A Comparative Analysis of the Impact of Severe Acute Respiratory Syndrome Coronavirus 2 Infection on the Performance of Clinical Decision-Making Algorithms for Pulmonary Embolism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Scores and Evaluation of Algorithm
- The physician stated that PE was the most likely diagnosis in the medical record; or
- No other YEARS criteria were specified in the medical record but a CTPA procedure was performed when the D-dimer level was <1000 μg/L within 24 h of D-dimer measurement.
2.2. COVID-19 Assessment
2.3. CTPA Protocol
2.4. Statistical Analysis
3. Results
3.1. Patient Demographics
3.2. Score and Algorithms
3.2.1. Diagnostic Performance of Wells and Geneva Scores
3.2.2. Diagnostic Performance of YEARS and PEGeD Algorithms
3.2.3. Performance of Algorithms by COVID-19 Status
3.3. Diagnostic Performance of D-Dimer Cutoff Values
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jevnikar, M.; Sanchez, O.; Chocron, R.; Andronikof, M.; Raphael, M.; Meyrignac, O.; Fournier, L.; Montani, D.; Planquette, B.; Soudani, M.; et al. Prevalence of pulmonary embolism in patients with COVID-19 at the time of hospital admission. Eur. Respir. J. 2021, 58, 2100116. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Yuan, B.; Yuan, Y. Incidence and prognostic value of pulmonary embolism in COVID-19: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0263580. [Google Scholar] [CrossRef] [PubMed]
- Miesbach, W.; Makris, M. COVID-19: Coagulopathy, risk of thrombosis, and the rationale for anticoagulation. Clin. Appl. Thromb. Hemost. 2020, 26, 1076029620938149. [Google Scholar] [CrossRef] [PubMed]
- Pietersen, P.I.; Goyard, C.; Gille, T.; De Margerie-Mellon, C.; Falster, C. The CT Revolution: The role of PIOPED II in establishing CT pulmonary angiography as the reference standard for pulmonary embolism diagnosis. Breathe 2024, 20, 230228. [Google Scholar] [CrossRef]
- Glazier, M.M.; Glazier, J.J. Diagnostic strategies in pulmonary embolism. Int. J. Angiol. 2024, 33, 89–94. [Google Scholar] [CrossRef]
- Geersing, G.-J.; Takada, T.; Klok, F.A.; Büller, H.R.; Courtney, D.M.; Freund, Y.; Galipienzo, J.; Le Gal, G.; Ghanima, W.; Kline, J.A.; et al. Ruling out pulmonary embolism across different healthcare settings: A systematic review and individual patient data meta-analysis. PLoS Med. 2022, 19, e1003905. [Google Scholar] [CrossRef]
- Van der Hulle, T.; Cheung, W.Y.; Kooij, S.; Beenen, L.F.M.; van Bemmel, T.; van Es, J.; Faber, L.M.; Hazelaar, G.M.; Heringhaus, C.; Hofstee, H.; et al. Simplified diagnostic management of suspected pulmonary embolism (the YEARS Study): A prospective, multicentre, cohort study. Lancet 2017, 390, 289–297. [Google Scholar] [CrossRef]
- Freund, Y.; Chauvin, A.; Jimenez, S.; Philippon, A.-L.; Curac, S.; Fémy, F.; Gorlicki, J.; Chouihed, T.; Goulet, H.; Montassier, E.; et al. Effect of a diagnostic strategy using an elevated and age-adjusted D-dimer threshold on thromboembolic events in emergency department patients with suspected pulmonary embolism: A randomized clinical trial. JAMA 2021, 326, 2141. [Google Scholar] [CrossRef]
- Kearon, C.; De Wit, K.; Parpia, S.; Schulman, S.; Afilalo, M.; Hirsch, A.; Spencer, F.A.; Sharma, S.; D’aragon, F.; Deshaies, J.F.; et al. Diagnosis of pulmonary embolism with D-dimer adjusted to clinical probability. N. Engl. J. Med. 2019, 381, 2125–2134. [Google Scholar] [CrossRef]
- Tufano, A.; Rendina, D.; Abate, V.; Casoria, A.; Marra, A.; Buonanno, P.; Galletti, F.; Di Minno, G.; Servillo, G.; Vargas, M. Venous thromboembolism in COVID-19 compared to non-COVID-19 cohorts: A Systematic Review with Meta-analysis. J. Clin. Med. 2021, 10, 4925. [Google Scholar] [CrossRef]
- Zhang, R.; Ni, L.; Di, X.; Wang, X.; Ma, B.; Niu, S.; Liu, C. Systematic review and meta-analysis of the prevalence of venous thromboembolic events in novel coronavirus disease-2019 patients. J. Vasc. Surg. Venous Lymphat. Disord. 2021, 9, 289–298.e5. [Google Scholar] [CrossRef]
- Van Dam, L.F.; Kroft, L.J.M.; Van Der Wal, L.I.; Cannegieter, S.C.; Eikenboom, J.; De Jonge, E.; Huisman, M.V.; Klok, F.A. Clinical and computed tomography characteristics of COVID-19 associated acute pulmonary embolism: A different phenotype of thrombotic disease? Thromb. Res. 2020, 193, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Mazzeffi, M.A.; Chow, J.H.; Tanaka, K. COVID-19 associated hypercoagulability: Manifestations, mechanisms, and management. Shock 2021, 55, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Schulz, K.; Mao, L.; Kanne, J. Computed tomography pulmonary angiography utilization in the emergency department during the COVID-19 pandemic. J. Thorac. Imaging 2022, 37, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Birk, R.; Shaw, D.; Kennedy, C.; Higashi, Y.; Patel, R.; Gupta, A.; Au-Yong, I. Low detection rate of pulmonary embolism in patients presenting to the emergency department with suspected coronavirus disease 2019 (COVID-19): A single-centre UK study. Curr. Probl. Diagn. Radiol. 2021, 50, 656–661. [Google Scholar] [CrossRef]
- Tsakok, M.T.; Qamhawi, Z.; Lumley, S.F.; Xie, C.; Matthews, P.; Gleeson, F.; Benamore, R. COVID-19 CT pulmonary angiogram examinations and reported pulmonary embolism incidence: Comparison between peak first wave and early second wave. Clin. Radiol. 2021, 76, 310–312. [Google Scholar] [CrossRef]
- Porfidia, A.; Mosoni, C.; Talerico, R.; Porceddu, E.; Lupascu, A.; Tondi, P.; Landi, F.; Pola, R. Pulmonary embolism in COVID-19 patients: Which diagnostic algorithm should we use? Front. Cardiovasc. Med. 2021, 8, 714003. [Google Scholar] [CrossRef]
- Friz, H.; Gelfi, E.; Orenti, A.; Motto, E.; Primitz, L.; Donzelli, T.; Intotero, M.; Scarpazza, P.; Vighi, G.; Cimminiello, C.; et al. Acute pulmonary embolism in patients presenting pulmonary deterioration after hospitalisation for non-critical COVID-19. Intern. Med. J. 2021, 51, 1236–1242. [Google Scholar] [CrossRef]
- Silva, B.V.; Jorge, C.; Plácido, R.; Mendonça, C.; Urbano, M.L.; Rodrigues, T.; Brito, J.; Da Silva, P.A.; Rigueira, J.; Pinto, F.J. Pulmonary embolism and COVID-19: A comparative analysis of different diagnostic models performance. Am. J. Emerg. Med. 2021, 50, 526–531. [Google Scholar] [CrossRef]
- Gherbesi, E.; Bergamaschi, L.; Cusmano, I.; Tien, T.T.; Paolisso, P.; Foà, A.; Pizzi, C.; Barosi, A. The usefulness of speckle tracking echocardiography in identifying subclinical myocardial dysfunction in young adults recovered from mild COVID-19. Echocardiography 2022, 39, 1190–1197. [Google Scholar] [CrossRef]
- Speksnijder, E.M.; Hessels, L.M.; Muusses, L.; Büller, H.R.; Boersma, W.G.; Simsek, S. Validation of the YEARS algorithm and Wells’ score with the age-adjusted cut-off to exclude pulmonary embolism in COVID-19 patients. Thromb. Res. 2022, 219, 109–111. [Google Scholar] [CrossRef]
- Medson, K.; Yu, J.; Liwenborg, L.; Lindholm, P.; Westerlund, E. Comparing ‘clinical hunch’ against clinical decision support systems (PERC rule, Wells score, revised Geneva score and YEARS criteria) in the diagnosis of acute pulmonary embolism. BMC Pulm. Med. 2022, 22, 432. [Google Scholar] [CrossRef] [PubMed]
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.-J.; Harjola, V.-P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jiménez, D.; et al. 2019 ESC guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European respiratory society (ERS). Eur. Heart J. 2020, 41, 543–603. [Google Scholar] [CrossRef] [PubMed]
- Righini, M.; Van Es, J.; Den Exter, P.L.; Roy, P.-M.; Verschuren, F.; Ghuysen, A.; Rutschmann, O.T.; Sanchez, O.; Jaffrelot, M.; Trinh-Duc, A. Age-adjusted D-dimer cutoff levels to rule out pulmonary embolism: The ADJUST-PE study. JAMA 2014, 311, 1117. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Yu, H.; Liu, W.; Lin, L.; Ji, Y.Q. Distinct age-adjusted D-dimer threshold to rule out acute pulmonary embolism in outpatients and inpatients. Clin. Respir. J. 2024, 18, e13728. [Google Scholar] [CrossRef]
- Eddy, M.; Robert-Ebadi, H.; Richardson, L.; Bellesini, M.; Verschuren, F.; Moumneh, T.; Meyer, G.; Righini, M.; Le Gal, G. External validation of the YEARS diagnostic algorithm for suspected pulmonary embolism. J. Thromb. Haemost. 2020, 18, 3289–3295. [Google Scholar] [CrossRef]
- Robert-Ebadi, H.; Roy, P.-M.; Sanchez, O.; Verschuren, F.; Le Gal, G.; Righini, M. External validation of the PEGeD diagnostic algorithm for suspected pulmonary embolism in an independent cohort. Blood Adv. 2023, 7, 3946–3951. [Google Scholar] [CrossRef]
- Simpson, S.; Kay, F.U.; Abbara, S.; Bhalla, S.; Chung, J.H.; Chung, M.; Henry, T.S.; Kanne, J.P.; Kligerman, S.; Ko, J.P.; et al. Radiological Society of North America expert consensus document on reporting chest CT findings related to COVID-19: Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA. Radiol. Cardiothorac. Imaging 2020, 2, e200152. [Google Scholar] [CrossRef]
- Hanley, J.A.; Mcneil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1983, 143, 29–36. [Google Scholar] [CrossRef]
- Freund, Y.; Drogrey, M.; Miró, Ò.; Marra, A.; Féral-pierssens, A.; Penaloza, A.; Hernandez, B.A.L.; Beaune, S.; Gorlicki, J.; Vaittinada Ayar, P.; et al. Association between pulmonary embolism and COVID-19 in emergency department patients undergoing computed tomography pulmonary angiogram: The PEPCOV international retrospective study. Acad. Emerg. Med. 2020, 27, 811–820. [Google Scholar] [CrossRef]
- Kirsch, B.; Aziz, M.; Kumar, S.; Burke, M.; Webster, T.; Immadi, A.; Sam, M.; Lal, A.; Estrada-Y-Martin, R.M.; Cherian, S.; et al. Wells score to predict pulmonary embolism in patients with coronavirus disease 2019. Am. J. Med. 2021, 134, 688–690. [Google Scholar] [CrossRef]
- Meter, M.; Barcot, O.; Jelicic, I.; Gavran, I.; Skopljanac, I.; Parcina, M.Z.; Dolic, K.; Ivelja, M.P. Revision of clinical pre-test probability scores in hospitalized patients with pulmonary embolism and SARS-CoV-2 infection. Rev. Cardiovasc. Med. 2023, 24, 18. [Google Scholar] [CrossRef] [PubMed]
- Valente Silva, B.; Jorge, C.; Plácido, R.; Nobre Menezes, M.; Mendonça, C.; Luísa Urbano, M.; Rigueira, J.; G Almeida, A.; Pinto, F.J. Comparison of the accuracy of four diagnostic prediction rules for pulmonary embolism in patients admitted to the emergency department. Rev. Port. Cardiol. 2024, 43, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Chassagnon, G.; El Hajjam, M.; Boussouar, S.; Revel, M.-P.; Khoury, R.; Ghaye, B.; Bommart, S.; Lederlin, M.; Tran Ba, S.; De Margerie-Mellon, C.; et al. Strategies to safely rule out pulmonary embolism in COVID-19 outpatients: A multicenter retrospective study. Eur. Radiol. 2023, 33, 5540–5548. [Google Scholar] [CrossRef] [PubMed]
- Raj, K.; Chandna, S.; Doukas, S.G.; Watts, A.; Jyotheeswara Pillai, K.; Anandam, A.; Singh, D.; Nagarakanti, R.; Sankaramangalam, K. Combined use of Wells scores and D-dimer levels for the diagnosis of deep vein thrombosis and pulmonary embolism in COVID-19: A retrospective cohort study. Cureus 2021, 13, 17687. [Google Scholar] [CrossRef]
- Vielhauer, J.; Benesch, C.; Pernpruner, A.; Johlke, A.-L.; Hellmuth, J.C.; Muenchhoff, M.; Scherer, C.; Fink, N.; Sabel, B.; Schulz, C.; et al. How to exclude pulmonary embolism in patients hospitalized with COVID-19: A comparison of predictive scores. Thrombosis J. 2023, 21, 51. [Google Scholar] [CrossRef]
- Kampouri, E.; Filippidis, P.; Viala, B.; Méan, M.; Pantet, O.; Desgranges, F.; Tschopp, J.; Regina, J.; Karachalias, E.; Bianchi, C.; et al. Predicting venous thromboembolic events in patients with coronavirus disease 2019 requiring hospitalization: An observational retrospective study by the COVIDIC initiative in a Swiss university hospital. BioMed. Res. Int. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Ventura-Díaz, S.; Quintana-Pérez, J.V.; Gil-Boronat, A.; Herrero-Huertas, M.; Gorospe-Sarasúa, L.; Montilla, J.; Acosta-Batlle, J.; Blázquez-Sánchez, J.; Vicente-Bártulos, A. A higher D-dimer threshold for predicting pulmonary embolism in patients with COVID-19: A retrospective study. Emerg. Radiol. 2020, 27, 679–689. [Google Scholar] [CrossRef]
- Laouan Brem, F.; Asmae, B.; Amane, Y.; Bouazzaoui, M.A.; Chaymae, M.; Rasras, H.; Nasri, S.; Abda, N.; Skiker, I.; Kouismi, H.; et al. Diagnostic accuracy of D-dimers for predicting pulmonary embolism in COVID-19 patients. Clin. Appl. Thromb. Hemost. 2021, 27, 10760296211057901. [Google Scholar] [CrossRef]
Baseline Characteristics | COVID-19 (+) (n = 994) | COVID-19 (−) (n = 429) | p-Value |
---|---|---|---|
Previous diagnosis of DVT/PE, n (%) | 15 (1.5) | 10 (2.3) | 0.279 |
Clinical signs of DVT, n (%) | 29 (2.9) | 29 (6.8) | 0.001 |
Malignancy, n (%) | 88 (8.9) | 45 (10.5) | 0.330 |
Heart rate > 100 bpm, n (%) | 414 (41.6) | 186 (43.4) | 0.550 |
Surgery or fracture within 1 month, n (%) | 125 (12.6) | 61 (14.2) | 0.399 |
Immobilization for 3 days or surgery in 4 weeks, n (%) | 125 (12.6) | 61 (14.2) | 0.399 |
Unilateral leg edema, n (%) | 28 (2.8) | 29 (6.8) | <0.001 |
Unilateral leg pain, n (%) | 24 (2.4) | 22 (5.1) | 0.008 |
Hemoptysis, n (%) | 31 (3.1) | 17 (4.0) | 0.418 |
PE as the first diagnosis or equally likely, n (%) | 37 (3.7) | 8 (1.9) | 0.066 |
Wells score | |||
Median (IQR) | 1.0 (0.0–1.5) | 1.5 (0.0–1.5) | 0.116 & |
Probability of PE according to Wells score | 0.034 # | ||
- Low risk, n (%) | 942 (94.8) | 397 (92.5) | |
- Moderate risk, n (%) | 40 (4.0) | 30 (7.0) | |
- High risk, n (%) | 12 (1.2) | 2 (0.5) | |
Geneva score | |||
Median (IQR) | 5.0 (3.0−6.0) | 5.0 (4.0−6.0) | 0.003 & |
Probability of PE according to Geneva score | 0.004 | ||
- Low risk, n (%) | 287 (28.9) | 97 (22.6) | |
- Moderate risk, n (%) | 685 (68.9) | 312 (72.7) | |
- High risk, n (%) | 22 (2.2) | 20 (4.7) | |
YEARS Algorithm | 0.031 | ||
0 items, n (%) | 910 (91.5) | 337 (87.9) | |
≥1 item, n (%) | 84 (8.5) | 52 (12.1) | |
PE, n (%) | 72 (7.2) | 32 (7.5) | 0.886 |
Risk Factor | PE Patients (n = 104) | Non-PE Patients (n = 1319) | p |
---|---|---|---|
Age > 65 years, n (%) | 60 (57.7) | 579 (43.9) | 0.006 |
Previous diagnosis of DVT/PE, n (%) | 5 (4.8) | 20 (1.5) | 0.031 # |
Clinical signs of DVT, n (%) | 16 (15.4) | 42 (3.2) | <0.001 # |
Malignancy, n (%) | 10 (9.6) | 123 (9.3) | 0.922 |
Heart rate > 100 bpm, n (%) | 48 (46.2) | 552 (41.8) | 0.392 |
Surgery or fracture within 1 month, n (%) | 24 (23.1) | 162 (12.3) | 0.002 |
Immobilization for 3 days or surgery in 4 weeks, n (%) | 24 (23.1) | 162 (12.3) | 0.002 |
Unilateral leg edema, n (%) | 16 (15.4) | 41 (3.1) | <0.001 # |
Unilateral leg pain, n (%) | 15 (14.4) | 31 (2.4) | <0.001 # |
Hemoptysis, n (%) | 4 (3.8) | 44 (3.3) | 0.775 # |
PE as the first diagnosis or equally likely, n (%) | 9 (8.7) | 36 (2.7) | 0.004 # |
Algorithm | COVID-19 | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | Accuracy (%) | AUC |
---|---|---|---|---|---|---|---|
Wells score + D-dimer 500 ng/mL | (−) | 93.75 [85.36–100.00] | 5.54 [3.29–7.79] | 7.41 [4.86–9.96] | 91.62 [80.61–100.00] | 12.12 [9.03–15.21] | 0.496 [0.392–0.601] |
(+) | 97.22 [80.53–100.00] | 4.99 [3.58–6.39] | 7.40 [5.73–9.07] | 95.83 [90.18–100.00] | 11.67 [9.67–13.67] | 0.511 [0.443–0.579] | |
p-value | 0.585 # | 0.677 | 0.996 | 0.597 # | 0.809 | 0.819 % | |
Wells score + AADD | (−) | 90.63 [80.53–100.00] | 8.82 [6.03–11.61] | 7.42 [4.82–10.01] | 92.11 [83.53–100.00] | 14.92 [11.55–18.29] | 0.497 [0.393–0.602] |
(+) | 97.22 [93.43–100.00] | 7.81 [6.08–9.54] | 7.61 [5.90–9.32] | 97.30 [93.60–100.00] | 14.29 [12.11–16.46] | 0.525 [0.459–0.592] | |
p-value | 0.320 # | 0.583 | 0.904 | 0.334 # | 0.756 | 0.658 % | |
Geneva score + D-dimer 500 ng/mL | (−) | 93.75 [85.36–100.00] | 5.29 [3.09–7.49] | 7.39 [4.84–9.93] | 91.30 [79.79–100.00] | 11.89 [8.83–14.95] | 0.495 [0.390–0.600] |
(+) | 97.22 [93.43–100.00] | 4.99 [3.58–6.39] | 7.40 [5.73–9.07] | 95.83 [90.18–100.00] | 11.67 [9.67–13.67] | 0.511 [0.443–0.579] | |
p-value | 0.585 # | 0.820 | 0.995 | 0.591 # | 0.907 | 0.804 % | |
Geneva score + AADD | (−) | 90.63 [80.53–100.00] | 8.56 [5.81–11.32] | 7.40 [4.81–9.99] | 91.89 [83.10–100.00] | 14.69 [11.34–18.03] | 0.496 [0.391–0.601] |
(+) | 97.22 [93.43–100.00] | 7.81 [6.08–9.54] | 7.61 [5.90–9.32] | 97.30 [93.60–100.00] | 14.29 [12.11–16.46] | 0.525 [0.459–0.592] | |
p-value | 0.320 # | 0.644 | 0.895 | 0.331# | 0.844 | 0.644 % |
Algorithm | COVID-19 | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | Accuracy (%) | AUC |
---|---|---|---|---|---|---|---|
YEARS | (−) | 84.38 [71.79–96.96] | 26.70 [22.34–31.06] | 8.49 [5.43–11.55] | 95.50 [91.64–99.35] | 31.00 [26.63–35.38] | 0.555 [0.458–0.653] |
(+) | 86.11 [78.12–94.10] | 32.75 [29.73–35.78] | 9.09 [6.93–11.25] | 96.79 [94.84–98.75] | 36.62 [33.62–39.61] | 0.594 [0.533–0.656] | |
p-value | 1.000 # | 0.029 | 0.756 | 0.553 # | 0.041 | 0.508 % | |
PEGeD | (−) | 84.38 [71.79–96.96] | 27.96 [23.54–32.37] | 8.63 [5.52–11.74] | 95.69 [91.99–99.39] | 32.17 [27.75–36.59] | 0.562 [0.465–0.659] |
(+) | 86.11 [78.12–94.10] | 34.06 [31.00–37.12] | 9.25 [7.06–11.45] | 96.91 [95.03–98.80] | 37.83 [34.81–40.84] | 0.601 [0.540–0.662] | |
p-value | 1.000 # | 0.030 | 0.749 | 0.555 # | 0.041 | 0.503 % |
D-Dimer Cutoff (ng/mL) | Sensitivity (%) | Specificity (%) | NPV (%) | +LR | −LR | Correctly Avoided CTPA (n) | Missed PE Diagnosis (n) |
---|---|---|---|---|---|---|---|
500 | 96.15 [92.46–99.85] | 5.08 [3.89–6.26] | 94.37 [89.00–99.73] | 1.01 [0.89–1.00] | 0.76 [0.28–2.04] | 67 | 4 |
1000 | 81.73 [74.30–89.16] | 33.13 [30.59–35.67] | 95.83 [94.00–97.67] | 1.22 [1.11–1.35] | 0.55 [0.36–0.83] | 437 | 19 |
2390 | 52.88 [43.29–62.48] | 73.77 [71.39–76.14] | 95.21 [93.90–96.52] | 2.02 [1.65–2.47] | 0.64 [0.52–0.78] | 973 | 49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eksioglu, M.; Azapoglu Kaymak, B.; Elhan, A.H.; Cimilli Ozturk, T. A Comparative Analysis of the Impact of Severe Acute Respiratory Syndrome Coronavirus 2 Infection on the Performance of Clinical Decision-Making Algorithms for Pulmonary Embolism. J. Clin. Med. 2024, 13, 7008. https://doi.org/10.3390/jcm13237008
Eksioglu M, Azapoglu Kaymak B, Elhan AH, Cimilli Ozturk T. A Comparative Analysis of the Impact of Severe Acute Respiratory Syndrome Coronavirus 2 Infection on the Performance of Clinical Decision-Making Algorithms for Pulmonary Embolism. Journal of Clinical Medicine. 2024; 13(23):7008. https://doi.org/10.3390/jcm13237008
Chicago/Turabian StyleEksioglu, Merve, Burcu Azapoglu Kaymak, Atilla Halil Elhan, and Tuba Cimilli Ozturk. 2024. "A Comparative Analysis of the Impact of Severe Acute Respiratory Syndrome Coronavirus 2 Infection on the Performance of Clinical Decision-Making Algorithms for Pulmonary Embolism" Journal of Clinical Medicine 13, no. 23: 7008. https://doi.org/10.3390/jcm13237008
APA StyleEksioglu, M., Azapoglu Kaymak, B., Elhan, A. H., & Cimilli Ozturk, T. (2024). A Comparative Analysis of the Impact of Severe Acute Respiratory Syndrome Coronavirus 2 Infection on the Performance of Clinical Decision-Making Algorithms for Pulmonary Embolism. Journal of Clinical Medicine, 13(23), 7008. https://doi.org/10.3390/jcm13237008