Comparison of Oxidative Stress Markers with Clinical Data in Patients Requiring Anesthesia in an Intensive Care Unit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Population
2.2. Statistical Analysis
3. Results
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galli, F.; Bartolini, D.; Ronco, C. Oxidative stress, defective proteostasis and immunometabolic complications in critically ill patients. Eur. J. Clin. Investig. 2024, 54, e14229. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Briceno, F.; Espinosa-Ramirez, M.; Rozenberg, D.; Reid, W.D. Eccentric Training in Pulmonary Rehabilitation of Post-COVID-19 Patients: An Alternative for Improving the Functional Capacity, Inflammation, and Oxidative Stress. Biology 2022, 11, 1446. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Liu, J.; Li, A. Roles of neutrophil reactive oxygen species (ROS) generation in organ function impairment in sepsis. J. Zhejiang Univ. Sci. B 2022, 23, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Dushianthan, A.; Martin, D.; Mouncey, P.; Shahid, T.; Lampro, L.; Johnson, A.F.; Goss, V.; Cazley, A.; Herbert, W.; Jones, W.; et al. Oxidative stress, redox status and surfactant metabolism in mechanically ventilated patients receiving different approaches to oxygen therapy (MecROX): An observational study protocol for mechanistic evaluation. NIHR Open Res. 2024, 4, 23. [Google Scholar] [CrossRef] [PubMed]
- Roessler, C.; de Oliveira, K.C.S.; de Oliveira Portella, A.X.; Fortes, P.C.N.; Machado, F.R.; Araujo, S.M.; Prigol, M.; Lucio, L.C.; Benvegnu, D.M.; Ferreto, L.E.D. Evaluation of oxidative stress level: Reactive oxygen species, reduced glutathione, and D-dimer in patients hospitalized due to COVID-19. Redox Rep. 2023, 28, 1–6. [Google Scholar] [CrossRef]
- Demirci-Cekic, S.; Ozkan, G.; Avan, A.N.; Uzunboy, S.; Capanoglu, E.; Apak, R. Biomarkers of Oxidative Stress and Antioxidant Defense. J. Pharm. Biomed. Anal. 2022, 209, 114477. [Google Scholar] [CrossRef]
- Feng, J. Free Radicals, Reactive Oxygen Species, and Their Biomarkers. In Handbook of Oxidative Stress in Cancer: Mechanistic Aspects; Chakraborti, S., Ray, B.K., Roychowdhury, S., Eds.; Springer: Singapore, 2021; pp. 1–19. [Google Scholar] [CrossRef]
- Yi, J.; Miao, J.; Zuo, Q.; Owusu, F.; Dong, Q.; Lin, P.; Wang, Q.; Gao, R.; Kong, X.; Yang, L. COVID-19 pandemic: A multidisciplinary perspective on the pathogenesis of a novel coronavirus from infection, immunity and pathological responses. Front. Immunol. 2022, 13, 978619. [Google Scholar] [CrossRef]
- Forman, H.J.; Zhang, H. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 2021, 20, 689–709. [Google Scholar] [CrossRef]
- Belce, A.; Ozkan, B.N.; Dumlu, F.S.; Sisman, B.H.; Guler, E.M. Evaluation of Oxidative Stress and Inflammatory Biomarkers Pre and Post-Treatment in New Diagnosed Atherosclerotic Patients. Clin. Exp. Hypertens. 2022, 44, 320–325. [Google Scholar] [CrossRef]
- Ducastel, M.; Chenevier-Gobeaux, C.; Ballaa, Y.; Meritet, J.-F.; Brack, M.; Chapuis, N.; Pene, F.; Carlier, N.; Szwebel, T.-A.; Roche, N.; et al. Oxidative Stress and Inflammatory Biomarkers for the Prediction of Severity and ICU Admission in Unselected Patients Hospitalized with COVID-19. Int. J. Mol. Sci. 2021, 22, 7462. [Google Scholar] [CrossRef]
- Cetın, N.; Kocaturk, E.; Tufan, A.K.; Kiraz, Z.K.; Alatas, O. Immature granulocytes as biomarkers of inflammation in children with predialysis chronic kidney disease. Pediatr. Nephrol. 2023, 38, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Kon, A.A.; Shepard, E.K.; Sederstrom, N.O.; Swoboda, S.M.; Marshall, M.F.; Birriel, B.; Rincon, F. Defining Futile and Potentially Inappropriate Interventions: A Policy Statement from the Society of Critical Care Medicine Ethics Committee. Crit. Care Med. 2016, 44, 1769–1774. [Google Scholar] [CrossRef] [PubMed]
- Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef]
- Cooper, I.D.; Crofts, C.A.P.; DiNicolantonio, J.J.; Malhotra, A.; Elliott, B.; Kyriakidou, Y.; Brookler, K.H. Relationships between hyperinsulinaemia, magnesium, vitamin D, thrombosis and COVID-19: Rationale for clinical management. Open Heart 2020, 7, e001356. [Google Scholar] [CrossRef]
- Okuyan, H.M.; Dogan, S.; Terzi, M.Y.; Begen, M.A.; Turgut, F.H. Association of serum lncRNA H19 expression with inflammatory and oxidative stress markers and routine biochemical parameters in chronic kidney disease. Clin. Exp. Nephrol. 2021, 25, 522–530. [Google Scholar] [CrossRef]
- Cakirca, G.; Damar Cakirca, T.; Ustunel, M.; Torun, A.; Koyuncu, I. Thiol level and total oxidant/antioxidant status in patients with COVID-19 infection. Ir. J. Med. Sci. 2022, 191, 1925–1930. [Google Scholar] [CrossRef] [PubMed]
- Yende, S.; Kellum, J.A.; Talisa, V.B.; Peck Palmer, O.M.; Chang, C.H.; Filbin, M.R.; Shapiro, N.I.; Hou, P.C.; Venkat, A.; LoVecchio, F.; et al. Long-term Host Immune Response Trajectories Among Hospitalized Patients with Sepsis. JAMA Netw. Open 2019, 2, e198686. [Google Scholar] [CrossRef]
- Akyuva, Y.; Nur, G.; Deveci, H.A.; Guler, S.K. Oxidative Stress and Biochemical Alterations in Patients with Head and Multiple Organ Traumas. Turk. Neurosurg. 2023, 33, 855–861. [Google Scholar] [CrossRef]
- Su, Y.; Ju, M.J.; Ma, J.F.; Tu, G.W.; He, H.Y.; Gu, Z.Y.; Song, Y.L.; Zhang, J.; Luo, Z. Lactate dehydrogenase as a prognostic marker of renal transplant recipients with severe community-acquired pneumonia: A 10-year retrospective study. Ann. Transl. Med. 2019, 7, 660. [Google Scholar] [CrossRef]
- Shao, R.; Yang, Y.; Zhang, Y.; Zhao, S.; Zheng, Z.; Chen, G. The expression of thioredoxin-1 and inflammatory cytokines in patients with sepsis. Immunopharmacol. Immunotoxicol. 2020, 42, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ai, Z.; Khoyratty, T.; Zec, K.; Eames, H.L.; van Grinsven, E.; Hudak, A.; Morris, S.; Ahern, D.; Monaco, C.; et al. ROS-producing immature neutrophils in giant cell arteritis are linked to vascular pathologies. JCI Insight 2020, 5, e139163. [Google Scholar] [CrossRef]
- Miliaraki, M.; Briassoulis, P.; Ilia, S.; Michalakakou, K.; Karakonstantakis, T.; Polonifi, A.; Bastaki, K.; Briassouli, E.; Vardas, K.; Pistiki, A.; et al. Oxidant/Antioxidant Status Is Impaired in Sepsis and Is Related to Anti-Apoptotic, Inflammatory, and Innate Immunity Alterations. Antioxidants 2022, 11, 231. [Google Scholar] [CrossRef] [PubMed]
- Tanir Basaranoglu, S.; Cekic, S.; Kirhan, E.; Dirican, M.; Kilic, S.S. Oxidative stress in common variable immunodeficiency. Eur. J. Inflamm. 2021, 19, 20587392211002411. [Google Scholar] [CrossRef]
- Rojek, L.; Hebanowska, A.; Stojek, M.; Jagielski, M.; Goyke, E.; Szrok-Jurga, S.; Smoczynski, M.; Swierczynski, J.; Sledzinski, T.; Adrych, K. High levels of reactive oxygen species in pancreatic necrotic fluid of patients with walled-off pancreatic necrosis. Gastroenterol. Rev. 2021, 16, 56–61. [Google Scholar] [CrossRef]
- El-Sayed, A.; Ebissy, E.; Mohamed, R.; Ateya, A. Effects of antioxidant vitamins (A, D, E) and trace elements (Cu, Mn, Se, Zn) administration on gene expression, metabolic, antioxidants and immunological profiles during transition period in dromedary camels. BMC Vet. Res. 2024, 20, 101. [Google Scholar] [CrossRef]
- Cobine, P.A.; Moore, S.A.; Leary, S.C. Getting out what you put in: Copper in mitochondria and its impacts on human disease. Biochim. Biophys. Acta Mol. Cell Res. 2021, 1868, 118867. [Google Scholar] [CrossRef]
- Pincemail, J.; Cavalier, E.; Charlier, C.; Cheramy-Bien, J.P.; Brevers, E.; Courtois, A.; Fadeur, M.; Meziane, S.; Goff, C.L.; Misset, B.; et al. Oxidative Stress Status in COVID-19 Patients Hospitalized in Intensive Care Unit for Severe Pneumonia. A Pilot Study. Antioxidants 2021, 10, 257. [Google Scholar] [CrossRef]
Control (n = 60) | Patients (n = 93) | p Value | |
---|---|---|---|
Age | 58.3 ± 16.3 | 61.8 ± 21.6 | 0.290 |
Gender | 0.185 | ||
Male | 28 | 52 | |
Female | 32 | 41 | |
Cardiovascular disease, n (%) | 15 (25%) | 24 (25.8%) | 0.900 |
Respiratory system disease, n (%) | 10 (16.6%) | 18 (19.3%) | 0.780 |
Diabetes, n (%) | 8 (13.3%) | 14 (15%) | 0.750 |
Hypertension, n (%) | 17 (28.3%) | 30 (32.2%) | 0.680 |
Dyslipidemia, n (%) | 12 (20%) | 22 (23.6%) | 0.640 |
TAS (µmol Trolox equivalent/L) | 2.13 ± 0.69 | 2.27 ± 0.89 | 0.380 |
TOS (μmol H2O2 equivalent/L) | 1.8 ± 4.4 | 13.4 ± 7.5 | 0.021 |
OSI (Arbitrary units) | 521.7 ± 546.6 | 689.8 ± 693.9 | 0.035 |
Ferritin (ng/mL) | 45.5 ± 46.5 | 546.5 ± 440.8 | <0.001 |
CRP (mg/L) | 5.6 ± 15.1 | 76.6 ± 85.9 | <0.001 |
PCT (ng/L) | 2.3 ± 7.2 | 15.8 ± 8.6 | 0.012 |
WBC (×103/µL) | 7.9 ± 2.0 | 18.0 ± 5.9 | 0.025 |
IG (×109/L) | 0.04 ± 0.04 | 0.19 ± 0.56 | 0.013 |
Zn (μg/dL) | 66.5 ± 15.9 | 86.1 ± 21.0 | 0.012 |
Cu (μg/dL) | 77.2 ± 17.2 | 243.7 ± 90.2 | 0.002 |
TAS | TOS | OSI | ||
---|---|---|---|---|
Ferritin | r | −0.390 | 0.670 | 0.640 |
p | 0.001 | 0.014 | 0.011 | |
C-reactive protein (CRP) | r | −0.250 | 0.510 | 0.680 |
p | 0.034 | 0.001 | 0.001 | |
Procalcitonin (PCT) | r | −0.320 | 0.485 | 0.552 |
p | 0.010 | 0.012 | 0.013 | |
White blood cell (WBC) | r | −0.270 | 0.385 | 0.412 |
p | 0.025 | 0.016 | 0.012 | |
Immature granulocyte (IG) | r | −0.202 | 0.268 | 0.375 |
p | 0.040 | 0.032 | 0.027 | |
Zinc (Zn) | r | 0.290 | −0.437 | −0.398 |
p | 0.031 | 0.011 | 0.002 | |
Copper (Cu) | r | 0.301 | −0.431 | −0.407 |
p | 0.034 | 0.020 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Segmen, F.; Aydemir, S.; Küçük, O.; Doğu, C.; Dokuyucu, R. Comparison of Oxidative Stress Markers with Clinical Data in Patients Requiring Anesthesia in an Intensive Care Unit. J. Clin. Med. 2024, 13, 6979. https://doi.org/10.3390/jcm13226979
Segmen F, Aydemir S, Küçük O, Doğu C, Dokuyucu R. Comparison of Oxidative Stress Markers with Clinical Data in Patients Requiring Anesthesia in an Intensive Care Unit. Journal of Clinical Medicine. 2024; 13(22):6979. https://doi.org/10.3390/jcm13226979
Chicago/Turabian StyleSegmen, Fatih, Semih Aydemir, Onur Küçük, Cihangir Doğu, and Recep Dokuyucu. 2024. "Comparison of Oxidative Stress Markers with Clinical Data in Patients Requiring Anesthesia in an Intensive Care Unit" Journal of Clinical Medicine 13, no. 22: 6979. https://doi.org/10.3390/jcm13226979
APA StyleSegmen, F., Aydemir, S., Küçük, O., Doğu, C., & Dokuyucu, R. (2024). Comparison of Oxidative Stress Markers with Clinical Data in Patients Requiring Anesthesia in an Intensive Care Unit. Journal of Clinical Medicine, 13(22), 6979. https://doi.org/10.3390/jcm13226979