Blood Pressure Patterns and Hepatosteatosis: Cardiometabolic Risk Assessment in Dipper and Non-Dipper Phenotypes
Abstract
:1. Introduction
2. Participants and Methods
2.1. Study Design and Data Collections
2.2. Study Groups
- Dipper normotensive (ND), (n = 37): Participants who are normotensive have a normal drop in blood pressure at night.
- Non-dipper normotensive (NND), (n = 38): Participants who are normotensive as a result of 24 h ABPM and whose blood pressure does not drop sufficiently at night.
- Dipper hypertensive (HD), (n = 32): Participants who are hypertensive and have a normal drop in blood pressure at night.
- Non-dipper hypertensive (HND), (n = 35): Participants who are hypertensive and whose blood pressure does not drop sufficiently at night.
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, P.; Fang, Z.; Wang, H.; Cai, Y.; Rahimi, K.; Zhu, Y.; Fowkes, F.G.R.; Fowkes, F.J.I.; Rudan, I. Global and Regional Prevalence, Burden, and Risk Factors for Carotid Atherosclerosis: A Systematic Review, Meta-Analysis, and Modelling Study. Lancet Glob. Health 2020, 8, e721–e729. [Google Scholar] [CrossRef] [PubMed]
- Kannel, W.B. Incidence and Epidemiology of Heart Failure. Heart Fail. Rev. 2000, 5, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Bao, M.-Y.; Miao, S.-M.; Zhang, X.; Jia, Q.-Q.; Jing, S.-Q.; Shan, T.; Wu, X.-H.; Liu, Y. Prevalence of Hypertension, Diabetes, and Dyslipidemia, and Their Additive Effects on Myocardial Infarction and Stroke: A Cross-Sectional Study in Nanjing, China. Ann. Transl. Med. 2019, 7, 436. [Google Scholar] [CrossRef] [PubMed]
- Hermida, R.; Smolensky, M.; Ayala, D.; Portaluppi, F.; Crespo, J.; Fabbian, F.; Haus, E.; Manfredini, R.; Mojón, A.; Moyá, A.; et al. Recomendaciones 2013 Para El Uso de La Monitorización Ambulatoria de La Presión Arterial Para El Diagnóstico de Hipertensión En Adultos, Valoración de Riesgo Cardiovascular y Obtención de Objetivos Terapéuticos (Resumen). Recomendaciones Conjuntas de La I. Clin. Investig. Arterioscler. 2013, 25, 74–82. [Google Scholar] [CrossRef]
- Hermida, R.C.; Mojón, A.; Hermida-Ayala, R.G.; Smolensky, M.H.; Fernández, J.R. Extent of Asleep Blood Pressure Reduction by Hypertension Medications Is Ingestion-Time Dependent: Systematic Review and Meta-Analysis of Published Human Trials. Sleep Med. Rev. 2021, 59, 101454. [Google Scholar] [CrossRef]
- Hermida, R.C.; Ayala, D.E.; Fernández, J.R.; Mojón, A.; Smolensky, M.H. Hypertension: New Perspective on Its Definition and Clinical Management by Bedtime Therapy Substantially Reduces Cardiovascular Disease Risk. Eur. J. Clin. Investig. 2018, 48, e12909. [Google Scholar] [CrossRef]
- Shin, J.; Kario, K.; Chia, Y.C.; Turana, Y.; Chen, C.H.; Buranakitjaroen, P.; Divinagracia, R.; Nailes, J.; Hoshide, S.; Siddique, S.; et al. Current Status of Ambulatory Blood Pressure Monitoring in Asian Countries: A Report from the HOPE Asia Network. J. Clin. Hypertens. 2020, 22, 384–390. [Google Scholar] [CrossRef]
- Salles, G.F.; Reboldi, G.; Fagard, R.H.; Cardoso, C.R.L.; Pierdomenico, S.D.; Verdecchia, P.; Eguchi, K.; Kario, K.; Hoshide, S.; Polonia, J.; et al. Prognostic Effect of the Nocturnal Blood Pressure Fall in Hypertensive Patients: The Ambulatory Blood Pressure Collaboration in Patients with Hypertension (ABC-H) Meta-Analysis. Hypertension 2016, 67, 693–700. [Google Scholar] [CrossRef]
- Hassan, M.O.; Jaju, D.; Albarwani, S.; Al-Yahyaee, S.; Al-Hadabi, S.; Lopez-Alvarenga, J.C.; Rizvi, S.G.; Comuzzie, A.G.; Bayoumi, R.A. Non-Dipping Blood Pressure in the Metabolic Syndrome among Arabs of the Oman Family Study. Obesity 2007, 15, 2445–2453. [Google Scholar] [CrossRef]
- Tilea, I.; Petra, D.; Ardeleanu, E.; Hutanu, A.; Varga, A. Clinical Conditions and Predictive Markers of Non-Dipper Profile in Hypertensive Patients. Acta Medica Marisiensis 2018, 64, 10–16. [Google Scholar] [CrossRef]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P.; et al. A Multi-Society Delphi Consensus Statement on New Fatty Liver Disease Nomenclature. Hepatology 2023, 78, 1966–1986. [Google Scholar] [CrossRef] [PubMed]
- Suwała, S.; Junik, R. Assessment of the Liver Steatosis and Fibrosis Risk in Metabolic Syndrome and Its Individual Components, Considering the Varying Definitions Used in Clinical Practice throughout Time: A Retrospective Cross-Sectional Study. Biomedicines 2024, 12, 1739. [Google Scholar] [CrossRef] [PubMed]
- Latea, L.; Negrea, S.; Bolboaca, S. Primary Non-Alcoholic Fatty Liver Disease in Hypertensive Patients. Australas. Med. J. 2013, 6, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zeng, Y.; Lin, C.; Chen, Z. Hypertension and Non-Alcoholic Fatty Liver Disease Proven by Transient Elastography. Hepatol. Res. 2016, 46, 1304–1310. [Google Scholar] [CrossRef]
- Panasiuk, A.; Tarasewicz, M.; Chodowiec, A.; Łokić, A.; Gan, K. Biological Rhythms of the Liver. Clin. Exp. Hepatol. 2024, 10, 1–8. [Google Scholar] [CrossRef]
- Saran, A.; Dave, S.; Zarrinpar, A. Circadian Rhythms in the Pathogenesis and Treatment of Fatty Liver Disease. Gastroenterology 2020, 158, 1948–1966.e1. [Google Scholar] [CrossRef]
- Stergiou, G.; Palatini, P.; Parati, G.; O’Brien, E.; Januszewicz, A.; Lurbe, E.; Persu, A.; Mancia, G.; Kreutz, R.; European Society of Hypertension Council; et al. 2021 European Society of Hypertension Practice Guidelines for Office and out-of-Office Blood Press. J. Hypertens. 2021, 1, 1293–1302. [Google Scholar] [CrossRef]
- Chotruangnapa, C.; Tansakun, T.; Roubsanthisuk, W. Clinical Risk Factors and Predictive Score for the Non-Dipper Profile in Hypertensive Patients: A Case-Control Study. Clin. Hypertens. 2021, 27, 22. [Google Scholar] [CrossRef]
- Minemura, M.; Tajiri, K.; Shimizu, Y. Systemic Abnormalities in Liver Disease. World J. Gastroenterol. 2009, 15, 2960–2974. [Google Scholar] [CrossRef]
- Ksiazek, S.H.; Hu, L.; Andò, S.; Pirklbauer, M.; Säemann, M.D.; Ruotolo, C.; Zaza, G.; La Manna, G.; De Nicola, L.; Mayer, G.; et al. Renin–Angiotensin–Aldosterone System: From History to Practice of a Secular Topic. Int. J. Mol. Sci. 2024, 25, 4035. [Google Scholar] [CrossRef]
- Sudano, I.; Suter, P.; Beuschlein, F. Secondary Hypertension as a Cause of Treatment Resistance. Blood Press. 2023, 32, 2224898. [Google Scholar] [CrossRef] [PubMed]
- Zeicu, C.; Fisk, M.; Evans, N.R. Investigating Secondary Hypertension in Cerebrovascular Disease. Pract. Neurol. 2024. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Madhur, M.S.; Elijovich, F.; Alexander, M.R.; Pitzer, A.; Ishimwe, J.; Van Beusecum, J.P.; Patrick, D.M.; Smart, C.D.; Kleyman, T.R.; Kingery, J.; et al. Hypertension: Do Inflammation and Immunity Hold the Key to Solving This Epidemic? Circ. Res. 2021, 128, 908–933. [Google Scholar] [CrossRef] [PubMed]
- Barozet, M.; Le Tilly, O.; Bejan-Angoulvant, T.; Fesler, P.; Roubille, C. Hypertension and Cardiovascular Outcomes in Inflammatory and Autoimmune Diseases: A Systematic Review and Meta-Analysis. Curr. Hypertens. Rep. 2024, 26, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Aoun, M.; Jadoul, M.; Anders, H.J. Erythrocytosis and CKD: A Review. Am. J. Kidney Dis. 2024, 84, 495–506. [Google Scholar] [CrossRef]
- Chitkara, A.; Kaur, N.; Desai, A.; Mehta, D.; Anamika, F.; Sarkar, S.; Gowda, N.; Sethi, P.; Thawani, R.; Chen, E.Y. Risks of Hypertension and Thromboembolism in Patients Receiving Bevacizumab with Chemotherapy for Colorectal Cancer: A Systematic Review and Meta-Analysis. Cancer Med. 2023, 12, 21579–21591. [Google Scholar] [CrossRef]
- Pofi, R.; Caratti, G.; Ray, D.W.; Tomlinson, J.W. Treating the Side Effects of Exogenous Glucocorticoids; Can We Separate the Good from the Bad? Endocr. Rev. 2023, 44, 975–1011. [Google Scholar] [CrossRef]
- Klisic, A.; Kotur-Stevuljevic, J.; Cure, O.; Kizilkaya, B.; Beyazal Celiker, F.; Er, H.; Mercantepe, F. Cardiovascular Risk in Patients with Ankylosing Spondylitis. J. Clin. Med. 2024, 13, 6064. [Google Scholar] [CrossRef]
- Klisic, A.; Kocic, G.; Kavaric, N.; Jovanovic, M.; Stanisic, V.; Ninic, A. Body Mass Index Is Independently Associated with Xanthine Oxidase Activity in Overweight/Obese Population. Eat. Weight Disord. 2020, 25, 9–15. [Google Scholar] [CrossRef]
- Mercantepe, F.; Baydur Sahin, S.; Cumhur Cure, M.; Karadag, Z. Relationship Between Serum Endocan Levels and Other Predictors of Endothelial Dysfunction in Obese Women. Angiology 2022, 74, 948–957. [Google Scholar] [CrossRef]
- Klisic, A.; Kotur-Stevuljevic, J.; Gluscevic, S.; Sahin, S.B.; Mercantepe, F. Biochemical Markers and Carotid Intima-Media Thickness in Relation to Cardiovascular Risk in Young Women. Sci. Rep. 2024, 14, 24776. [Google Scholar] [CrossRef] [PubMed]
- Peksen, C.; Aktokmakyan, T.V.; Savas, O.A.; Ediz, B.; Sumer, A. Comparison of Laparoscopic Evaluation of Hepatosteatosis with Ultrasound Findings. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 9067–9075. [Google Scholar] [CrossRef] [PubMed]
- De Lucia Rolfe, E.; Brage, S.; Sleigh, A.; Finucane, F.; Griffin, S.J.; Wareham, N.J.; Ong, K.K.; Forouhi, N.G. Validity of Ultrasonography to Assess Hepatic Steatosis Compared to Magnetic Resonance Spectroscopy as a Criterion Method in Older Adults. PLoS ONE 2018, 13, e0207923. [Google Scholar] [CrossRef] [PubMed]
- Toprak, K.; Özen, K.; Karataş, M.; Dursun, A. Inflammation-Based Markers, Especially the Uric Acid/Albumin Ratio, Are Associated with Non-Dipper Pattern in Newly Diagnosed Treatment-Naive Hypertensive Patients. Blood Press. Monit. 2024, 29, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Stewart, N.R.; Heiston, E.M.; Miller, S.L.; Ballantyne, A.C.; Cheema, U.S.; Spaeth, A.M.; Kokkinos, P.; Malin, S.K. Role of Blood Pressure Responses to Exercise and Vascular Insulin Sensitivity with Nocturnal Blood Pressure Dipping in Metabolic Syndrome. J. Vasc. Res. 2022, 59, 151–162. [Google Scholar] [CrossRef]
- Tepe, D.; Yılmaz, S. Is Office Blood Pressure Measurement Reliable in Obese Adolescents? Diabetes Metab. Syndr. Obes. 2021, 14, 3809–3817. [Google Scholar] [CrossRef]
- Jug, J.; Delalić, Đ.; Bralić Lang, V.; Bulum, T.; Prkačin, I. Prediabetes, Non-Dipping Profile and Hypertension—A Recipe for Increased Arterial Stiffness. Biomedicines 2023, 11, 1065. [Google Scholar] [CrossRef]
- Condoleo, V.; Maio, R.; Cassano, V.; Bonfrate, L.; Pelaia, C.; Armentaro, G.; Miceli, S.; Fiorentino, T.V.; Perticone, M.; Succurro, E.; et al. Association between Non-Dipping Blood Pressure Pattern and Different Glucometabolic Profile during Oral Glucose Tolerance Test. Intern. Emerg. Med. 2024, 19, 81–89. [Google Scholar] [CrossRef]
- Obayashi, K.; Saeki, K.; Kurumatani, N. Asymmetric Dimethylarginine Attenuates the Association of Melatonin Secretion with Night-Time Blood Pressure and Dipping in Elderly Individuals: The HEIJO-KYO Cohort. Circ. J. 2014, 78, 2908–2914. [Google Scholar] [CrossRef]
- Anan, F.; Takahashi, N.; Ooie, T.; Yufu, K.; Saikawa, T.; Yoshimatsu, H. Role of Insulin Resistance in Nondipper Essential Hypertensive Patients. Hypertens. Res. 2003, 26, 669–676. [Google Scholar] [CrossRef]
- Hermida, R.C.; Mojón, A.; Fernández, J.R.; Hermida-Ayala, R.G.; Crespo, J.J.; Ríos, M.T.; Domínguez-Sardiña, M.; Otero, A.; Smolensky, M.H. Elevated Asleep Blood Pressure and Non-Dipper 24h Patterning Best Predict Risk for Heart Failure That Can Be Averted by Bedtime Hypertension Chronotherapy: A Review of the Published Literature. Chronobiol. Int. 2023, 40, 63–82. [Google Scholar] [CrossRef] [PubMed]
- Lemmer, B.; Oster, H. The Role of Circadian Rhythms in the Hypertension of Diabetes Mellitus and the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 43. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Yan, B.; Gao, Y.; Su, D.; Peng, L.; Jiao, Y.; Wang, Y.; Han, D.; Wang, G. Relationship between Blood Pressure Reverse Dipping and Type 2 Diabetes in Hypertensive Patients. Sci. Rep. 2016, 6, 25053. [Google Scholar] [CrossRef] [PubMed]
- Ntavidi, S.; Katsanou, P.; Marakomichelakis, G.; Kasdagli, M.I.; Antiochou, E.; Mpali, I.; Kakou, A.M.; Tsioufis, K.; Dimitriadis, G.; Lambadiari, V. Association of Non-Dipping Blood Pressure Patterns with Diabetic Peripheral Neuropathy: A Cross-Sectional Study among a Population with Diabetes in Greece. Nutrients 2023, 15, 72. [Google Scholar] [CrossRef] [PubMed]
- Larochelle, P. Circadian Variation in Blood Pressure: Dipper or Nondipper. J. Clin. Hypertens. 2002, 4, 3–8. [Google Scholar] [CrossRef]
- Sueta, D.; Kataoka, K.; Koibuchi, N.; Toyama, K.; Uekawa, K.; Katayama, T.; Mingjie, M.; Nakagawa, T.; Waki, H.; Maeda, M.; et al. Novel Mechanism for Disrupted Circadian Blood Pressure Rhythm in a Rat Model of Metabolic Syndrome-the Critical Role of Angiotensin II. J. Am. Heart Assoc. 2013, 2, e000035. [Google Scholar] [CrossRef]
- Huart, J.; Persu, A.; Lengelé, J.P.; Krzesinski, J.M.; Jouret, F.; Stergiou, G.S. Pathophysiology of the Nondipping Blood Pressure Pattern. Hypertension 2023, 80, 719–729. [Google Scholar] [CrossRef]
- Luo, Q.; Li, N.; Zhu, Q.; Yao, X.; Wang, M.; Heizhati, M.; Cai, X.; Hu, J.; Abulimiti, A.; Yao, L.; et al. Non-Dipping Blood Pressure Pattern Is Associated with Higher Risk of New-Onset Diabetes in Hypertensive Patients with Obstructive Sleep Apnea: UROSAH Data. Front. Endocrinol. 2023, 14, 1083179. [Google Scholar] [CrossRef]
- Chiriacò, M.; Sacchetta, L.; Forotti, G.; Leonetti, S.; Nesti, L.; Taddei, S.; Natali, A.; Solini, A.; Tricò, D. Prognostic Value of 24-Hour Ambulatory Blood Pressure Patterns in Diabetes: A 21-Year Longitudinal Study. Diabetes Obes. Metab. 2022, 24, 2127–2137. [Google Scholar] [CrossRef]
- Klisic, A.; Kavaric, N.; Abenavoli, L.; Stanisic, V.; Spasojevic-Kalimanovska, V.; Kotur-Stevuljevic, J.; Ninic, A. Is Endocan a Novel Potential Biomarker of Liver Steatosis and Fibrosis? J. Med. Biochem. 2020, 39, 363–371. [Google Scholar] [CrossRef]
- Kanbay, M.; Turgut, F.; Erkmen Uyar, M.; Akcay, A.; Covic, A. Causes and Mechanisms of Nondipping Hypertension. Clin. Exp. Hypertens. 2008, 30, 585–597. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, M.I.; Siriopol, D.; Saglam, M.; Kurt, Y.G.; Unal, H.U.; Eyileten, T.; Gok, M.; Cetinkaya, H.; Oguz, Y.; Sari, S.; et al. Plasma Endocan Levels Associate with Inflammation, Vascular Abnormalities, Cardiovascular Events, and Survival in Chronic Kidney Disease. Kidney Int. 2014, 86, 1213–1220. [Google Scholar] [CrossRef] [PubMed]
- Turak, O.; Özcan, F.; Tok, D.; Işleyen, A.; Sökmen, E.; Taşoǧlu, I.; Aydoǧdu, S.; Sen, N.; Mcfann, K.; Johnson, R.J.; et al. Serum Uric Acid, Inflammation, and Nondipping Circadian Pattern in Essential Hypertension. J. Clin. Hypertens. 2013, 15, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Tosu, A.R.; Demir, S.; Selcuk, M.; Kaya, Y.; Akyol, A.; Ozdemir, M.; Tenekecioglu, E. Comparison of Inflammatory Markers in Non-Dipper Hypertension vs. Dipper Hypertension and in Normotensive Individuals: Uric Acid, C-Reactive Protein and Red Blood Cell Distribution Width Readings. Postep. Kardiol. Interwencyjnej 2014, 10, 98–103. [Google Scholar] [CrossRef]
- Ahbap, E.; Sakaci, T.; Kara, E.; Sahutoglu, T.; Koc, Y.; Basturk, T.; Sevinc, M.; Akgol, C.; Hasbal, B.; Isleem, M.; et al. Serum Uric Acid Levels and Inflammatory Markers with Respect to Dipping Status: A Retrospective Analysis of Hypertensive Patients with or without Chronic Kidney Disease. Clin. Exp. Hypertens. 2016, 38, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Giallauria, F.; Predotti, P.; Casciello, A.; Grieco, A.; Russo, A.; Viggiano, A.; Citro, R.; Ravera, A.; Ciardo, M.; Guglielmi, M.; et al. Serum Uric Acid Is Associated with Non-Dipping Circadian Pattern in Young Patients (30–40 Years Old) with Newly Diagnosed Essential Hypertension. Clin. Exp. Hypertens. 2016, 38, 233–237. [Google Scholar] [CrossRef]
- Goldberg, I.J. Clinical Review 124: Diabetic Dyslipidemia—Causes and Consequences. J. Clin. Endocrinol. Metab. 2001, 86, 965–971. [Google Scholar] [CrossRef]
- Shang, R.; Rodrigues, B. Lipoprotein Lipase and Its Delivery of Fatty Acids to the Heart. Biomolecules 2021, 11, 1016. [Google Scholar] [CrossRef] [PubMed]
- Yanai, H.; Adachi, H.; Hakoshima, M.; Katsuyama, H. Postprandial Hyperlipidemia: Its Pathophysiology, Diagnosis, Atherogenesis, and Treatments. Int. J. Mol. Sci. 2023, 24, 13942. [Google Scholar] [CrossRef]
- Ness, G.; Chambers, C. Feedback and Hormonal Regulation of Hepatic 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase: The Concept of Cholesterol Buffering Capacity. Proc. Soc. Exp. Biol. Med. 2000, 224, 8–19. [Google Scholar] [CrossRef]
- Hamza, R.Z.; Alsolami, K. Ameliorative Effects of Orlistat and Metformin Either Alone or in Combination on Liver Functions, Structure, Immunoreactivity and Antioxidant Enzymes in Experimentally Induced Obesity in Male Rats. Heliyon 2023, 9, e18724. [Google Scholar] [CrossRef] [PubMed]
- Green, C.J.; Marjot, T.; Walsby-Tickle, J.; Charlton, C.; Cornfield, T.; Westcott, F.; Pinnick, K.E.; Moolla, A.; Hazlehurst, J.M.; McCullagh, J.; et al. Metformin Maintains Intrahepatic Triglyceride Content through Increased Hepatic de Novo Lipogenesis. Eur. J. Endocrinol. 2022, 186, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, S.; Adeli, K. Glucagon-like Peptide (GLP)-1 Regulation of Lipid and Lipoprotein Metabolism. Med. Rev. 2024, 4, 301–311. [Google Scholar] [CrossRef]
- Negro, R.; Mangieri, T.; Dazzi, D.; Pezzarossa, A.; Hassan, H. Rosiglitazone Effects on Blood Pressure and Metabolic Parameters in Nondipper Diabetic Patients. Diabetes Res. Clin. Pract. 2005, 70, 20–25. [Google Scholar] [CrossRef]
- Lebovitz, H.E. Thiazolidinediones: The Forgotten Diabetes Medications. Curr. Diabetes Rep. 2019, 19, 151. [Google Scholar] [CrossRef]
- Hage, F.G. C-Reactive Protein and Hypertension. J. Hum. Hypertens. 2014, 28, 410–415. [Google Scholar] [CrossRef]
- Carbone, F.; Elia, E.; Casula, M.; Bonaventura, A.; Liberale, L.; Bertolotto, M.; Artom, N.; Minetti, S.; Dallegri, F.; Contini, P.; et al. Baseline Hs-CRP Predicts Hypertension Remission in Metabolic Syndrome. Eur. J. Clin. Investig. 2019, 49, e13128. [Google Scholar] [CrossRef]
- Kong, H.; Qian, Y.S.; Tang, X.F.; Zhang, J.; Gao, P.J.; Zhang, Y.; Zhu, D.L. C-Reactive Protein (CRP) Gene Polymorphisms, CRP Levels and Risk of Incident Essential Hypertension: Findings from an Observational Cohort of Han Chinese. Hypertens. Res. 2012, 35, 1019–1023. [Google Scholar] [CrossRef] [PubMed]
- Kuppa, A.; Tripathi, H.; Al-Darraji, A.; Tarhuni, W.M.; Abdel-Latif, A. C-Reactive Protein Levels and Risk of Cardiovascular Diseases: A Two-Sample Bidirectional Mendelian Randomization Study. Int. J. Mol. Sci. 2023, 24, 9129. [Google Scholar] [CrossRef]
- Wang, C.; Li, S.; Song, Y.; Yuan, X.; Zhu, H.; Yu, B. Prospective Association of Comorbid Hypertension and Depressive Symptoms with C-Reactive Protein in Older Adults. J. Affect. Disord. 2024, 354, 286–292. [Google Scholar] [CrossRef]
- Plante, T.B.; Long, D.L.; Guo, B.; Howard, G.; Carson, A.P.; Howard, V.J.; Judd, S.E.; Jenny, N.S.; Zakai, N.A.; Cushman, M. C-Reactive Protein and Incident Hypertension in Black and White Americans in the REasons for Geographic and Racial Differences in Stroke (REGARDS) Cohort Study. Am. J. Hypertens. 2021, 34, 698–706. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Fan, C.; Li, G. The Relationship between Serum C-Reactive Protein and Senile Hypertension. BMC Cardiovasc. Disord. 2022, 22, 500. [Google Scholar] [CrossRef] [PubMed]
- Kaarthikeyan, G. Prevalence of Hs-CRP among Indians with Hypertension. Bioinformation 2022, 18, 1041–1043. [Google Scholar] [CrossRef] [PubMed]
- Schönberger, E.; Mihaljević, V.; Steiner, K.; Šarić, S.; Kurevija, T.; Majnarić, L.T.; Bilić Ćurčić, I.; Canecki-Varžić, S. Immunomodulatory Effects of SGLT2 Inhibitors—Targeting Inflammation and Oxidative Stress in Aging. Int. J. Environ. Res. Public Health 2023, 20, 6671. [Google Scholar] [CrossRef] [PubMed]
- Yaribeygi, H.; Atkin, S.L.; Butler, A.E.; Sahebkar, A. Sodium–Glucose Cotransporter Inhibitors and Oxidative Stress: An Update. J. Cell. Physiol. 2019, 234, 3231–3237. [Google Scholar] [CrossRef] [PubMed]
- Devaraj, S.; Siegel, D.; Jialal, I. Statin Therapy in Metabolic Syndrome and Hypertension Post-JUPITER: What Is the Value of CRP? Curr. Atheroscler. Rep. 2011, 13, 31–42. [Google Scholar] [CrossRef]
- Ridker, P.M.; Danielson, E.; Fonseca, F.A.; Genest, J.; Gotto, A.M.; Kastelein, J.J.; Koenig, W.; Libby, P.; Lorenzatti, A.J.; MacFadyen, J.G.; et al. Reduction in C-Reactive Protein and LDL Cholesterol and Cardiovascular Event Rates after Initiation of Rosuvastatin: A Prospective Study of the JUPITER Trial. Lancet 2009, 373, 1175–1182. [Google Scholar] [CrossRef]
Normotensive Group (NT) N = 75 | Hypertensive Group (HT) N = 67 | p | |
---|---|---|---|
Male, N (%) * | 16 (21) | 31 (46) | 0.002 |
Age, years | 52.7 ± 13.2 | 60.7 ± 12.3 | <0.001 |
BMI, kg/m2 | 27.0 ± 1.7 | 27.0 ± 1.6 | 0.936 |
SBP daytime, mmHg † | 121 (114–127) | 142 (129–150) | <0.001 |
SBP nighttime, mmHg † | 108 (103–117) | 130 (120–139) | <0.001 |
SBP average, mmHg † | 119 (112–125) | 140 (127–146) | <0.001 |
DBP daytime, mmHg | 75 ± 9 | 88 ± 11 | <0.001 |
DBP nighttime, mmHg | 67 ± 8 | 78 ± 12 | <0.001 |
DBP average, mmHg | 74 ± 9 | 85 ± 11 | <0.001 |
Heart rate † | 80 (69–84) | 80 (72–84) | 0.953 |
Calcium channel blockers, N (%) * | 0 (0) | 14 (21) | <0.001 |
ACE inhibitors, N (%) * | 0 (0) | 22 (33) | <0.001 |
Aldosterone receptors blockers, N (%) * | 0 (0) | 14 (21) | <0.001 |
Beta blockers, N (%) * | 0 (0) | 9 (13) | 0.001 |
Thiazide diuretics, N (%) * | 0 (0) | 28 (42) | <0.001 |
Smokers, N (%) * | 14 (19) | 28 (42) | 0.003 |
Hyperlipidemia, N (%) * | 14 (19) | 17 (25) | 0.334 |
Statins, N (%) * | 0 (0) | 2 (3) | 0.132 |
Type 2 diabetes, N (%) * | 7 (9) | 25 (37) | <0.001 |
Oral antidiabetics, N (%) * | 6 (8) | 21 (31) | <0.001 |
Insulin, N (%) * | 1 (1) | 3 (4) | 0.258 |
Oral antidiabetics + insulin, N (%) * | 1 (1) | 3 (3) | 0.258 |
Steatosis grade, N (%) * | 0.367 | ||
0 | 19 (25) | 10 (15) | |
1 | 28 (37) | 32 (48) | |
2 | 18 (24) | 14 (21) | |
3 | 10 (13) | 11 (16) |
Normotensive Group (NT), N = 75 | Hypertensive Group (HT), N = 67 | p | |
---|---|---|---|
Glucose, mg/dL | 95 (90–108) | 109 (93–148) | 0.005 |
Uric acid, mg/dL | 4.2 (4.0–4.7) | 4.8 (4.0–6.1) | 0.001 |
CRP, mg/L | 0.40 (0.14–0.70) | 0.41 (0.20–0.85) | 0.511 |
Total cholesterol, mg/dL | 180 (162–197) | 180 (157–200) | 0.765 |
HDL-C, mg/dL † | 45.6 ± 9.1 | 46.0 ± 10.2 | 0.820 |
LDL-C, mg/dL | 112 (94–121) | 108 (85–124) | 0.186 |
TG, mg/dL | 130 (98–188) | 150 (109–195) | 0.177 |
AST, IU/L | 21 (16–26) | 18 (15–22) | 0.068 |
ALT, IU/L | 19 (14–26) | 17 (13–21) | 0.035 |
Na, mEq/L | 140 (139–142) | 140 (138–142) | 0.853 |
K, mEq/L | 4.4 (3.9–4.6) | 4.2 (4.1–4.7) | 0.463 |
WBC | 7.40 (6.66–8.60) | 7.55 (6.70–8.44) | 0.974 |
Neutrophils count | 4.30 (3.70–5.29) | 4.40 (3.62–5.20) | 0.802 |
Lymphocytes count | 2.30 (1.90–2.70) | 2.40 (1.57–2.64) | 0.233 |
Monocytes count | 0.45 (0.37–0.50) | 0.45 (0.32–0.58) | 0.909 |
Hemoglobin, g/dL | 13.95 (13.10–14.60) | 12.10 (11.10–14.40) | 0.024 |
Platelet count | 268 (228–310) | 269 (244–313) | 0.945 |
Vitamin D, ng/mL | 15.27 (7.55–29.65) | 34.60 (11.60–46.30) | 0.042 |
Ferritin, ng/mL | 49.87 (35.00–66.00) | 42.60 (17.00–56.20) | 0.204 |
Vitamin B12, pg/mL | 344 (274–425) | 323 (267–374) | 0.038 |
Folic acid, ng/mL | 8.25 (6.75–9.60) | 6.80 (6.10–7.90) | 0.138 |
Normotensive Dipper (ND) N = 37 | Normotensive Non-Dipper (NND) N = 38 | Hypertensive Dipper (HD) N = 32 | Hypertensive Non-Dipper (HND) N = 35 | p | |
---|---|---|---|---|---|
Male, N (%) ¶ | 4 (11) | 12 (32) a# | 14 (44) a* | 17 (49) a‡ | 0.003 |
Age, years | 53.0 ± 15.2 | 52.5 ± 11.1 | 58.7 ± 13.0 | 62.6 ± 11.5 a#,b* | 0.002 |
BMI, kg/m2 | 26.8 ± 1.8 | 27.1 ± 1.5 | 26.7 ± 1.6 | 27.2 ± 1.7 | 0.532 |
SBP daytime, mmHg † | 123 (116–127) | 119 (106–125) a‡ | 145 (141–150) a‡,b‡ | 125 (95–149) a‡,b‡ | <0.001 |
SBP nighttime, mmHg † | 106 (103–113) | 112 (105–123) | 125 (117–130 a‡,b‡ | 134 (121–125) a‡,b‡,c* | <0.001 |
SBP average, mmHg † | 120 (113–124) | 118 (105–126) | 142 (137–144) a‡,b‡ | 138 (124–151) a‡,b‡ | <0.001 |
DBP daytime, mmHg | 78 ± 8 | 72 ± 9 | 91 ± 9 a‡,b# | 84 ± 12 a‡,b‡ | <0.001 |
DBP nighttime, mmHg | 66 ± 8 | 70 ± 8 | 76 ± 10 a‡,b# | 81 ± 12 a#,b‡ | <0.001 |
DBP average, mmHg | 76 ± 8 | 72 ± 9 | 88 ± 10 a‡,b# | 82 ± 12 a‡,b‡ | <0.001 |
Heart rate † (beats/minute) | 76 (70–84) | 82 (68–88) | 76 (70–83) | 80 (74–84) | 0.276 |
Calcium channel blockers, N (%) ¶ | 1 (3) | 0 (0) | 2 (6) | 12 (34) a‡,b‡,c* | <0.001 |
ACE inhibitors, N (%) ¶ | 0 (0) | 0 (0) | 5 (16) a#,b# | 17 (49) a‡,b‡,c* | <0.001 |
Aldosterone receptors Blockers, N (%) ¶ | 0 (0) | 0 (0) | 3 (9) | 11 (31) a‡,b‡,c# | <0.001 |
Beta blockers, N (%) ¶ | 0 (0) | 0 (0) | 2 (6) | 7 (20) a*,b* | 0.001 |
Thiazide diuretics, N (%) ¶ | 0 (0) | 0 (0) | 6 (19) a*,b* | 22 (63) a‡,b‡,c‡ | <0.001 |
Smokers, N (%) ¶ | 4 (11) | 10 (26) | 16 (50) a‡,b# | 12 (34) a# | 0.004 |
Hyperlipidemia, N (%) ¶ | 9 (24) | 5 (13) | 10 (31) | 7 (20) | 0.315 |
Statins, N (%) ¶ | 0 (0) | 0 (0) | 0 (0) | 2 (6) | 0.102 |
Type 2 diabetes, N (%) | 2 (5) | 5 (13) | 13 (41) a‡,b* | 12 (34) a*,b# | 0.001 |
Oral antidiabetics, N (%) ¶ | 1 (3) | 5 (13) | 10 (31) a* | 11 (31) a* | 0.003 |
Insulin, N (%) ¶ | 1 (3) | 0 (0) | 0 (0) | 3 (9) | 0.099 |
Oral antidiabetics + Insulin, N (%) ¶ | 1 (3) | 0 (0) | 0 (0) | 3 (9) | 0.099 |
Steatosis grade, N (%) ¶ | <0.001 | ||||
0 | 17 (46) | 2 (5) a‡ | 10 (31) a#,b‡ | 0 (0) a‡,c‡ | |
1 | 11 (30) | 17 (45) | 20 (63) | 12 (34) | |
2 | 8 (22) | 10 (26) | 2 (6) | 12 (34) | |
3 | 1 (3) | 9 (24) | 0 (0) | 11 (32) |
Normotensive Dipper (ND) N = 37 | Normotensive Non-Dipper (NND) N = 38 | Hypertensive Dipper (HD) N = 32 | Hypertensive Non-Dipper (HND) N = 35 | p | |
---|---|---|---|---|---|
Glucose, mg/dL | 94 (90–108) | 101 (93–108) | 120 (101–138) a‡,b* | 101 (90–152) | 0.004 |
Uric acid, mg/dL | 4.1 (4.0–4.4) | 4.7 (4.0–5.0) a* | 4.6 (4.0–5.3) a# | 5.0 (4.4–6.9) a‡,b#,c# | <0.001 |
CRP, mg/L | 0.37 (0.17–0.60) | 0.45 (0.10–0.79) | 0.43 (0.12–0.85) | 0.40 (0.20–0.90) | 0.926 |
Total cholesterol, mg/dL | 184 (160–198) | 179 (169–192) | 192 (170–205) | 161 (142–191) c* | 0.034 |
HDL-C, mg/dL † | 44.8 ± 9.7 | 46.4 ± 8.7 | 45.9 ± 12.0 | 46.0 ± 8.5 | 0.904 |
LDL-C, mg/dL | 112 (96–120) | 111 (92–121) | 108 (87–118) | 92 (76–127) | 0.588 |
TG, mg/dL | 159 (124–188) | 108 (76–176) a* | 178 (132–254) b* | 125 (100–166) a#,c* | 0.001 |
AST, IU/L | 21 (17–26) | 20 (16–26) | 19 (16–23) | 18 (15–21) | 0.228 |
ALT, IU/L | 16 (14–26) | 21 (16–39) | 17 (13–21) | 17 (13–20) | 0.079 |
Na, mEq/L | 139 (138–141) | 141 (140–143) | 1410 (139–142) | 140 (137–142) | 0.081 |
K, mEq/L | 4.4 (3.9–4.7) | 4.4 (4.0–4.6) | 4.2 (4.0–4.7) | 4.3 (4.1–4.7) | 0.883 |
WBC | 7.13 (6.40–8.80) | 7.41 (7.10–7.90) | 7.40 (6.70–8.00) | 7.60 (6.75–8.60) | 0.904 |
Neutrophils count | 4.50 (3.70–5.40) | 4.11 (3.50–4.60) | 4.04 (3.50–4.95) | 4.50 (3.75–5.40) | 0.271 |
Lymphocytes count | 2.20 (1.68–2.70) | 2.53 (1.90–3.06) | 2.50 (1.50–2.69) | 2.22 (1.68–2.64) | 0.300 |
Monocytes count | 0.44 (0.36–0.50) | 0.45 (0.38–0.53) | 0.40 (0.28–0.53) | 0.50 (0.39–0.65) | 0.079 |
Hemoglobin, g/dL | 13.50 (12.50–14.50) | 13.55 (13.00–14.30) | 13.25 (11.10–14.15) | 12.80 (12.00–14.65) | 0.153 |
Platelet count | 285 (228–324) | 265 (223–298) | 269 (248–308) | 259 (235–325) | 0.902 |
Vitamin D, ng/mL | 10.45 (6.20–28.50) | 17.72 (9.30–27.95) | 25.76 (13.20–30.24) | 18.75 (8.70–41.85) | 0.136 |
Ferritin, ng/mL | 29.20 (10.10–63.30) | 46.37 (38.20–67.30) | 46.95 (17.00–68.20) | 56.00 (24.70–139.60) | 0.120 |
Vitamin B12, pg/mL | 348 (275–425) | 364 (294–435) | 294 (234–408) | 349 (253–372) | 0.174 |
Folic acid, ng/mL | 8.23 (5.40–9.60) | 8.80 (6.909.60) | 6.50 (5.20–6.80) | 7.50 (6.70–8.50) | 0.180 |
Univariable Analysis | |||
---|---|---|---|
Marker | OR (95% CI) | p | R2 |
Gender | 0.535 (0.262–1.093) | 0.086 | 0.028 |
Age, years | 1.010 (0.985–1.035) | 0.451 | 0.005 |
BMI, kg/m2 | 1.161 (0.947–1.425) | 0.152 | 0.020 |
Steatosis grade | 4.598 (2.674–7.907) | <0.001 | 0.381 |
Heart rate | 1.043 (1.002–1.086) | 0.039 | 0.047 |
Cigarette smoking | 1.057 (0.514–2.174) | 0.881 | 0.000 |
Diabetes melitus | 1.093 (0.497–2.404) | 0.825 | 0.000 |
Hyperlipidemia | 0.518 (0.229–1.168) | 0.518 | 0.024 |
Glucose, | 0.999 (0.992–1.005) | 0.724 | 0.001 |
Uric acid, | 1.740 (1.256–2.410) | 0.001 | 0.117 |
CRP | 0.826 (0.623–1.096) | 0.185 | 0.022 |
Total cholesterol, | 0.985 (0.974–0.996) | 0.007 | 0.073 |
HDL-C, | 1.010 (0.976–1.045) | 0.583 | 0.003 |
LDL-C, | 0.992 (0.980–1.004) | 0.173 | 0.018 |
TG, | 0.996 (0.992–0.999) | 0.011 | 0.090 |
AST, | 0.995 (0.970–1.021) | 0.723 | 0.001 |
ALT, | 0.999 (0.987–1.012) | 0.923 | 0.000 |
Na | 1.031 (0.911–1.167) | 0.629 | 0.002 |
K | 0.952 (0.828–1.095) | 0.490 | 0.007 |
WBC | 1.058 (0.911–1.229) | 0.457 | 0.005 |
Neutrophils count | 1.059 (0.885–1.268) | 0.529 | 0.004 |
Lymphocytes count | 1.157 (0.734–1.826) | 0.530 | 0.004 |
Hemoglobin | 1.031 (0.841–1.263) | 0.772 | 0.001 |
Platelet count | 1.000 (0.995–1.005) | 0.969 | 0.000 |
Vitamin D | 1.009 (0.976–1.044) | 0.593 | 0.005 |
Ferritin | 1.005 (0.998–1.011) | 0.177 | 0.055 |
Vitamin B12 | 1.000 (0.997–1.002) | 0.743 | 0.001 |
Folic acid | 1.215 (0.997–1.481) | 0.054 | 0.083 |
Multivariable Analysis | |||
Model | OR (95% CI) | p | R2 |
Steatosis grade | 4.383 (2.340–8.208) | <0.001 | 0.576 |
Heart rate | 1.044 (0.989–1.102) | 0.119 | |
Uric acid, | 1.976 (1.192–3.278) | 0.008 | |
Total cholesterol, | 0.994 (0.975–1.006) | 0.218 | |
TG | 0.994 (0.989–0.998) | 0.004 |
Univariable Analysis | |||
---|---|---|---|
Marker | OR (95% CI) | p | R2 |
Steatosis grade | 15.469 (3.651–65.548) | <0.001 | 0.575 |
Heart rate | 1.039 (0.981–1.100) | 0.192 | 0.045 |
Uric acid, | 1.549 (1.038–2.313) | 0.032 | 0.097 |
Total cholesterol, | 0.979 (0.962–0.996) | 0.014 | 0.131 |
TG, | 0.993 (0.987–0.999) | 0.032 | 0.179 |
Multivariable Analysis | |||
Model | OR (95% CI) | p | R2 |
Hepatosteatosis grade | 18.386 (2.103–160.702) | 0.008 | 0.809 |
Uric acid, | 1.969 (0.800–4.842) | 0.140 | |
Total cholesterol, | 0.998 (0.965–1.032) | 0.896 | |
TG, | 0.990 (0.980–1.000) | 0.046 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Astan, R.; Patoulias, D.; Ninić, A.; Dayanan, R.; Karakasis, P.; Mercantepe, T.; Mercantepe, F.; Klisic, A. Blood Pressure Patterns and Hepatosteatosis: Cardiometabolic Risk Assessment in Dipper and Non-Dipper Phenotypes. J. Clin. Med. 2024, 13, 6976. https://doi.org/10.3390/jcm13226976
Astan R, Patoulias D, Ninić A, Dayanan R, Karakasis P, Mercantepe T, Mercantepe F, Klisic A. Blood Pressure Patterns and Hepatosteatosis: Cardiometabolic Risk Assessment in Dipper and Non-Dipper Phenotypes. Journal of Clinical Medicine. 2024; 13(22):6976. https://doi.org/10.3390/jcm13226976
Chicago/Turabian StyleAstan, Ramazan, Dimitrios Patoulias, Ana Ninić, Ramazan Dayanan, Paschalis Karakasis, Tolga Mercantepe, Filiz Mercantepe, and Aleksandra Klisic. 2024. "Blood Pressure Patterns and Hepatosteatosis: Cardiometabolic Risk Assessment in Dipper and Non-Dipper Phenotypes" Journal of Clinical Medicine 13, no. 22: 6976. https://doi.org/10.3390/jcm13226976
APA StyleAstan, R., Patoulias, D., Ninić, A., Dayanan, R., Karakasis, P., Mercantepe, T., Mercantepe, F., & Klisic, A. (2024). Blood Pressure Patterns and Hepatosteatosis: Cardiometabolic Risk Assessment in Dipper and Non-Dipper Phenotypes. Journal of Clinical Medicine, 13(22), 6976. https://doi.org/10.3390/jcm13226976