Subclinical Left Atrial Remodeling in Healthy Adults with Left Ventricular ‘Rigid Body Rotation’—Detailed Analysis from the Three-Dimensional Speckle-Tracking Echocardiographic MAGYAR-Healthy Study
Abstract
:1. Introduction
2. Methods
- -
- Basal and apical LV rotations;
- -
- LV twist (net sum of apical and basal LV rotations);
- -
- Time-to-LV twist.
- -
- End-systolic maximum LA volume (Vmax, before mitral valve opening);
- -
- Early diastolic LA volume before atrial contraction (VpreA, at the time of the P-wave on the ECG);
- -
- End-diastolic minimum LA volume (Vmin, before mitral valve closure).
- featuring LA reservoir function:
- -
- Total stroke volume (SV) = Vmax − Vmin;
- -
- Total emptying fraction (EF) = Total SV/Vmax.
- featuring LA conduit function:
- -
- Passive SV = Vmax − VpreA;
- -
- Passive EF = Passive SV/Vmax.
- featuring LA active contraction:
- -
- Active SV = VpreA − Vmin;
- -
- Active EF = Active SV/VpreA.
3. Results
4. Discussion
5. Limitation
- -
- Although the participants considered themselves to be healthy, it could not be ruled out with 100% certainty that there was a hidden condition that could have influenced the findings.
- -
- Only a limited number of healthy subjects were examined and compared. However, this is the first study in which group of healthy subjects was examined for such comparisons regarding to LV rotational mechanics. It is true that a larger number of cases would have facilitated a better and statistically stronger analysis.
- -
- Normal reference values of LV rotational parameters showed some age and gender dependency, which could have affected the findings [7].
- -
- The best-known limitation of 3DSTE is its poor image quality, and that of 2D echocardiograpy is still better. The image quality could be significantly affected by the size of the transducer, by the fact that several cardiac cycles are required to create a full volume, by motion and respiratory artifacts, etc.
- -
- 3DSTE is known to be suitable for the measurement of several other parameters, but these were not considered to be the subject of this study.
- -
- The analysis of other heart chambers including the right heart was not aimed to be performed in this study.
- -
- Moreover, already validated LA/LV volumes and strains were not intended to be validated again.
- -
- There can be a debate regarding which atrium/ventricle the atrial and ventricular septum is part of, and it was considered to be part of the LA and the LV during the analysis.
- -
- Only a limited number of healthy individuals presented LV-RBR in this study. According to the literature data, the ratio of healthy individuals presenting LV-RBR in a healthy population is not exactly determined.
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sengupta, P.P.; Tajik, A.J.; Chandrasekaran, K.; Khandheria, B.K. Twist mechanics of the left ventricle: Principles and application. JACC Cardiovasc. Imaging 2008, 1, 366–376. [Google Scholar] [CrossRef]
- Nakatani, S. Left ventricular rotation and twist: Why should we learn? J. Cardiovasc. Ultrasound 2011, 19, 1–6. [Google Scholar] [CrossRef]
- Bloechlinger, S.; Grander, W.; Bryner, J.; Dünser, M.W. Left ventricular rotation: A neglected aspect of the cardiac cycle. Intensive Care Med. 2011, 37, 156–163. [Google Scholar] [CrossRef]
- Omar, A.M.S.; Vallabhajosyula, S.; Sengupta, P.P. Left Ventricular Twist and Torsion. Research Observations and Clinical Applications. Circ. Cardiovasc. Imaging 2015, 8, e003029. [Google Scholar] [CrossRef] [PubMed]
- Stöhr, E.J.; Shave, R.E.; Baggish, A.L.; Weiner, R.B. Left ventricular twist mechanics in the context of normal physiology and cardiovascular disease: A review of studies using speckle tracking echocardiography. Am. J. Physiol. Heart Circ. Physiol. 2016, 311, H633–H644. [Google Scholar] [CrossRef] [PubMed]
- Nemes, A.; Kormányos, Á. Prevalence of left ventricular ‘rigid body rotation’, the near absence of left ventricular twist (insights from the MAGYAR studies). Rev. Cardiovasc. Med. 2022, 23, 5. [Google Scholar] [CrossRef] [PubMed]
- Kormányos, Á.; Kalapos, A.; Domsik, P.; Lengyel, C.; Forster, T.; Nemes, A. Normal values of left ventricular rotational parameters in healthy adults-Insights from the three-dimensional speckle tracking echocardiographic MAGYAR-Healthy Study. Echocardiography 2019, 36, 714–721. [Google Scholar] [CrossRef]
- Nemes, A.; Kormányos, Á.; Ambrus, N.; Lengyel, C. Left ventricular deformation in the presence of left ventricular ‘rigid body rotation’ in healthy adults-three-dimensional speckle-tracking echocardiographic insights from the MAGYAR-Healthy Study. Quant. Imaging Med. Surg. 2024, 14, 4605–4616. [Google Scholar] [CrossRef]
- Trimarchi, G.; Pizzino, F.; Paradossi, U.; Gueli, I.A.; Palazzini, M.; Gentile, P.; Di Spigno, F.; Ammirati, E.; Garascia, A.; Tedeschi, A.; et al. Charting the Unseen: How Non-Invasive Imaging Could Redefine Cardiovascular Prevention. J. Cardiovasc. Dev. Dis. 2024, 11, 245. [Google Scholar] [CrossRef]
- Armour, J.A.; Randall, W.C. Structural basis for cardiac function. Am. J. Physiol. 1970, 218, 1517–1523. [Google Scholar] [CrossRef]
- Ammar, K.A.; Paterick, T.E.; Khandheria, B.K.; Jan, M.F.; Kramer, C.; Umland, M.M.; Tercius, A.J.; Baratta, L.; Tajik, A.J. Myocardial mechanics: Understanding and applying three-dimensional speckle tracking echocardiography in clinical practice. Echocardiography 2012, 97, 861–872. [Google Scholar] [CrossRef]
- Urbano-Moral, J.A.; Patel, A.R.; Maron, M.S.; Arias-Godinez, J.A.; Pandian, N.G. Three-dimensional speckle-tracking echocardiography: Methodological aspects and clinical potential. Echocardiography 2012, 29, 997–1010. [Google Scholar] [CrossRef]
- Seo, Y.; Ishizu, T.; Atsumi, A.; Kawamura, R.; Aonuma, K. Three-dimensional speckle tracking echocardiography. Circ. J. 2014, 78, 1290–1301. [Google Scholar] [CrossRef]
- Muraru, D.; Niero, A.; Rodriguez-Zanella, H.; Cherata, D.; Badano, L. Three-dimensional speckle-tracking echocardiography: Benefits and limitations of integrating myocardial mechanics with three-dimensional imaging. Cardiovasc. Diagn. Ther. 2018, 8, 101–117. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef] [PubMed]
- Nemes, A.; Kormányos, Á.; Domsik, P.; Kalapos, A.; Ambrus, N.; Lengyel, C. Normal reference values of left atrial volumes and volume-based functional properties using three-dimensional speckle-tracking echocardiography in healthy adults (Insights from the MAGYAR-Healthy Study). J. Clin. Ultrasound. 2021, 49, 49–55. [Google Scholar] [CrossRef]
- Nemes, A.; Kormányos, Á.; Domsik, P.; Kalapos, A.; Lengyel, C.; Forster, T. Normal reference values of three-dimensional speckle-tracking echocardiography-derived left atrial strain parameters (results from the MAGYAR-Healthy Study). Int. J. Cardiovasc. Imaging 2019, 35, 991–998. [Google Scholar] [CrossRef]
- Nemes, A.; Kormányos, Á.; Ruzsa, Z.; Achim, A.; Ambrus, N.; Lengyel, C. Dependence of Left Ventricular Rotational Mechanics on Left Atrial Volumes in Non-Smoker Healthy Adults: Analysis based on the Three-Dimensional Speckle-Tracking Echocardiographic MAGYAR-Healthy Study. J. Clin. Med. 2023, 12, 1235. [Google Scholar] [CrossRef]
- Sengupta, P.P.; Korinek, J.; Belohlavek, M.; Narula, J.; Vannan, M.A.; Jahangir, A.; Khandheria, B.K. Left ventricular structure and function: Basic science for cardiac imaging. J. Am. Coll. Cardiol. 2006, 48, 1988–2001. [Google Scholar] [CrossRef]
- Narang, A.; Addetia, K. An introduction to left ventricular strain. Curr. Opin. Cardiol. 2018, 33, 455–463. [Google Scholar] [CrossRef]
- Seward, J.B.; Hebl, V.B. Left atrial anatomy and physiology: Echo/Doppler assessment. Curr. Opin. Cardiol. 2014, 29, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Hoit, B.D. Left atrial size and function: Role in prognosis. J. Am. Coll. Cardiol. 2014, 63, 493–505. [Google Scholar] [CrossRef] [PubMed]
All Healthy Subjects (n = 165) | Normally Directed LV Rotational Mechanics (n = 156) | All LV-RBR (n = 9) | |
---|---|---|---|
male gender (%) | 75 (45) | 72 (46) | 3 (33) |
mean age (years) | 33.1 ± 12.3 | 32.7 ± 11.9 | 34.7 ± 10.8 |
body mass index (kg/m2) | 24.0 ± 1.9 | 24.2 ± 1.7 | 23.7 ± 1.9 |
body surface area (m2) | 1.82 ± 0.14 | 1.81 ± 0.17 | 1.83 ± 0.16 |
systolic blood pressure (mm Hg) | 122.4 ± 4.1 | 123.0 ± 4.3 | 122.1 ± 3.8 |
diastolic blood pressure (mm Hg) | 72.9 ± 4.2 | 73.4 ± 4.4 | 72.6 ± 4.0 |
heart rate (1/s) | 71.7 ± 2.9 | 72.4 ± 3.0 | 71.3 ± 2.8 |
LA (mm) | 36.7 ± 4.0 | 36.7 ± 4.0 | 35.9 ± 3.9 |
LV-EDD (mm) | 48.1 ± 3.7 | 48.1 ± 3.7 | 48.0 ± 3.9 |
LV-EDV (mL) | 106.8 ± 22.9 | 106.6 ± 22.9 | 110.2 ± 22.7 |
LV-ESD (mm) | 32.0 ± 3.3 | 31.9 ± 3.2 | 33.0 ± 4.8 |
LV-ESV (mL) | 36.6 ± 9.3 | 36.3 ± 9.0 | 40.3 ± 12.5 |
IVS (mm) | 8.9 ± 1.5 | 8.9 ± 1.6 | 9.5 ± 1.3 |
LV-PW (mm) | 9.1 ± 1.6 | 9.0 ± 1.7 | 9.8 ± 1.0 |
LV-EF (%) | 65.8 ± 4.9 | 65.9 ± 4.9 | 64.2 ± 5.7 |
E (cm/s) | 79.3 ± 17.2 | 79.6 ± 17.1 | 74.3 ± 17.7 |
A (cm/s) | 64.8 ± 20.0 | 65.5 ± 20.2 | 54.0 ± 10.4 |
All Healthy Subjects (n = 165) | Normally Directed LV Rotational Mechanics (n = 156) | All LV-RBR (n = 9) | ccwLV-RBR (n = 5) | cwLV-RBR (n = 4) | |
---|---|---|---|---|---|
LA-Vmax (mL) | 40.9 ± 13.1 | 40.4 ± 12.8 | 48.7 ± 15.5 * | 56.5 ± 16.7 * | 39.0 ± 4.4 |
LA-VpreA (mL) | 27.7 ± 11.8 | 27.2 ± 11.2 | 36.5 ± 17.1 * | 46.5 ± 16.7 * | 24.0 ± 5.7 † |
LA-Vmin (mL) | 19.4 ± 8.2 | 19.0 ± 7.6 | 26.9 ± 12.2 * | 34.3 ± 13.5 * | 17.8 ± 4.0 † |
LA-TASV (mL) | 21.5 ± 8.2 | 21.5 ± 8.3 | 21.8 ± 5.6 | 22.2 ± 6.7 | 21.2 ± 3.8 |
LA-TAEF (%) | 52.7 ± 11.9 | 53.0 ± 11.9 | 46.5 ± 10.7 | 40.1 ± 8.0 * | 54.5 ± 7.9 † |
LA-PASV (mL) | 13.2 ± 5.6 | 13.2 ± 5.7 | 12.2 ± 3.9 | 10.0 ± 1.8 * | 15.0 ± 3.9 † |
LA-PAEF (%) | 33.3 ± 12.6 | 33.6 ± 12.5 | 28.1 ± 13.2 | 19.4 ± 7.7 * | 38.8 ± 10.6 † |
LA-AASV (mL) | 8.3 ± 5.8 | 8.2 ± 5.8 | 9.6 ± 5.7 | 12.2 ± 6.3 | 6.3 ± 2.2 |
LA-AAEF (%) | 28.9 ± 11.9 | 29.1 ± 12.1 | 25.6 ± 6.2 | 25.7 ± 6.0 | 25.5 ± 6.5 |
All Healthy Subjects (n = 165) | Normally Directed LV Rotational Mechanics (n = 156) | All LV-RBR (n = 9) | ccwLV-RBR (n = 5) | cwLV-RBR (n = 4) | |
---|---|---|---|---|---|
LA-GRS (%) | −14.9 ± 8.1 | −14.7 ± 8.0 | −17.3 ± 9.0 | −12.7 ± 7.9 | −23.4 ± 6.3 * |
LA-GCS (%) | 33.6 ± 15.3 | 33.9 ± 15.6 | 27.3 ± 7.7 | 28.0 ± 8.6 | 26.5 ± 6.4 |
LA-GLS (%) | 26.3 ± 9.1 | 26.6 ± 9.0 | 19.8 ± 8.0 * | 15.1 ± 4.7 * | 25.6 ± 7.4 † |
LA-G3DS (%) | −7.5 ± 5.9 | −7.4 ± 5.7 | −9.0 ± 8.4 | −6.3 ± 6.6 | −12.3 ± 9.3 |
LA-GAS (%) | 67.5 ± 28.1 | 68.4 ± 28.4 | 51.5 ± 14.7 | 47.0 ± 14.8 | 57.1 ± 12.4 |
LA-msRS (%) | −19.1 ± 6.9 | −19.1 ± 6.9 | −20.2 ± 6.3 | −18.1 ± 7.6 | −22.8 ± 2.4 |
LA-msCS (%) | 37.6 ± 14.4 | 38.0 ± 14.6 | 30.1 ± 7.6 | 31.9 ± 7.0 | 27.9 ± 7.7 |
LA-msLS (%) | 29.3 ± 8.3 | 29.8 ± 8.1 | 21.1 ± 6.5 * | 18.0 ± 4.1 * | 25.1 ± 6.8 |
LA-ms3DS (%) | −12.5 ± 5.0 | −12.5 ± 5.0 | −12.9 ± 5.5 | −12.6 ± 6.3 | −13.3 ± 4.1 |
LA-msAS (%) | 73.1 ± 26.9 | 74.2 ± 27.0 | 53.8 ± 14.8 * | 52.6 ± 13.2 | 55.2 ± 16.6 |
All Healthy Subjects (n = 165) | Normally Directed LV Rotational Mechanics (n = 156) | All LV-RBR (n = 9) | ccwLV-RBR (n = 5) | cwLV-RBR (n = 4) | |
---|---|---|---|---|---|
Basal LA-RS (%) | −17.8 ± 9.0 | −17.5 ± 8.9 | −23.6 ± 8.8 * | −22.0 ± 9.5 | −25.7 ± 7.3 |
Midatrial LA-RS (%) | −18.9 ± 7.6 | −18.8 ± 7.4 | −20.5 ± 9.2 | −17.0 ± 9.0 | −24.8 ± 7.4 |
Superior LA-RS (%) | −21.7 ± 11.8 | −21.8 ± 11.9 | −19.9 ± 10.2 | −13.8 ± 7.6 | −27.6 ± 7.3 † |
Basal LA-CS (%) | 41.8 ± 15.2 | 42.1 ± 15.5 | 38.2 ± 7.4 | 37.1 ± 7.5 | 39.6 ± 7.1 |
Midatrial LA-CS (%) | 32.2 ± 12.8 | 32.5 ± 12.9 | 26.3 ± 8.6 | 22.3 ± 7.5 | 31.2 ± 7.1 |
Superior LA-CS (%) | 39.4 ± 26.1 | 40.1 ± 26.4 | 27.9 ± 17.3 | 38.5 ± 15.3 | 14.6 ± 8.0 *† |
Basal LA-LS (%) | 22.7 ± 11.0 | 22.9 ± 11.0 | 19.5 ± 9.8 | 12.7 ± 1.5 * | 27.9 ± 9.3 † |
Midatrial LA-LS (%) | 37.1 ± 12.5 | 37.6 ± 12.3 | 27.7 ± 13.1 * | 20.1 ± 6.9 * | 37.3 ± 12.7 |
Superior LA-LS (%) | 22.7 ± 14.7 | 27.9 ± 14.7 | 19.1 ± 10.8 | 22.6 ± 13.5 | 14.7 ± 2.0 |
Basal LA-3DS (%) | −12.5 ± 7.3 | −12.2 ± 7.1 | −17.3 ± 8.8 * | −16.5 ± 7.9 | −18.2 ± 9.7 |
Midatrial LA-3DS (%) | −11.5 ± 5.6 | −11.5 ± 5.4 | −11.4 ± 8.4 | −11.3 ± 7.7 | −11.5 ± 9.1 |
Superior LA-3DS (%) | −14.1 ± 8.5 | −14.3 ± 8.5 | −11.6 ± 7.0 | −8.3 ± 4.9 | −15.7 ± 7.2 |
Basal LA-AS (%) | 63.9 ± 24.7 | 64.2 ± 24.9 | 58.6 ± 20.2 | 49.2 ± 7.4 | 70.4 ± 24.5 |
Midatrial LA-AS (%) | 75.7 ± 27.5 | 76.8 ± 27.3 | 56.0 ± 21.8 * | 42.3 ± 12.8 * | 73.1 ± 18.5 † |
Superior LA-AS (%) | 83.7 ± 62.4 | 85.3 ± 63.3 | 56.2 ± 33.4 | 73.0 ± 33.5 | 35.3 ± 17.6 |
All Healthy Subjects (n = 165) | Normally Directed LV Rotational Mechanics (n = 156) | All LV-RBR (n = 9) | ccwLV-RBR (n = 5) | cwLV-RBR (n = 4) | |
---|---|---|---|---|---|
LA-GRS (%) | −5.4 ± 5.5 | −5.2 ± 5.2 | −9.9 ± 7.1 * | −9.7 ± 6.1 * | −10.0 ± 8.2 * |
LA-GCS (%) | 13.6 ± 9.6 | 13.6 ± 9.7 | 12.9 ± 8.7 | 18.3 ± 5.4 | 6.0 ± 7.2 † |
LA-GLS (%) | 8.4 ± 7.4 | 8.3 ± 7.3 | 10.2 ± 8.3 | 5.9 ± 3.5 | 15.7 ± 9.2 * |
LA-G3DS (%) | −3.1 ± 4.5 | −3.1 ± 4.5 | −3.8 ± 4.4 | −4.7 ± 5.2 | −2.7 ± 2.7 |
LA-GAS (%) | 22.9 ± 17.4 | 23.1 ± 17.6 | 20.5 ± 13.7 | 25.6 ± 11.2 | 14.2 ± 13.9 |
LA-msRS (%) | −7.9 ± 4.3 | −7.8 ± 4.2 | −9.5 ± 4.4 | −9.3 ± 5.1 | −9.8 ± 3.3 |
LA-msCS (%) | 15.3 ± 8.3 | 15.3 ± 8.5 | 14.7 ± 5.6 | 17.2 ± 5.3 | 11.5 ± 4.0 |
LA-msLS (%) | 9.9 ± 5.2 | 9.9 ± 5.2 | 9.6 ± 4.3 | 7.4 ± 3.7 | 12.4 ± 3.2 |
LA-ms3DS (%) | −5.1 ± 3.8 | −5.0 ± 3.8 | −6.1 ± 3.9 | −5.9 ± 4.8 | −6.4 ± 2.2 |
LA-msAS (%) | 26.2 ± 14.5 | 26.2 ± 14.7 | 25.9 ± 9.6 | 26.9 ± 10.7 | 24.8 ± 7.7 |
All Healthy (n = 165) | Normally Directed LV Rotational Mechanics (n = 156) | All LV-RBR (n = 9) | ccwLV-RBR (n = 5) | cwLV-RBR (n = 4) | |
---|---|---|---|---|---|
Basal LA-RS (%) | −7.5 ± 5.4 | −7.2 ± 5.4 | −11.8 ± 5.1 * | −11.4 ± 5.1 | −12.2 ± 4.9 |
Midatrial LA-RS (%) | −7.6 ± 4.6 | −7.6 ± 4.6 | −8.4 ± 4.8 | −8.7 ± 5.7 | −8.0 ± 3.3 |
Superior LA-RS (%) | −8.9 ± 9.9 | −9.0 ± 8.0 | −7.9 ± 6.2 | −7.0 ± 7.4 | −9.1 ± 4.0 |
Basal LA-CS (%) | 17.0 ± 9.2 | 17.0 ± 9.4 | 16.9 ± 4.9 | 19.1 ± 4.5 | 14.3 ± 3.9 |
Midatrial LA-CS (%) | 13.0 ± 8.3 | 13.1 ± 8.5 | 12.2 ± 4.4 | 12.1 ± 4.9 | 12.3 ± 3.7 |
Superior LA-CS (%) | 15.7 ± 14.4 | 15.8 ± 14.4 | 15.5 ± 14.5 | 30.2 ± 24.9 | 6.9 ± 7.7 |
Basal LA-LS (%) | 7.6 ± 5.2 | 7.7 ± 5.3 | 6.1 ± 3.2 | 5.9 ± 2.6 | 6.5 ± 3.8 |
Midatrial LA-LS (%) | 11.2 ± 7.7 | 11.1 ± 7.6 | 12.9 ± 8.0 | 7.2 ± 3.2 | 20.0 ± 6.3 *† |
Superior LA-LS (%) | 11.0 ± 8.3 | 11.0 ± 8.2 | 11.2 ± 8.6 | 10.9 ± 3.4 | 11.5 ± 7.5 |
Basal LA-3DS (%) | −5.0 ± 5.1 | −4.8 ± 5.0 | −8.6 ± 4.7 * | −9.5 ± 5.5 * | −7.4 ± 3.2 |
Midatrial LA-3DS (%) | −4.7 ± 4.2 | −4.6 ± 4.1 | −5.0 ± 5.3 | −5.6 ± 6.7 | −4.3 ± 2.3 |
Superior LA-3DS (%) | −5.9 ± 6.7 | −6.0 ± 6.7 | −4.1 ± 6.8 | −1.1 ± 6.9 | −7.8 ± 4.2 |
Basal LA-AS (%) | 23.6 ± 13.5 | 23.6 ± 13.8 | 23.5 ± 5.8 | 25.0 ± 6.4 | 21.7 ± 4.4 |
Midatrial LA-AS (%) | 26.0 ± 15.6 | 26.1 ± 15.8 | 25.0 ± 11.5 | 18.1 ± 7.9 | 33.7 ± 9.4 † |
Superior LA-AS (%) | 30.2 ± 29.1 | 30.2 ± 29.2 | 30.7 ± 28.6 | 42.4 ± 30.5 | 16.1 ± 16.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nemes, A. Subclinical Left Atrial Remodeling in Healthy Adults with Left Ventricular ‘Rigid Body Rotation’—Detailed Analysis from the Three-Dimensional Speckle-Tracking Echocardiographic MAGYAR-Healthy Study. J. Clin. Med. 2024, 13, 7006. https://doi.org/10.3390/jcm13237006
Nemes A. Subclinical Left Atrial Remodeling in Healthy Adults with Left Ventricular ‘Rigid Body Rotation’—Detailed Analysis from the Three-Dimensional Speckle-Tracking Echocardiographic MAGYAR-Healthy Study. Journal of Clinical Medicine. 2024; 13(23):7006. https://doi.org/10.3390/jcm13237006
Chicago/Turabian StyleNemes, Attila. 2024. "Subclinical Left Atrial Remodeling in Healthy Adults with Left Ventricular ‘Rigid Body Rotation’—Detailed Analysis from the Three-Dimensional Speckle-Tracking Echocardiographic MAGYAR-Healthy Study" Journal of Clinical Medicine 13, no. 23: 7006. https://doi.org/10.3390/jcm13237006
APA StyleNemes, A. (2024). Subclinical Left Atrial Remodeling in Healthy Adults with Left Ventricular ‘Rigid Body Rotation’—Detailed Analysis from the Three-Dimensional Speckle-Tracking Echocardiographic MAGYAR-Healthy Study. Journal of Clinical Medicine, 13(23), 7006. https://doi.org/10.3390/jcm13237006