; et al. Treosulfan-based conditioning regimens for allogeneic hematopoietic stem cell transplantation in thalassemia major patients. Br. J. Haematol. 2008, 143, 548–551. [Google Scholar] [CrossRef]
- Pai, A.A.; Mohanan, E.; Panetta, J.C.; Kulkarni, U.P.; Illangeswaran, R.S.S.; Balakrishnan, B.; Jayaraman, A.; Edison, E.S.; Lakshmi, K.M.; Devasia, A.J.; et al. Treosulfan exposure predicts thalassemia-free survival in patients with beta thalassemia major undergoing allogeneic hematopoietic cell transplantation. Clin. Pharmacol. Ther. 2024, 115, 116–125. [Google Scholar] [CrossRef]
- Lüftinger, R.; Zubarovskaya, N.; Galimard, J.E.; Cseh, A.; Salzer, E.; Locatelli, F.; Algeri, M.; Yesilipek, A.; de la Fuente, J.; Isgrò, A.; et al. Busulfan–fludarabine- or treosulfan-fludarabine-based myeloablative conditioning in children with thalassemia major. Ann. Hematol. 2022, 101, 655–665. [Google Scholar] [CrossRef]
- Korula, A.; Nisham, P.N.; Devasia, A.; Lakshmi, K.M.; Abraham, A.; Sindhuvi, E.; George, B.; Srivastava, A.; Mathews, V. Second hematopoietic stem cell transplant for thalassemia major: Improved clinical outcomes with a treosulfan-based conditioning regimen. Biol. Blood Marrow Transplant. 2018, 24, 103–108. [Google Scholar] [CrossRef]
- Porter, J. Beyond transfusion therapy: New therapies in thalassemia including drugs, alternate donor transplants, and gene therapy. Hematol. Am. Soc. Hematol. Educ. Program 2018, 2018, 361–370. [Google Scholar] [CrossRef]
- Suragani, R.N.V.S.; Cawley, S.M.; Li, R.; Wallner, S.; Alexander, M.J.; Mulivor, A.W.; Gardenghi, S.; Rivella, S.; Grinberg, A.V.; Pearsall, R.S.; et al. Modified activin receptor IIB ligand trap mitigates ineffective erythropoiesis and disease complications in murine β-thalassemia. Blood 2014, 123, 3864–3872. [Google Scholar] [CrossRef] [PubMed]
- Cappellini, M.D.; Taher, A.T. Use of Luspatercept in Adults with Thalassemia. Blood Adv. 2021, 5, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Cappellini, M.D.; Viprakasit, V.; Taher, A.T.; Georgiev, P.; Kuo, K.H.M.; Coates, T.; Voskaridou, E.; Liew, H.K.; Pazgal-Kobrowski, I.; Forni, G.L.; et al. A Phase 3 trial of luspatercept in patients with transfusion-dependent β-thalassemia. N. Engl. J. Med. 2020, 382, 1219–1231. [Google Scholar] [CrossRef] [PubMed]
- Kattamis, A.; Musallam, K.M.; Perrotta, S.; Aydinok, Y.; Ferrero, G.B.; Coates, T.D.; Grabowska, O.; Bluemmert, T.; Simcock, M.; Moro Bueno, L.; et al. Safety Data from the Dose-Finding Cohorts: A Phase 2A Study of Luspatercept in Pediatric Patients with Beta-Thalassemia. Available online: https://library.ehaweb.org/eha/2024/eha2024-congress/419603/antonis.kattamis.safety.data.from.the.dose-finding.cohorts.a.phase.2a.study.of.html (accessed on 14 November 2024).
- Kuo, K.H.M. Pyruvate kinase activators: Targeting red cell metabolism in thalassemia. Hematol. Am. Soc. Hematol. Educ. Program. 2023, 2023, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Pinto, V.M.; Mazzi, F.; De Franceschi, L. Novel therapeutic approaches in thalassemias, sickle cell disease, and other red cell disorders. Blood 2024, 144, 853–866. [Google Scholar] [CrossRef]
- Pilo, F.; Angelucci, E. Vamifeport: Monography of the First Oral Ferroportin Inhibitor. J. Clin. Med. 2024, 13, 5524. [Google Scholar] [CrossRef]
- Guerra, A.; Hamilton, N.; Rivera, A.; Demsko, P.; Guo, S.; Rivella, S. Combination of a TGF-β ligand trap (RAP-GRL) and TMPRSS6-ASO is superior for correcting β-thalassemia. Am. J. Hematol. 2024, 99, 1300–1312. [Google Scholar] [CrossRef]
- Tanzi, E.; Di Modica, S.M.; Bordini, J.; Olivari, V.; Pagani, A.; Furiosi, V.; Silvestri, L.; Campanella, A.; Nai, A. Bone marrow Tfr2 deletion improves the therapeutic efficacy of the activin-receptor ligand trap RAP-536 in β-thalassemic mice. Am. J. Hematol. 2024, 99, 1313–1325. [Google Scholar] [CrossRef]
- Motta, I.; Ghiaccio, V.; Cosentino, A.; Breda, L. Curing hemoglobinopathies: Challenges and advances in conventional and new gene therapy approaches. Mediterr. J. Hematol. Infect. Dis. 2019, 11, e2019067. [Google Scholar] [CrossRef]
- Corbacioglu, S.; Frangoul, H.; Locatelli, F.; Hobbs, W.; Walters, M. Defining curative endpoints for transfusion-dependent β-thalassemia in the era of gene therapy and gene editing. Am. J. Hematol. 2024, 99, 422–429. [Google Scholar] [CrossRef]
- Thompson, A.A.; Olson, T.S.; Walters, M.C.; Porter, J.B.; Schneiderman, J.; Hongeng, S.; Kulozik, A.; Cavazzana, M.; Sauer, M.G.; Thrasher, A.J.; et al. Sustained efficacy, safety, and improved quality of life in adult and pediatric patients with transfusion-dependent β-thalassemia up to 9 years post treatment with Betibeglogene Autotemcel (Beti-cel). Blood 2023, 142, 1102. [Google Scholar] [CrossRef]
- Locatelli, F.; Thompson, A.A.; Kwiatkowski, J.L.; Porter, J.B.; Thrasher, A.J.; Hongeng, S.; Sauer, M.G.; Thuret, I.; Lal, A.; Algeri, M.; et al. Betibeglogene Autotemcel gene therapy for non-β0/β0 genotype β-thalassemia. N. Engl. J. Med. 2022, 386, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Paschoudi, K.; Yannaki, E.; Psatha, N. Precision editing as a therapeutic approach for β-hemoglobinopathies. Int. J. Mol. Sci. 2023, 24, 9527. [Google Scholar] [CrossRef] [PubMed]
- Frangoul, H.; Altshuler, D.; Cappellini, M.D.; Chen, Y.S.; Domm, J.; Eustace, B.K.; Foell, J.; de la Fuente, J.; Grupp, S.; Handgretinger, R.; et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 2021, 384, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, F.; Lang, P.; Wall, D.; Meisel, R.; Corbacioglu, S.; Li, A.M.; de la Fuente, J.; Shah, A.J.; Carpenter, B.; Kwiatkowski, J.L.; et al. Exagamglogene Autotemcel for transfusion-dependent β-thalassemia. N. Engl. J. Med. 2024, 390, 1663–1676. [Google Scholar] [CrossRef]
- Alhosain, A. Premarital screening programmes in the Middle East from a human rights perspective. Divers. Equal. Health Care 2018, 15, 41–45. [Google Scholar] [CrossRef]
- Arthur, C.M.; Stowell, S.R. The Development and Consequences of Red Blood Cell Alloimmunization. Annu. Rev. Pathol. 2023, 18, 537–564. [Google Scholar] [CrossRef]
- Biswas, B.; Naskar, N.N.; Basu, K.; Dasgupta, A.; Basu, R.; Paul, B. Transfusion-transmitted infections, its risk factors and impact on quality of life: An epidemiological study among β-thalassemia major children. Asian J. Transfus. Sci. 2022, 16, 99–105. [Google Scholar] [CrossRef]
- Viprakasit, V.; Ajlan, A.; Aydinok, Y.; Al Ebadi, B.A.A.; Dewedar, H.; Ibrahim, A.S.; Ragab, L.; Trad, O.; Wataify, A.S.; Wong, L.L.L.; et al. MRI for the diagnosis of cardiac and liver iron overload in patients with transfusion-dependent thalassemia: An algorithm to guide clinical use when availability is limited. Am. J. Hematol. 2018, 93, E135–E137. [Google Scholar] [CrossRef]
- Mohammed, A.N.; Saleh, H.A.; Alkhateep, Y.M. Role of Splenectomy in Thalassemic Patients. Menoufia Med. J. 2018, 31, 118–1125. [Google Scholar] [CrossRef]
- Dhanya, R.; Sedai, A.; Ankita, K.; Parmar, L.; Agarwal, R.K.; Hegde, S.; Ramaswami, G.; Gowda, A.; Girija, S.; Gujjal, P.; et al. Life expectancy and risk factors for early death in patients with severe thalassemia syndromes in South India. Blood Adv. 2020, 4, 1448–1457. [Google Scholar] [CrossRef] [PubMed]
- Tuo, Y.; Li, Y.; Li, Y.; Ma, J.; Yang, X.; Wu, S.; Jin, J.; He, Z. Global, regional, and national burden of thalassemia, 1990–2021: A systematic analysis for the global burden of disease study 2021. EClinicalmedicine 2024, 72, 102619. [Google Scholar] [CrossRef] [PubMed]
- Adachi, T.; El-Hattab, A.W.; Jain, R.; Nogales Crespo, K.A.; Quirland Lazo, C.I.; Scarpa, M.; Summar, M.; Wattanasirichaigoon, D. Enhancing Equitable Access to Rare Disease Diagnosis and Treatment around the World: A Review of Evidence, Policies, and Challenges. Int. J. Environ. Res. Public Health 2023, 20, 4732. [Google Scholar] [CrossRef] [PubMed]
Desferrioxamine (DFO) | Deferiprone (DFP) | Deferasirox (DFX) | |
---|---|---|---|
Minimum age of use | No minimum age limit | EMA: Limited data available in children under 6 FDA: Three years of age (oral solution); eight years (tablets) | Two years |
Indications | First choice for the treatment of iron overload in TDT | FDA: Transfusional iron overload in TDT EMA: In TDT if other chelators are inadequate or not tolerated | FDA: First-line for the treatment of iron overload in TDT EMA:
|
Dosage and frequency | Up to 40 mg/kg 5–7 days per week |
|
|
Main side effects | Local reactions, hearing loss, ocular symptoms, growth retardation and bone toxicity, growth promotion and virulence of Yersinia enterocolitica, allergy | Agranulocytosis, neutropenia, gastrointestinal symptoms, joint pain, abnormal liver function tests, decreased levels of zinc | Gastrointestinal symptoms, creatinine increase and reduced creatinine clearance, renal tubulopathy, rash, abnormal liver function tests, gastrointestinal hemorrhage |
Advantages with particular reference to pediatric age |
|
|
|
Disadvantages and special warnings in pediatric age |
|
|
|
Objectives | Strategies | Frequency |
---|---|---|
Prevention of height and growth disorders | Ensuring a good O2 supply:
| For the entire duration of childhood and adolescence |
Preventing siderosis of liver, heart, pituitary, pancreas, and growth plate; preventing hyperchelation:
| ||
Ensuring that an adequate intake of macro and micronutrients is achieved:
| ||
Screening of height and growth disorders |
| Every 6 months from the start of the patient’s care |
| Every 6 months from the age of 10 | |
Screening of iron-related complications that can negatively impact growth | TSH and FT4 to detect hypothyroidism | Every year from 9 years of age |
Fasting blood glucose or OGTT to detect glucose metabolism disorders | Every two years from 10 years of age | |
Serum calcium corrected for albumin value and serum phosphorus | Every year from the age of 10 | |
Investigations for patients with short stature |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Origa, R.; Issa, L. Beta Thalassemia in Children: Established Approaches, Old Issues, New Non-Curative Therapies, and Perspectives on Healing. J. Clin. Med. 2024, 13, 6966. https://doi.org/10.3390/jcm13226966
Origa R, Issa L. Beta Thalassemia in Children: Established Approaches, Old Issues, New Non-Curative Therapies, and Perspectives on Healing. Journal of Clinical Medicine. 2024; 13(22):6966. https://doi.org/10.3390/jcm13226966
Chicago/Turabian StyleOriga, Raffaella, and Layal Issa. 2024. "Beta Thalassemia in Children: Established Approaches, Old Issues, New Non-Curative Therapies, and Perspectives on Healing" Journal of Clinical Medicine 13, no. 22: 6966. https://doi.org/10.3390/jcm13226966
APA StyleOriga, R., & Issa, L. (2024). Beta Thalassemia in Children: Established Approaches, Old Issues, New Non-Curative Therapies, and Perspectives on Healing. Journal of Clinical Medicine, 13(22), 6966. https://doi.org/10.3390/jcm13226966